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ABSTRACT: Spherical stationary and quasi-stationary models of the global electric circuit (GEC) are
developed and analysed. Some subtle issues concerning the well-posedness of the corresponding initial and
boundary value problems are discussed. It is shown that the ionospheric potential can always be uniquely
determined from the solution, whereas if it is specified explicitly, the corresponding problem is ill-posed.
Steady-state spherical models of the GEC are compared with plane-parallel models, and it is shown that the
former have a number of advantages over the latter; in particular, it is demonstrated that the ionospheric
potential cannot be determined within the ‘flat-Earth’ approximation, unless additional assumptions are
made. Several exact and approximate analytical formulae for the ionospheric potential are derived according
to steady-state spherical, non-steady-state spherical and steady-state plane-parallel models of the GEC. The
connection between spherical models and classical multi-column models of the GEC is established.

INTRODUCTION

One of the most important experimental evidences of the global electric circuit (GEC) hypothesis
is the observation that at every moment of time the potential difference between the lower ionosphere and
the Earth’s surface measured at remote locations is of the same magnitude. This result makes it possible to
introduce the ionospheric potential, the potential of the outer boundary of the atmosphere (which can thus be
considered equipotential) relative to the Earth’s surface, which is one of the most fundamental characteristics
of the GEC. Its significance is reinforced by the fact that it can be directly measured through aircraft and
balloon soundings [e.g., Markson, 2007], which makes it one of the few well-studied characteristics of the
global circuit, despite the measurements made until now being unsystematic and incomplete.

The long-term variation of the ionospheric potential corresponds to the dynamics of conductivity
inhomogeneities determined by various natural and anthropogenic factors, and that is why the ionospheric
potential can be used as an indicator of different physical processes in the atmosphere.

In this paper we compare the main approaches to modelling the GEC, analyse them from the per-
spective of well-posedness and place particular emphasis on the calculation of the ionospheric potential, for
which several explicit formulae are derived according to different approaches.

THE MAIN EQUATONS AND THE MAIN ASSUMPTIONS

In order to analyse plane-parallel and spherical models of the GEC and to shed light on the crucial
difference between them, let us start with Maxwell’s equations. Whatever the model geometry is, we sup-
pose that the atmosphere is bounded by the Earth’s surface Σ1 and a surface Σ2 representing the lower limit
of the ionosphere. We also suppose that both the dielectric permittivity and the magnetic permeability of the
∗Corresponding author, email: slyunyaev.n@gmail.com, Postal address: Institute of Applied Physics RAS, 46 Ulyanova St.,

603950 Nizhny Novgorod, Russia.
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atmosphere are equal to 1, in which case non-stationary Maxwell’s equations read as follows†:

curlH =
1

c

∂E

∂t
+

4π

c
J, (1)

curlE = −1

c

∂H

∂t
, (2)

divH = 0, (3)

divE = 4πρ, (4)

where E(r, t) is the electric field, H(r, t) is the magnetic field, J(r, t) is the current density, ρ(r, t) is the
charge density, r denotes the spatial coordinates, t stands for the time and c stands for the speed of light.
These equations must be supplemented with Ohm’s law

J = σE + Jext, (5)

where σ(r, t) is the conductivity and Jext(r, t) represents the external current density, as well as with the
initial and boundary conditions. An important circumstance is that we regard thunderstorms as distributed
current sources and suppose that the external current density is non-zero only within thunderclouds and
other electrified clouds [e.g., Volland, 1984]. In other words, at every moment of time the positions of
thunderstorms correspond to the spatial distribution of Jext.

Assuming that both surfaces Σ1 and Σ2 are perfect conductors, we obtain the boundary conditions

Eτ |Σ1
= 0, Eτ |Σ2

= 0, (6)

where the index τ indicates the tangential component. The initial condition may be written in the form

E|t=0 = E0, (7)

E0(r) being a stationary electric field satisfying (6).
In this paper we analyse this problem in the quasi-stationary approximation—that is to say, we neglect

the variation of H with time in (2), which yields the equation

curlE = 0. (8)

Substituting the relation (5) into (1) gives

curlH =
1

c

∂E

∂t
+

4π

c

(
σE + Jext

)
. (9)

Given σ and Jext, the equations (6)–(9) form a system of equations in E and curlH. If curlH and E are
found, one can obtain the magnetic field itself and the space charge density from (3) and (4), provided that
necessary boundary conditions for H are established. Therefore it is sufficient to find E for solving the
entire system of equations (1)–(7) within the quasi-stationary approximation.

What we want now is to eliminate the magnetic field from the equation (9). This is a subtle issue,
for it is here that plane-parallel models of the GEC differ from spherical models. Within the ‘flat-Earth’
approach the boundary surfaces Σ1 and Σ2 are supposed to be unbounded and the atmosphere is represented
by an infinite slab between them, whereas in the spherical geometry both boundary surfaces are bounded,
Σ1 being encompassed by Σ2, and the atmosphere is a thick shell confined by them (see Fig. 1). This
topological distinction determines the difference in the model equations.
†Hereafter we use the Gaussian unit system.
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Figure 1: Geometry of spherical (a) and plane-parallel (b)
models.

For brevity, let us denote the right-hand side
of (9) by X. It can be shown that for the plane-
parallel geometry the following two statements are
equivalent:

(i) There exists a vector field H such that X =
curlH.

(ii) divX is equal to zero.

However, for the spherical geometry the equivalent
of (i) is not (ii) but

(iii) divX is equal to zero, as is the flux of X
through Σ1.

(see, e.g., Girault and Raviart [1986] for a more de-
tailed discussion of this issue). From this general ob-
servation we obtain that the equation (9) is equivalent
to the equation

∂ (divE)

∂t
+ 4π div (σE) = −4π div Jext (10)

for plane-parallel models and to the pair of equa-
tions (10) and∮

Σ1

(
∂E

∂t
+ 4πσE

)
dS = −4π

∮
Σ1

Jext dS (11)

for spherical models. This means that, on the one
hand, any field E satisfying (9) must also satisfy (10)
(or (10) and (11)—depending on the geometry cho-
sen), and, on the other hand, for any field E satisfying (10) (or (10) and (11)) there must exist a field H
such that (9) holds. Therefore once we find all solutions to (10) (or (10) and (11)), we immediately find
all solutions to (9), but, since the original Maxwell’s equations also require that H satisfy (3) and meet
the (unspecified here) boundary conditions, it is possible that although a solution to (10) (or (10) and (11))
satisfies (9) with some H, yet it does not correspond to any solution of Maxwell’s equations. However, we
can replace this H by H + gradχ and try to satisfy all the necessary conditions by the appropriate choice
of χ. It is easy to verify that we will arrive at Poisson’s equation for χ with certain boundary conditions,
and we can expect it to have a solution. Nevertheless, as we do not want to specify the boundary conditions
for H, in this paper we will not go into such an analysis and will only use the aforementioned fact that any
solution to the original Maxwell’s equations must also satisfy (10) (or (10) and (11)).

For both the plane-parallel and spherical model geometries the equation (8) makes it possible to
introduce the electric potential, the function φ(r, t) such that E = − gradφ, and to reformulate other
equations in terms of this function. The conditions (6) mean that φ does not vary over each of the two
boundary surfaces, and thus if it is set equal to zero at Σ1, its value at Σ2 represents the ionospheric potential
Vi. The condition (7) requires that at the moment t = 0 φ be equal to φ0(r), the potential of E0 satisfying
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φ0
∣∣
Σ1

= 0. For spherical models of the GEC, combining these relations with the equations (10) and (11),
we arrive at the system of equations

∂

∂t
∆φ+ 4π div (σ gradφ) = 4π div Jext, (12)∮

Σ1

(
∂

∂t
gradφ+ 4πσ gradφ

)
dS = 4π

∮
Σ1

Jext dS, (13)

φ|Σ1
= 0, φ|Σ2

= Vi, (14)

φ|t=0 = φ0, (15)

where Vi(t) is a certain function of the time. A similar system for the corresponding steady-state problem
may be written as follows:

div (σ gradφ) = div Jext, (16)∮
Σ1

(σ gradφ) dS =

∮
Σ1

Jext dS, (17)

φ|Σ1
= 0, φ|Σ2

= Vi, (18)

where Vi is a certain constant. For plane-parallel models of the GEC the equations are the same, except
for (13) and (17) which should be left out.

In some spherical models of atmospheric electricity the integral conditions (13) and (17) are omitted,
the ionospheric potential is specified explicitly and the potential distribution is found by solving the prob-
lem (12), (14), (15) or (16), (18). However, such an approach is incorrect, inasmuch as the conditions (13)
and (17) are direct consequences of Maxwell’s equations, and it can be shown that once they are established,
the ionospheric potential can always be uniquely determined from the equations (12)–(15) or (16)–(18). A
detailed explanation of this issue is given in the next section.

SPHERICAL MODELS OF THE GEC
General remarks and well-posedness

Because of the spherical geometry of the atmosphere, the most natural approach to modelling the
global circuit is to solve the electric field equations in the shell between the Earth’s surface Σ1 and the
lower boundary of the ionosphere Σ2. In the non-stationary case the electric field potential φ satisfies the
equations (12)–(15), and in the stationary case, the equations (16)–(18). What is the most important is
that the ionospheric potential Vi in (14) and (18) is not an independent parameter or function (in the non-
stationary case Vi depends on t) but can always be determined from the solution [Kalinin et al., 2014]. Let
us demonstrate this for the non-stationary case (similar argument works for the stationary case).

Suppose there are two solutions to (12)–(15) (σ(r, t), Jext(r, t) and φ0(r) are assumed to be the
same in both cases), φ(1)(r, t) with the ionospheric potential V (1)

i (t) and φ(2)(r, t) with the ionospheric
potential V (2)

i (t). Setting δφ = φ(1) − φ(2) and subtracting the equations for φ(2) from their counterparts
for φ(1), we arrive at the equations

∂

∂t
∆δφ+ 4π div (σ grad δφ) = 0,∮

Σ1

(
∂

∂t
grad δφ+ 4πσ grad δφ

)
dS = 0,

δφ|Σ1
= 0, δφ|Σ2

= δVi,

δφ|t=0 = 0,
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where δVi(t) = V
(1)

i (t)−V (2)
i (t). The region occupied by the atmosphere being denoted by Ω, for any two

moments of time t1 and t2 we have the chain of equalities∫
Ω

(
∂

∂t
grad δφ(r, t1) + 4πσ grad δφ(r, t1)

)
grad δφ(r, t2) dV

=

∫
Ω

div

(
δφ(r, t2)

(
∂

∂t
grad δφ(r, t1) + 4πσ grad δφ(r, t1)

))
dV

−
∫

Ω
δφ(r, t2) div

(
∂

∂t
grad δφ(r, t1) + 4πσ grad δφ(r, t1)

)
dV

=

∮
Σ2

δφ(r, t2)

(
∂

∂t
grad δφ(r, t1) + 4πσ grad δφ(r, t1)

)
dS

−
∮

Σ1

δφ(r, t2)

(
∂

∂t
grad δφ(r, t1) + 4πσ grad δφ(r, t1)

)
dS

−
∫

Ω
δφ(r, t2)

(
∂

∂t
∆δφ(r, t1) + 4π div (σ grad δφ(r, t1))

)
dV

= δVi(t2)

∮
Σ2

(
∂

∂t
grad δφ(r, t1) + 4πσ grad δφ(r, t1)

)
dS

= δVi(t2)

∮
Σ1

(
∂

∂t
grad δφ(r, t1) + 4πσ grad δφ(r, t1)

)
dS

+ δVi(t2)

∫
Ω

div

(
∂

∂t
grad δφ(r, t1) + 4πσ grad δφ(r, t1)

)
dV

= δVi(t2)

∫
Ω

(
∂

∂t
∆δφ(r, t1) + 4π div (σ grad δφ(r, t1))

)
dV = 0.

Setting t1 = t2, we get the equation

1

2

d

dt

∫
Ω
|grad δφ|2 dV + 4π

∫
Ω
σ |grad δφ|2 dV = 0,

whence we obtain
d

dt

∫
Ω
|grad δφ|2 dV ≤ 0.

Since δφ|t=0 = 0, from this it follows that at any moment of time∫
Ω
|grad δφ|2 dV = 0,

whereupon we find that grad δφ = 0. Since δφ|Σ1
= 0, this yields δφ = 0, i.e. φ(1) = φ(2) and V (1)

i =

V
(2)

i . Similar result for the stationary equations (16)–(18) can be obtained in the same fashion.
Thus one of the crucial aspects of spherical models of the GEC is that the value of the ionospheric po-

tential can always be inferred from the solution. Another important idea is that the integral conditions (13)
and (17) cannot be omitted, for they are direct consequences of Maxwell’s equations and do not follow
from the other equations for φ. If we set the ionospheric potential equal to a given value or function
and omitted the integral conditions, the solutions to such a system of equations would not correspond to
Maxwell’s equations. Note that there can exist only one solution to (12)–(15) or (16)–(18), hence if the
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original Maxwell’s equations have a solution (which we suppose to be the case), this solution is also the
only solution to (12)–(15) or (16)–(18).

A more rigorous analysis employing Sobolev spaces and generalised functions makes it possible to
prove that both problems (12)–(15) and (16)–(18) are well-posed—that is to say, if some restrictions are
imposed on σ, Jext, φ0, Σ1 and Σ2, there exists a solution φ which is unique in a certain class of functions.
Moreover, it can be shown that the solution of the non-stationary problem approaches the solution of the
stationary problem as t→∞. Further references can be found in Kalinin et al. [2014].

Since the equations (12)–(15) and (16)–(18) are linear with respect to φ, the electric potential distri-
butions satisfy the superposition principle. To be specific, let Jext

(1)(r) and Jext
(2)(r) be two external current

density distributions and let φ(1)(r) and φ(2)(r) be the solutions to (16)–(18) with Jext
(1) and Jext

(2) respectively
(σ(r) is assumed to be the same in both cases). Then the electric potential distribution corresponding to
Jext

(1) + Jext
(2) is exactly φ(1) + φ(2), and the ionospheric potential produced by Jext

(1) + Jext
(2) is equal to the sum

of the contributions from Jext
(1) and Jext

(2) calculated separately. This immediately follows from the linearity

of the equations and the uniqueness of the solution: φ(1) + φ(2), owing to the linearity of the equations,
satisfies (16)–(18) with Jext

(1) +Jext
(2) and therefore is the only solution. Similarly, let Jext

(1)(r, t) and Jext
(2)(r, t)

be two external current density distributions, let φ0
(1)(r) and φ0

(2)(r) be two steady-state potential distribu-

tions and let φ(1)(r, t) and φ(2)(r, t) be the solutions to (12)–(15) with Jext
(1) , φ0

(1) and Jext
(2) , φ0

(2) respectively
(with the same σ(r, t)). Then by a similar argument we obtain that the electric potential distribution corre-
sponding to Jext

(1) + Jext
(2) and φ0

(1) + φ0
(2) is equal to φ(1) + φ(2), and the ionospheric potential produced by

Jext
(1) +Jext

(2) is equal to the sum of the contributions from Jext
(1) and Jext

(2) . These simple observations enable us
to regard the net potential distribution and the total ionospheric potential as the sums of contributions from
different thunderstorms.

A non-steady-state model

Henceforth we suppose that Σ1 and Σ2 are concentric spheres, their radii being equal to rmin and
rmax respectively. Let (r, θ, ψ) be spherical coordinates whose origin coincides with the common centre of
these spheres.

It can be shown that given the conductivity σ(r, t), the external current density Jext(r, t) and the
initial distribution of the potential φ0(r), the potential distribution φ(r, t) corresponding to (12)–(15), and
in particular the ionospheric potential, can always be calculated numerically by using the Galerkin method.
Furthermore, it turns out that if the conductivity does not depend on θ and ψ and is of the form σ(r, t) =
σ(r, t), then it is possible to derive an explicit formula for the ionospheric potential Vi(t). Let us demonstrate
this.

First of all, it easily follows from (12) and (13) that for all h ∈ [rmin, rmax]∮
Σh

(
∂

∂t
gradφ+ 4πσ gradφ

)
dS = 4π

∮
Σh

Jext dS,

Σh being the surface {r : r = h}. In terms of E = − gradφ this equation reads as follows:∫ 2π

0

∫ π

0

(
∂Er(r, θ, ψ, t)

∂t
+ 4πσ(r, t)Er(r, θ, ψ, t)

)
sin θ dθ dψ

= −4π

∫ 2π

0

∫ π

0
Jext
r (r, θ, ψ, t) sin θ dθ dψ.
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Introducing the notation

Ē(r, t) =
1

4π

∫ 2π

0

∫ π

0
Er(r, θ, ψ, t) sin θ dθ dψ, J̄(r, t) =

1

4π

∫ 2π

0

∫ π

0
Jext
r (r, θ, ψ, t) sin θ dθ dψ,

we arrive at the equation
∂Ē(r, t)

∂t
+ 4πσ(r, t) Ē(r, t) = −4πJ̄(r, t)

with the initial condition

Ē(r, 0) =
1

4π

∫ 2π

0

∫ π

0
E0
r (r, θ, ψ) sin θ dθ dψ,

where E0 = − gradφ0. The general solution to this linear ordinary differential equation is given by the
formula

Ē(r, t) = Ē(r, 0) exp

(
−4π

∫ t

0
σ(r, τ) dτ

)
− 4π

∫ t

0
J̄(r, τ) exp

(
−4π

∫ t

τ
σ(r, u) du

)
dτ .

It is easy to ascertain that

Vi(t) = −
∫ rmax

rmin

Ē(r, t) dr,

from which we obtain the formula

Vi(t) = − 1

4π

∫ rmax

rmin

∫ 2π

0

∫ π

0
E0
r (r) exp

(
−4π

∫ t

0
σ(r, τ) dτ

)
sin θ dθ dψ dr

+

∫ t

0

∫ rmax

rmin

∫ 2π

0

∫ π

0
Jext
r (r, τ) exp

(
−4π

∫ t

τ
σ(r, u) du

)
sin θ dθ dψ dr dτ . (19)

This formula expresses the ionospheric potential in terms of the external current density Jext and the initial
electric field E0. A similar formula was obtained by Morozov [2005] for the case where the conductivity
increases exponentially with altitude and the external current density distribution is restricted to a finite
number of point current sources.

In case neither the conductivity, nor the external current density depend on t, the formula (19) can be
written in a simpler form:

Vi(t) = − 1

4π

∫ rmax

rmin

∫ 2π

0

∫ π

0
E0
r (r) e−4πσ(r)t sin θ dθ dψ dr

+

∫ rmax

rmin

1

4πσ(r)

∫ 2π

0

∫ π

0
Jext
r (r)

(
1− e−4πσ(r)t

)
sin θ dθ dψ dr. (20)

A steady-state model

Let us now consider the stationary problem (16)–(18). As in the non-stationry case, given the con-
ductivity σ(r) and the external current density Jext(r), the potential distribution φ(r) corresponding to this
problem, and in particular the ionospheric potential, can be calculated numerically by means of the Galerkin
method, and again, if certain restrictions are imposed on the conductivity, we can express the ionospheric
potential in terms of σ and Jext. More precisely, the ionospheric potential can be described by an explicit
formula, supposing that the conductivity is of the form σ(r) = a(r) · b(θ, ψ). Let us derive this formula.

7
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As in the non-stationary case, we deduce from (16) and (17) that for all h ∈ [rmin, rmax]∮
Σh

σ gradφdS =

∮
Σh

Jext dS

and reformulate this equation in terms of E = − gradφ:∫ 2π

0

∫ π

0
a(r) b(θ, ψ)Er(r, θ, ψ) sin θ dθ dψ = −

∫ 2π

0

∫ π

0
Jext
r (r, θ, ψ) sin θ dθ dψ.

Dividing both parts of this equation by a(r), integrating over r from rmin to rmax and using the obvious
relation

Vi = −
∫ rmax

rmin

Er(r, θ, ψ) dr,

we obtain the formula

Vi =

∫ rmax

rmin

1

a(r)

∫ 2π

0

∫ π

0
Jext
r (r) sin θ dθ dψ dr∫ 2π

0

∫ π

0
b(θ, ψ) sin θ dθ dψ

. (21)

If the conductivity is a function of r alone, σ(r) = σ(r), the formula (21) can be simplified to

Vi =

∫ rmax

rmin

1

4πσ(r)

∫ 2π

0

∫ π

0
Jext
r (r) sin θ dθ dψ dr. (22)

Note that (20) tends to (22) as t→∞.

PLANE-PARALLEL MODELS OF THE GEC

Early models of atmospheric electricity were developed within the framework of the ‘flat-Earth’ ge-
ometry, where the atmosphere is represented by a horizontally infinite plane-parallel slab. As the height of
the atmosphere is much less than the Earth’s radius, such an approximation seems reasonable for calculating
contributions from separate thunderstorms to the ionospheric potential. However, since spherical models of
the GEC are more natural and have a number of advantages over ‘flat-Earth’ models (see below), here we
confine ourselves only to the study of the simplest steady-state plane-parallel model.

Let (x, y, z) be Cartesian coordinates. We suppose that the Earth’s surface Σ1 is the plane z = 0
and the upper boundary of the atmosphere Σ2 is the plane z = L. We assume that the conductivity σ(r) is
described by the function

σ(r) = σ(z) = σ0 exp (z/H),

where σ0 and H are certain constants, and we suppose that the external current density Jext(r) is non-zero
only in a certain bounded region in the atmosphere. In accordance with the general theory, the steady-state
distribution of the potential φ is described by the equations (16) and (18).

Let us first suppose that div Jext(r) = δ(r − r′). Finding the solution to (16) in the infinite space
and using the method of image sources modified for the exponential conductivity profile [Kasemir, 1959;
Willett, 1979], one can show that one of the solutions to (16) in the region Ω = {r : 0 ≤ z ≤ L} with the
boundary conditions

φ|Σ1
= 0, φ|Σ2

= 0

8
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is given by the function

G(r, r′) =

exp

(
−z + z′

2H

)
4πσ0

×

∑+∞

k=−∞


exp

−
√

(z + z′ − 2kL)2 + (ρ− ρ′)2

2H


√

(z + z′ − 2kL)2 + (ρ− ρ′)2
−

exp

−
√

(z − z′ − 2kL)2 + (ρ− ρ′)2

2H


√

(z − z′ − 2kL)2 + (ρ− ρ′)2


,

where r = (x, y, z), r′ = (x′, y′, z′), ρ = (x, y) and ρ′ = (x′, y′).
In the general case of arbitrary div Jext, using the obtained G(r, r′) as the Green’s function of the

equation (16), we obtain the solution

Φ(r) =

∫
Ω
G(r, r′) div Jext(r′) dV ′,

which is equal to zero at both boundary surfaces. Making the substitution φ(r) = Φ(r) + ψ(r), we obtain
for ψ the equation

div (σ gradψ) = 0 (23)

with boundary conditions
ψ|Σ1

= 0, ψ|Σ2
= Vi. (24)

It is easy to verify that the problem (23), (24) has infinitely many solutions, unless we explicitly
specify the value of the ionospheric potential. Indeed, for any constant C

Ψ(r, C) = C (1− exp (−z/H))

is a solution to it, and the corresponding ionospheric potential is described by the formula

Vi = C (1− exp (−L/H)).

Here lies one of the principal disadvantages of plane-parallel models, the impossibility to uniquely determine
the ionospheric potential from the equations without additional assumptions (see below), and from this it
follows that the corresponding problem (16), (18) is ill-posed.

If we explicitly specify the value Vi of the potential at Σ2, we can always find C0 such that
Ψ(r, C0)|Σ2

= Vi, namely

C0 =
Vi

1− exp (−L/H)
.

As before, making the substitution ψ(r) = Ψ(r, C0) + χ(r), we obtain for χ the equation

div (σ gradχ) = 0 (25)

with boundary conditions
χ|Σ1

= 0, χ|Σ2
= 0. (26)

9
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One of the solutions of the problem (25), (26) is χ = 0, hence Φ(r)+Ψ(r, C0) is one of the solutions
to the original equations (16) and (18) (see also Ogawa [1985]). Let us study this solution more closely.
Since we have supposed that Jext(r) 6= 0 only in a certain bounded region in the atmosphere, we expect the
net electric current IΦ through Σ2 corresponding to Φ(r) to be finite. In order to calculate this current, let
us note that‡

IΦ = −
∫

Σ2

σ(r) grad Φ(r) dS = −
∫

Σ2

σ(r) grad

{∫
Ω
G(r, r′) div Jext(r′) dV ′

}
dS

= −
∫

Ω

{∫
Σ2

σ(r) gradG(r, r′) dS

}
div Jext(r′) dV ′.

A direct calculation shows that (see also Willett [1979]) for all z′ < L∫
Σ2

σ(r) gradG(r, r′) dS =
1− exp (−z′/H)

1− exp (−L/H)
,

whence we obtain

IΦ = −
∫

Ω

1− exp (−z′/H)

1− exp (−L/H)
div Jext(r′) dV ′

= −
∫

Ω
div

(
1− exp (−z′/H)

1− exp (−L/H)
Jext(r′)

)
dV ′ +

∫
Ω
Jext(r′) grad

1− exp (−z′/H)

1− exp (−L/H)
dV ′.

Let us suppose that Jext
∣∣
Σ2

= 0; then the first summand is equal to zero, and therefore

IΦ =

∫
Ω
Jext
z (r′)

1

H

exp (−z′/H)

1− exp (−L/H)
dV ′ =

σ0

H (1− exp (−L/H))

∫
Ω

Jext
z (r′)

σ(z′)
dV ′.

Thus the net electric current through the surface Σ2 corresponding to the potential distribution Φ(r) is finite,
as we have expected. Obviously, a similar integral describing its counterpart corresponding to Ψ(r, C0) does
not converge, but we can employ the spherical geometry of the real atmosphere to surmount this difficulty.
If we restrict the region of integration such that its area will be equal to the area of the (spherical) Earth’s
surface, the net electric current IΨ through Σ2 corresponding to Ψ(r, C0) will be equal to

IΨ = −4πr2
0 (σ(r) grad Ψ(r, C0))|Σ2

= −4πr2
0 σ0 exp (L/H) grad

Vi (1− exp (−z/H))

1− exp (−L/H)

∣∣∣∣
z=L

= − 4πr2
0 Vi σ0

H (1− exp (−L/H))
,

r0 standing for the Earth’s radius. If we demand that the two currents IΦ and IΨ compensate for one another,
i.e. IΦ + IΨ = 0, then we immediately obtain the equation

Vi =
1

4πr2
0

∫
Ω

Jext
z (r′)

σ(z′)
dV ′. (27)

Obviously, the ionospheric potential given by the formula (27) is close to the exact value given
by (22). Therefore it seems reasonable to expect that χ in φ(r) = Φ(r) + Ψ(r, C0) + χ(r) is equal to
zero. However, it is not difficult to show that unless we specify the boundary conditions at infinity (when

‡In this equation the gradient is taken with respect to r and the divergence is taken with respect to r′.
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Figure 2: (a) The partition of the atmosphere. (b) The equivalent electric circuit.

|ρ| → ∞), the problem (25), (26) has non-trivial solutions. It is possible to impose such restrictions on the
behaviour of χ at infinity that the solution χ = 0 will be unique; in spite of that, here we will refrain from
further development of this idea, for it is unnatural to establish the boundary conditions for the function
χ(r) = φ(r) − Φ(r) − Ψ(r, C0) instead of the original potential φ(r). We can conclude that although the
plane-parallel approximation seems reasonable for certain problems, it has a number of disadvantages, since
there are considerable difficulties with establishing boundary conditions at infinity, the corresponding prob-
lem cannot easily be made well-posed and the ionospheric potential cannot be uniquely determined from
the model equations without additional artificial assumptions. Therefore in most cases models employing
spherical geometry seem more natural and convenient.

APPROXIMATE ANALYSIS AND ITS CONNECTION WITH CLASSICAL MULTI-COLUMN
MODELS OF THE GEC

Let us now consider the steady-state problem (16)–(18) (in the spherical geometry). Although the
ionospheric potential can always be calculated numerically, it is nevertheless convenient to be able to express
it analytically by means of (21), even though it requires the conductivity to be of the form σ(r) = a(r) ·
b(θ, ψ). In this section we will show that it is possible to derive an approximate formula for the ionospheric
potential in another special case, where weaker restrictions are imposed on the conductivity, and, what is
more, the corresponding approximation turns out to be a generalisation of classical multi-column models of
atmospheric electricity based on the concept of the equivalent electric circuit.

The region occupied by the atmosphere being denoted by Ω, we can write Ω = Γ × [rmin, rmax],
where Γ is the unit sphere and ‘×’ indicates the Cartesian product. Suppose that

Γ =
⋃n

j=1
Γj

and Γi ∩ Γj = ∅ for i 6= j. This partition of Γ induces a corresponding partition of Ω, namely

Ω =
⋃n

j=1
Ωj ,

where Ωj = Γj × [rmin, rmax] (an example of such a partition is shown schematically in Fig. 2a). Using the
spherical coordinates introduced before, let us suppose that σ(r) and Jext

r (r) are functions of r alone within

11
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Ωj , and Jext
θ, ψ(r) = 0 in Ω. More precisely, we suppose that

σ(r, θ, ψ) =


σ(1)(r), (r, θ, ψ) ∈ Ω1,
σ(2)(r), (r, θ, ψ) ∈ Ω2,
. . . . . . . . . . . . . . . . . . . . . . . .

σ(n)(r), (r, θ, ψ) ∈ Ωn,

Jext
r (r, θ, ψ) =


J

(1)
r (r), (r, θ, ψ) ∈ Ω1,

J
(2)
r (r), (r, θ, ψ) ∈ Ω2,
. . . . . . . . . . . . . . . . . . . . . . . .

J
(n)
r (r), (r, θ, ψ) ∈ Ωn

and
Jext
θ, ψ(r, θ, ψ) = 0 for all (r, θ, ψ).

Let us suppose that these conditions are satisfied, and let us suppose that, for all j, the characteristic
‘horizontal’ scale Lj of Ωj is much greater than the characteristic vertical scale R = rmax − rmin, in which
case the derivatives with respect to θ and ψ in (16) can be neglected. Then within Ωj we get

∂

∂r

(
r2σ(j)(r)

∂φ(r, θ, ψ)

∂r

)
=

d

dr

(
r2J (j)

r (r)
)

,

whence by integration over r we obtain

∂φ(r, θ, ψ)

∂r
=
J

(j)
r (r)

σ(j)(r)
+
Cj(θ, ψ)

r2σ(j)(r)
, (28)

Cj(θ, ψ) being a certain function. Therefore for all θ and ψ we have

Vi =

∫ rmax

rmin

∂φ(r, θ, ψ)

∂r
dr =

∫ rmax

rmin

J
(j)
r (r) dr

σ(j)(r)
+ Cj(θ, ψ)

∫ rmax

rmin

dr

r2σ(j)(r)
, (29)

from which it follows that Cj is actually a constant, independent of θ and ψ. With j in the range 1 ≤ j ≤ n,
it gives n equations in n + 1 variables C1, C2, . . . , Cn and Vi. The equation which closes the system is
obtained by substitution of (28) into (17), which gives∑n

j=1
γjCj = 0, (30)

γj being the solid angle subtended by Γj (and thus the sum of γj being equal to 4π). Eliminating all Cj
from (29) and (30), we obtain the following formula for the ionospheric potential:

Vi =
∑n

j=1

γj

∫ rmax

rmin

J
(j)
r (r) dr

σ(j)(r)∫ rmax

rmin

dr

r2σ(j)(r)

/∑n

j=1

γj∫ rmax

rmin

dr

r2σ(j)(r)

. (31)

It is easy to see that for n = 1 the approximate formula (31) coincides with the exact expression (22).
Futhermore, in case the conductivity is of the form σ(r) = a(r) · b(θ, ψ), this formula turns into (21),

12
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provided that the regions Ωj are taken to be infinitesimally small. In order to show this, let us point out that
if b(θ, ψ) is a piecewise constant function, being equal to bj within Ωj , then (31) can be simplified to

Vi =

∫ rmax

rmin

1

a(r)

∑n

j=1
γjJ

(j)
r (r) dr∑n

j=1
γjbj

,

which turns into (21) as γj → 0, for this allows us to replace the summation over j by integration of
continuous functions over θ and ψ.

As it has been stated before, such an approximation turns out to be a generalisation of classical multi-
column models of atmospheric electricity based on the idea of the equivalent circuit. In such models the
entire atmosphere is divided into two or more columns, some corresponding to thunderstorm regions, where
the current flows upwards, and others corresponding to fair weather regions, where the current flows down-
wards. Replacing different regions with equivalent resistors and current sources, it is possible to simulate the
real atmospheric electric system by an equivalent circuit. Such a circuit generalising those used in models
by Willett [1979], Volland [1984] and Odzimek et al. [2010] is shown in Fig. 2b. It consists of n parallel
vertical current paths whose lower ends are joined together, as are their upper ends. The jth vertical current
path is supposed to be a series of infinitesimal elements consisting of a current source of strength Iext

jk and a
resistor of resistance Rjk connected in parallel.

To establish the correspondence between this circuit and the spherical model studied above, we say
that n vertical current paths correspond to the regions Ω1, Ω2, . . . , Ωn, the bottom and top of the circuit
representing the boundary surfaces Σ1 and Σ2 respectively. We also demand that the resistances Rjk and
the external currents Iext

jk correspond to the distributions σ(j)(r) and J (j)
r (r). More precisely, we suppose

that the region Ωj = Γj × [rmin, rmax] is partitioned into infinitesimally thin slabs Γj × [rjk, rj, k+1] with
rj, k+1 − rjk = drjk, and the kth slab corresponds to the element with the resistance Rjk and the external
current Iext

jk , i.e.

Rjk =
drjk

γjr2
jkσ

(j)(rjk)
, Iext

jk = γjr
2
jkJ

(j)
r (rjk). (32)

It is easy to see that the two approaches are actually equivalent, inasmuch as in either case we divide the
atmosphere into one-dimensional columns and neglect the current flowing through their side surfaces.

Let us calculate the ionospheric potential using the equivalent circuit representation. Denoting the
current in the jth path as Ij (which is defined to be positive if the current flows upwards and negative
otherwise), we get n equations of the form

Vi =
∑

k

(
Iext
jk − Ij

)
Rjk =

∑
k
Iext
jk Rjk − Ij

∑
k
Rjk,

where Vi stands for the voltage between the top and bottom of the circuit, thus being an equivalent of the
ionospheric potential. Then, since ∑n

j=1
Ij = 0,

we obtain the formula

Vi =
∑n

j=1

∑
k
Iext
jk Rjk∑
k
Rjk

/∑n

j=1

1∑
k
Rjk

, (33)

which is similar to that obtained by Odzimek et al. [2010]. As one might have expected, substituting the
relations (32) into (33) and replacing the sums over k with integrals over r, we obtain the formula (31) again.
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CONCLUSIONS

In order to compare spherical and plane-parallel models of the GEC, we have analysed both ap-
proaches, starting from the general Maxwell’s equations. Since ‘flat-Earth’ models of the GEC turn out to
be ill-posed without additional artificial assumptions, we can conclude that the spherical geometry is more
natural and convenient for modelling the GEC. Both stationary and quasi-stationary spherical models cor-
respond to well-posed problems, in which the ionospheric potential can be uniquely determined from the
solution. The possibility to find the ionospheric potential together with the importance of integral condi-
tions (13) and (17) are the most crucial aspects of spherical models of atmospheric electricity.

In certain simple cases the ionospheric potential in spherical models can be expressed analytically
in terms of the conductivity, the external current density and the initial distribution of the electric field (in
the non-stationary case). Since plane-parallel and multi-column models of the GEC can be regarded as
approximations of spherical models, they also enable us to derive several approximate formulae for the
ionospheric potential. Analytical expressions for the ionospheric potential can be used, for example, for
parameterisation of atmospheric electricity in high-resolution weather and climate models.
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