Research Tools: Decision Support

NWS forecasters have a firehose of information directed at them, especially when there is a threat of severe weather. NSSL investigates methods and techniques to diagnose severe weather events more quickly and accurately.

AWIPS2

NSSL has more than ten NWS workstations—the Advanced Weather Interactive Processing System 2 (AWIPS2)—available for use in product evaluation. NSSL uses these AWIPS2 stations to test and demonstrate warning products and techniques that have been developed here that will be available in the NWS Forecast Office in the future.

WDSS-II

In the 1990s, NSSL developed the Warning Decision Support System, to enhance NWS warning capabilities. NSSL continues to work on the next generation WDSS-II (Warning Decision Support System: Integrated Information/NMQ), a tool that quickly combines data streams from multiple radars, surface and upper air observations, lightning detection systems, and satellite and forecast models. This improved and expanded system will eventually be moved to National Weather Service operations as the Multi-Radar Multi-Sensor (MRMS) system, and will automatically produce severe weather and precipitation products for improved decision-making capability within NOAA.

WDSS-II site :: WDSS-II product display :: MRMS real-time data

NSSL: On-Demand

NSSL: On-Demand is a web-based tool based on WDSS-II that helps confirm when and where severe weather occurred by mapping radar-detected circulations or hail on Google Earth satellite images. National Weather Service (NWS) forecast offices, including those affected by the April 27, 2011 tornado outbreak, use the images to plan post event damage surveys. Emergency responders use On-Demand to produce high-resolution street maps of affected areas, so they can more effectively begin rescue and recovery efforts and damage assessments.

NSSL Briefings: NOAA Technology Helps American Red Cross Respond Faster
NSSL Briefings: R2O Success in Birmingham

NSSL Development Lab

NSSL's Development Lab includes four wall-mounted plasma screen displays and enough room for at least 10 workstations. A large round table occupies the middle of the room for lunchtime “brown bag” discussions and other meetings. Researchers, forecasters and developers are using the lab to evaluate new platforms and techniques in real-time as a team. The workstations in the lab can be quickly adapted for visualization and incorporation of unique data sources including dual-pol and phased array radars.

NMQ

NSSL created a powerful research and development tool for the creation of new techniques, strategies and applications to better estimate and forecast precipitation amounts, locations and types. The National Mosaic and Multi-sensor Quantitative Precipitation Estimation system (NMQ) uses a combination of observing systems ranging from radars to satellites on a national scale to produce precipitation forecasts.

NMQ project page :: NMQ real-time data

MRMS

The MRMS system is the proposed operational version of the Warning Decision Support System - Integrated Information (WDSS-II) and the National Mosaic Quantitative Precipitation Estimation system.

MRMS is a system with automated algorithms that quickly and intelligently integrate data streams from multiple radars, surface and upper air observations, lightning detection systems, and satellite and forecast models. Numerous two-dimensional multiple-sensor products offer assistance for hail, wind, tornado, quantitative precipitation estimation forecasts, convection, icing, and turbulence diagnosis.

The MRMS system was developed to produce severe weather and precipitation products for improved decision-making capability to improve severe weather forecasts and warnings, hydrology, aviation, and numerical weather prediction.

MRMS project page

3D-VAR

A weather-adaptive three-dimensional variational data assimilation (3DVAR) system from NSSL/CIMMS automatically detects and analyzes supercell thunderstorms. The 3DVAR system uses data from the national WSR-88D radar network and NCEP's North American Mesoscale model product to automatically locate regions of thunderstorm activity. It is able to identify deep rotating updrafts that indicate a supercell thunderstorm at 1 km resolution every five minutes in these regions.

Preliminary display