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ABSTRACT

The verification phase of the World Weather Research Programme (WWRP) Sydney 2000 Forecast Demon-
stration Project (FDP) was intended to measure the skill of the participating nowcast algorithms in predicting
the location of convection, rainfall rate and occurrence, wind speed and direction, severe thunderstorm wind
gusts, and hail location and size. An additional question of interest was whether forecasters could improve the
quality of the nowcasts compared to the FDP products alone.

The nowcasts were verified using a variety of statistical techniques. Observational data came from radar
reflectivity and rainfall analyses, a network of rain gauges, and human (spotter) observations. The verification
results showed that the cell tracking algorithms predicted the location of the strongest cells with a mean error
of about 15–30 km for a 1-h forecast, and were usually more accurate than an extrapolation (Lagrangian
persistence) forecast. Mean location errors for the area tracking schemes were on the order of 20 km.

Almost all of the algorithms successfully predicted the frequency of rain throughout the forecast period,
although most underestimated the frequency of high rain rates. The skill in predicting rain occurrence decreased
very quickly into the forecast period. In particular, the algorithms could not predict the precise location of heavy
rain beyond the first 10–20 min. Using radar analyses as verification, the algorithms’ spatial forecasts were
consistently more skillful than simple persistence. However, when verified against rain gauge observations at
point locations, the algorithms had difficulty beating persistence, mainly due to differences in spatial and temporal
resolution.

Only one algorithm attempted to forecast gust fronts. The results for a limited sample showed a mean absolute
error of 7 km h21 and mean bias of 3 km h21 in the speed of the gust fronts during the FDP. The errors in sea-
breeze front forecasts were half as large, with essentially no bias. Verification of the hail associated with the 3
November tornadic storm showed that the two algorithms that estimated hail size and occurrence successfully
diagnosed the onset and cessation of the hail to within 30 min of the reported sightings. The time evolution of
hail size was reasonably well captured by the algorithms, and the predicted mean and maximum hail diameters
were consistent with the observations.

The Thunderstorm Interactive Forecast System (TIFS) allowed forecasters to modify the output of the cell
tracking nowcasts, primarily using it to remove cells that were insignificant or diagnosed with incorrect motion.
This manual filtering resulted in markedly reduced mean cell position errors when compared to the unfiltered
forecasts. However, when forecasters attempted to adjust the storm tracks for a small number of well-defined
intense cells, the position errors increased slightly, suggesting that in such cases the objective guidance is probably
the best estimate of storm motion.

1. Introduction

The Sydney 2000 Forecast Demonstration Project
(FDP) provided an unprecedented opportunity to test a
large number of radar-based nowcast algorithms in an
operational setting. Nine automated nowcast systems
were run in parallel by a team of international research-
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ers working alongside the severe weather forecasters in
the Sydney office of the Australian Bureau of Meteo-
rology (BoM). During the period September–November
2000 forecasters used the nowcast products from all nine
algorithms to help them forecast rain, winds, and severe
weather for periods of 1–3 h.

The subjective assessment of the nowcast products
was quite positive. BoM forecasters agreed that the now-
cast schemes indeed provided useful information for
forecasting. In addition, they felt that being able to dis-
cuss the nowcast algorithms and products with the re-
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searchers improved their understanding of the physical
processes that cause convection and severe weather. Ex-
ternal users of the nowcasts (Sydney Olympic Com-
mittee, airlines, State Emergency Services, and Bridge-
climb) found the nowcasts beneficial for their smooth
operations during the Olympic Games (Anderson-Berry
et al. 2004, in this issue).

A more precise assessment of the nowcasts’ skill re-
quires objective verification against the observed weather.
Algorithm verification is a vital component of the FDP
and was built into the project early on. An international
verification team, comprising the authors of this paper,
was assembled to perform an independent nowcast ver-
ification using a variety of statistical and analytical tech-
niques (Brown et al. 2001; Nurmi et al. 2001). They set
out to answer the following questions:

1) Is it feasible to predict the location of convection
with enough accuracy and skill to be useful?

2) What are the accuracy and skill of rainfall rate and
occurrence forcasts as a function of lead time and
accumulation period?

3) Is it feasible to predict wind speed and direction at
points with enough accuracy and skill to be useful?

4) What is the accuracy of severe thunderstorm wind
gust diagnoses and forecasts?

5) What is the accuracy of hail location and size de-
tections and forecasts?

6) Do the forecasters improve the quality of the fore-
casts compared to the ‘‘raw’’ FDP products alone?

Initially it had been hoped that the team could provide
real-time verification tools for use during the study pe-
riod. Time constraints prevented this from happening,
so the archived nowcast products were verified during
the ensuing months.

There are several reasons for doing the nowcast ver-
ification. Most important, the verification gives algo-
rithm developers specific information about the ability
of their algorithms to forecast the types of weather sit-
uations that occurred in the Sydney 2000 FDP.1 The
results highlight situations in which the algorithms made
good forecasts. Conversely, situations where the now-
casts were in error indicate weaknesses in the algorithms
that require improvement. Forecasters, the main users
of the nowcasts, use the verification results to get a
feeling for the expected errors in the nowcasts, and es-
pecially to learn in which weather situations a given
algorithm is particularly trustworthy or untrustworthy.
Ongoing nowcast verification allows the systems to be
monitored, and upgrades to be evaluated. Finally, it is
intended that this nowcast verification, although com-
pleted after the FDP, will lead to the development of
tools for improved real-time verification of nowcasts.

1 Weather observed during the FDP included sea-breeze circula-
tions in the Sydney basin, strong wind events, pre- and postfrontal
precipitation, thunderstorm evolution and movement, and a supercell
that spawned three tornadoes (Webb et al. 2001).

This paper starts by giving a brief description of the
nowcast algorithms and their products, followed by a
description of the data and methods used to verify the
nowcasts. Selected verification results are shown for
each algorithm. The paper concludes by returning to the
set of six questions posed above.

2. Nowcast algorithms

The nine nowcast schemes run during the FDP are
summarized in Table 1. More complete descriptions of
the algorithms can be found in the references listed in
the table, as well as in Keenan et al. (2003) and other
papers in this special issue. All of the algorithms rely
on radar reflectivity as their primary data source.

It should be emphasized that the algorithms were de-
signed for differing purposes. The Canadian Radar De-
cision System (CARDS; Lapczak et al. 1999) and the
Warning Decision Support System (WDSS; Eilts et al.
1996) were designed specifically for nowcasting severe
weather, while Auto-nowcaster (ANC; Wilson et al.
1998), the Generating Advanced Nowcasts for Devel-
opment in Operational Land-surface Flood Forecasts
System (Gandolf; Pierce et al. 2000), and the Thun-
derstorm Identification, Tracking, Analysis, and Now-
casting System (TITAN; Dixon and Weiner 1993) are
intended for thunderstorm nowcasting, and the Now-
casting and Initialisation for Modelling using Regional
Observation Data Scheme (Nimrod; Golding 1998) and
the Spectral Prognosis approach (S-PROG; Seed and
Keenan 2001) are meant for rain nowcasting in general.
The C-band polarimetric radar (C-Pol) approach is a
hydrometeor classification scheme and does not produce
forecasts. The Thunderstorm Interactive Forecasting
System (TIFS, formerly known as Thunderbox; Bally
2004, in this issue) allows graphical interactive modi-
fication of any cell-based nowcast; in the FDP, TIFS
used TITAN and WDSS nowcasts as its initial guess.

The algorithms predict a variety of meteorological
quantities. The severe weather algorithms detect and
predict tornadoes, hail, and downbursts, and all algo-
rithms except WDSS and C-Pol predict rain intensity.
The ANC algorithm is unique in nowcasting gust fronts
and other boundary layer convergence lines. The spatial
resolution of the algorithms ranges from pixel resolution
(1 km in the FDP) to 5 km, and the temporal resolution
ranges from 5 to 30 min. Forecasts extend from 10 min
to 3 h.

Some algorithms are designed to make use of addi-
tional data sources such as numerical model forecasts,
radiosonde soundings, satellite observations, and light-
ning data. There was not enough time before the FDP
to reconcile the incompatibilities between the BoM’s
satellite and lightning data sources and the input streams
of the algorithms, so unfortunately some of the algo-
rithms were operating at less than their full potential
(see Table 1). This must be taken into account when
interpreting the verification results.
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Quality control of the raw radar reflectivities is an
important first step for the nowcast algorithms. Ground
and sea clutter were serious sources of noise in the C-
band Doppler radar located at Sydney Airport. Bright-
band contamination and data dropouts were also issues.
Although each algorithm has its own built-in quality
control procedures, most of them were not optimally
tuned for the Australian radar data (Donaldson et al.
2001). Incorrect association of clutter with precipitation
was apparently a problem for some algorithms. As a
result of these quality control issues, as well as spatial
resolution differences, the analyses of the radar obser-
vations looked quite different from scheme to scheme,
even though the same input data were used. An example
of radar analyses for the tornadic storm of 3 November
is shown in Fig. 1. Differences can be seen in the style
and spatial resolution of the products, the magnitudes
of the analyzed rain rates, and the misdiagnosis of sea
clutter as light rainfall in some of the analyses.

3. Forecast variables and verification data

A set of meteorological variables to be verified was
compiled prior to the start of the FDP, and included (a)
convective cell location, (b) rainfall rate and occurrence,
(c) wind speed and direction at point locations, (d) se-
vere thunderstorm wind gusts at point locations, (e) hail
location and size detections and forecasts, and (f ) fore-
caster improvements to the quality of the automated
nowcasts (Brown et al. 2001). After the FDP it became
clear that the initial list would need to be revised, due
to some forecasts and observations being unavailable.
The final list of meteorological variables, and the ob-
servations that were used to verify them, is given in
Table 2. Items c and d were removed, although some
indirect assessment of wind nowcasts is possible with
the verification of boundaries (convergence lines).

Verification data for all the systems came both from
the radar analyses and from a network of rain gauges.
The analyses were used to verify all those predictions
that were defined spatially such as cell location, hail
location, gust fronts, and other mesoscale convergence
lines, and also were used to verify the predicted rain
rates. Since we did not have available an analysis that
was completely independent of all the nowcast systems,
we felt the most consistent and fairest approach would
be to verify each system against its own analysis.

Best estimates for the position of convective cells
were determined by the cell tracking algorithms in TI-
TAN and WDSS. The observed boundary layer con-
vergence lines were manually inserted in real time by
experts (J. Wilson 2001, personal communication),
based on careful analysis of the Doppler radar wind
velocities, and visually checked for accuracy against
observations from the surface wind mesonet. Some un-
certainty may arise in the detection of boundary layer
convergence lines far from the radar, due to the increase
in radar beam height with range; however, this is ex-

pected to have only a small impact on the results. To
assess whether the ANC scheme correctly predicted the
movement and spreading of gust fronts and sea-breeze
fronts, both the position and length of nowcast conver-
gence lines were verified against the manual analyses.

Rainfall was verified both against the radar rainfall
analyses and against a network of 90 rain gauge ob-
servations shown in Fig. 2. The observations consist of
accumulated precipitation over 5-min periods through-
out the entire 3-month period of the experiment. Values
are reported in increments of 0.5 mm. Comparison of
the gauge time series with the radar rainfall analyses
revealed no evidence of timing shifts between the event
and the report in cases of light rain.

Verification of hail is difficult because hail obser-
vations are usually made by members of the public safe-
ty community or general public, and quality control for
the observations is extremely difficult. Further, the ab-
sence of a report of severe weather does not necessarily
mean that severe weather did not occur, only that it was
not reported. The effect of this problem on verification
of forecasts has been discussed by Brown et al. (1997).
The FDP had few severe thunderstorm events that pro-
vided opportunities for collection of reports and for
analysis of the severe weather algorithms. In fact, only
one case (the storm that moved from Campbelltown to
Castle Hill, producing a tornado near Parramatta on 3
November 2000) is suitable for analysis. Of the 20 re-
ports of hail recorded in the forecaster’s log in real time
or on the following 2 days, only 11 contained useable
size and location information; these are listed in Table
3. Clearly, this is not a complete description of the hail
that fell out of the storm, but it is by far the best de-
scription available for any storm during the course of
the experiment.

The verification results reported here were computed
for a set of days and times during the 3-month opera-
tional period that were considered to have ‘‘notable’’
weather. These cases are listed in Table 4, categorized
according to five different weather types: (a) most sig-
nificant convection, (b) convective rain with reflectivity
$40 dBZ, (c) convective rain with reflectivity ,40 dBZ,
(d) widespread stratiform rain, and (e) fair weather with
sea-breeze circulations. The frontal types associated
with the boundary layer convergence lines are also in-
dicated in the table. The FDP contained 40 notable rain
events and 16 cases of clear weather with sea-breeze
fronts. The restriction of the verification dataset to in-
teresting weather days had the effect of ‘‘enriching’’ the
data, increasing the frequency of precipitation occur-
rence in the sample, and eliminating the majority of null
cases (no precipitation forecast or observed).

4. Verification methods

A variety of verification methods were used to address
the fundamental questions related to nowcast skill for
convective cells, rainfall, convergence lines, and hail.
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FIG. 1. Radar reflectivity and associated rainfall analyses from five nowcast algorithms at 0530–
0540 UTC 3 Nov 2000.
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TABLE 2. Meteorological variables predicted by the nowcast
algorithms and verified using observational data.

Meteorological
variables

Verifying observational
data

Convective cell location Radar reflectivity analyses
Rain rate and occurrence Radar rainfall analyses*
Rain accumulation Rain gauge observations
Boundary layer convergence

line location and length
Manual analyses of Doppler ra-

dar wind velocities
Hail location and size Human observations

* All algorithms used a climatological Z–R relationship, Z 5 200R1.6,
to convert radar reflectivity to rain rate. No attempt was made to
correct bias in the radar-rainfall estimates using rain gauge obser-
vations.

FIG. 2. Location of 90 rain gauges in the Sydney basin, denoted
by open circles (o). The locations of hail sightings on 3 Nov 2000
are indicated by the filled diamonds.

TABLE 3. Hail reports with sizes associated with the 3 Nov 2000
severe thunderstorm (see Fig. 2 for locations of sightings). Compar-
ison of the reported location to the observed track led us to question
the timing of the Greystanes report. The location is approximately
15 km southwest of where the progression of reports would suggest
that hail would be expected to be falling at 0600 UTC. It seems likely
that the hail occurred at Greystanes approximately half an hour prior
to 0600 UTC.

Time
(UTC) Location

Reported
size

Equivalent
diameter (cm)

0415
0415
0425
0450

0505
0541
0600
0600
0600
0610
0610

Campbelltown
Campbelltown
Campbelltown
Northwest of

Campbelltown
Wakely
Wentworthville
Castle Hill
Greystanes
Eastwood
Turramurra
Asquith

Table tennis ball
10¢ coin (Australian)
20¢ coin (Australian)
Golf ball

Golf ball
2 cm
2 cm
Golf ball
2 cm
2 cm
1 cm

3.2
2.4
2.9
4.5

4.5
2
2
4.5
2
2
1

In some cases development of a new verification meth-
odology was required. In this paper we present a subset
of verification results that highlight the most important
aspects of algorithm behavior. The statistics shown here
are summary statistics, computed over the entire greater
Sydney domain and over the events listed in Table 4.
The results are stratified by forecast lead time and where
possible by weather type.

Because of the numerous differences between algo-
rithms we believe that it is inappropriate to directly
intercompare their verification results. Therefore, each
algorithm is evaluated individually in this paper. How-
ever, we do compare the verification results for each
scheme to the results obtained for two alternate fore-
casts, namely persistence and extrapolation. The Euler-
ian persistence forecast (PERSIS) is defined as no
change in the existing conditions; that is, the current
weather is the forecast for the future weather. The sim-
plest extrapolation forecast (EXTRAP), or Lagrangian
persistence, is obtained by advecting the current radar
analysis at a constant speed and direction over the entire
domain, determined from prior mean storm motion us-
ing a simple correlation technique (see Seed and Keenan
2001 for details). Both of these forecasts are ‘‘un-
skilled,’’ in that no additional information or intelli-
gence is used to predict the evolution of individual
storms. If the nowcast algorithms perform better than
PERSIS and EXTRAP, then they can be considered to
add value to the forecast.

For cell and rain verification, only forecasts for which
both the algorithm and EXTRAP forecasts were avail-
able were included to allow the two approaches to be
fairly compared.

a. Cell location and velocity

The cell tracking feature of the TITAN and WDSS
algorithms identifies convective cells as areas of con-
tiguous reflectivity above a set threshold, and follows
the centroid of each cell in consecutive radar images.
The cell’s speed and direction are determined from its
past movement and used to forecast future cell position.
Assuming that each cell is correctly and uniquely iden-

tified, it is simple to verify the forecast position against
its observed position at the valid time of the forecast.

For Cartesian nowcast algorithms without cell track-
ing, a modified version of Ebert and McBride’s (2000)
contiguous rain area (CRA) verification was used, with
the 1 mm h21 contour defining the CRA boundary. CRA
verification uses pattern matching to estimate the po-
sition error of a forecast storm relative to its observed
location, then verifies the ‘‘macro’’ properties of the
storm, such as storm area, and the mean and maximum
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TABLE 4. Weather events observed during the FDP, Sep–Nov 2000 (J. Wilson 2001, personal communication). Frontal types associated
with the boundary layer convergence line verifications are also indicated. SBF indicates a sea-breeze front, while the lowercase letters indicate
the motion of other fronts (e.g., seF is a southeasterly front), usually gust fronts but occasionally a synoptic front. An asterisk indicates that
TIFS nowcasts were made during this period.

Times and dates (UTC) Frontal type Comments

(a) Most significant convection
1200–1900 25 Sep
2200 25 Sep–0230 26 Sep
0800-1300 26 Sep*
0200–1000 19 Oct*
0000–1530 3 Nov*
0000 30 Nov–1200 1 Dec*

seF
neF
sF

Unexpected nighttime storms, downburst
Maximum reflectivities in upper 40s dBZ
Gust front and synoptic front collide

Supercell with tornadoes
Hail and flash flooding

(b) Convective rain with reflectivity $ 40 dBZ
1900 9 Sep–1600 10 Sep
0300–0900 28 Sep
0100–0800 29 Sep
1930 13 Oct–0300 14 Oct
0100–1000 19 Oct
0200–0700 23 Oct
0000–1400 26 Oct
2000 31 Oct–0400 1 Nov
2200 4 Nov–1100 5 Nov*
2200 5 Nov–1100 6 Nov
2200 6 Nov–1200 7 Nov
0900–1600 20 Nov
0100–1100 23 Nov
0000–0600 24 Nov
0000–2300 26 Nov
0000–9000 29 Nov

SBF

seF, wF

SBF

sF

Over ocean

Mostly over ocean
50–55-dBZ storm south of Sydney
Intense slow-moving storm over Blue Mountains
Intensification upon moving offshore
Max reflectivities 45 dBZ

Max reflectivities 45 dBZ

Severe storms reported

(c) Convective rain with reflectivity , 40 dBZ
2100 8 Sep–0200 9 Sep
0000–1000 17 Sep
0000–0800 18 Sep
1830 20 Sep–0900 21 Sep
0300–1200 24 Sep
1200 24 Sep–1000 25 Sep
0000–0800 8 Oct
1000–2400 10 Oct
1000 16 Oct–0200 17 Oct
2000 1 Nov–0800 2 Nov

SBF
SBF

sF

SBF

(d) Widespread stratiform rain
1100 27 Sep–0300 28 Sep
0800 8 Oct–1000 9 Oct
1900 12 Oct–1610 13 Oct
2200 17 Oct–0100 19 Oct

sF

1600 13 Nov–0900 15 Nov
1900 15 Nov–1400 16 Nov
1700–2400 16 Nov
2000 17 Nov–1100 18 Nov

(e) Fair weather with sea-breeze circulations
2230 14 Sep
0120–0550 19 Sep
2320 19 Sep–0330 20 Sep
0710–0830 22 Sep
2320 29 Sep–0500 30 Sep
0050–0720 3 Oct
0050–0500 4 Oct
0030–0630 5 Oct
0350–0630 6 Oct
0100–0410 10 Oct
0440–0730 12 Oct
0120–0620 16 Oct
0100–0520 20 Oct
2230 26 Oct–0620 27 Oct
1000–1110 27 Oct
0240–0740 17 Nov

seF
SBF
seF
stationary
SBF
SBF
SBF
SBF
SBF
SBF
seF
SBF
SBF
SBF
sF
SBF
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intensity. It also decomposes the total error into com-
ponents due to displacement, volume, and spatial pattern
errors.

A two-step pattern matching technique was imple-
mented here. First, the forecast storm is translated over
the observations until the overlap between the forecast
and observed rain areas is maximized. Second, the pat-
tern match is refined by searching in the immediate
neighborhood for the location that minimizes the total
squared error between the forecast and observations.
This step matches the intense rain areas. To eliminate
mismatches the pattern correlation between the two rain
areas is required to be significantly greater than 0 at the
95% confidence level. This means that for very poor
forecasts it is impossible to accurately estimate the po-
sition error using CRA verification. This might intro-
duce a favorable bias in the verification results, although
it is expected that the location errors determined for the
identifiable cells will be representative of location errors
in general.

b. Rain occurrence, rate, and amount

Rainfall was verified in a variety of ways. In all cases,
it was necessary to first match the forecasts and obser-
vations in a consistent fashion. Then various verification
statistics were computed from the sets of matched fore-
cast–observation pairs. For verification of the spatial
rain rates against analyses, the forecasts were simply
matched pixel by pixel with the rain-rate analysis at the
forecast valid time. Matching of the forecast rain-rate
values with the gauge data was more complicated be-
cause of differences in the definitions of forecast and
observation. The rain rates were matched spatially by
selecting the rate forecast for the field pixel overlying
each station. The predicted rain rates were considered
to represent the average rain rate over the forecast output
step of the model in each case (10 min for GANDOLF
and S-PROG, and 30 min for ANC, Nimrod, TITAN,
and CARDS), and were converted to accumulations over
that period. The observations were available as accu-
mulations over 5-min periods; these were matched by
summing over the number of 5-min periods for each
forecast step. The forecast was assumed to be centered
over the observation period; that is, the forecast rain-
rate value was interpreted to be in the center of the
accumulation period for the purposes of time matching
the forecasts and observations. Even with this optimal
matching strategy, the differences in scale between spa-
tially averaged radar snapshots and point accumulations
at gauges lead to apparent errors, as will be seen in the
next section. For verification with respect to observa-
tions, PERSIS is defined as the observed precipitation
accumulation at the gauge at the initial forecast time.

The rain forecasts were verified both as continuous
variables and as categorical variables. For verification
as continuous variables, four measures were used. The
linear bias, or mean error, is defined as the difference

between the average forecast and average observation.
Positive (negative) values indicate that the system is
forecasting too much (too little) rain on average. The
mean absolute error (MAE) is defined as the average
magnitude of the difference between the forecast and
observation. This gives an estimate of the expected mag-
nitude of the error in the forecast. Third, a skill score
based on the MAE was computed:

MAE 2 MAEPERSIS fcstSkill 5 .MAE MAEPERSIS

This skill score measures the MAE of the forecast rel-
ative to the MAE of the persistence forecast, as defined
above. It expresses the fractional improvement of the
forecast over the standard forecast, and can range from
2` to 1. If the forecast is more accurate than the per-
sistence forecast, the skill value will be positive, while
negative values indicate that persistence gives a more
accurate forecast, according to the MAE. The correla-
tion coefficient between the forecast and observed rain
measures how well the spatial or temporal pattern is
predicted, independent of bias.

For verification as categorical variables, the contin-
uous forecasts and observations, both rain rate and ac-
cumulation, were categorized into two categories, rain
or no rain, and the forecast–observation pairs accu-
mulated into 2 by 2 contingency tables according to the
four possible outcomes: (a) hits (rain forecast and rain
observed), (b) misses (rain observed but not forecast),
(c) false alarms (rain forecast but not observed), and (d)
correct negatives. To distinguish rain from no rain, a
suitably low threshold was used, 1 mm h21 for rain rate,
and for accumulation, 0.005 mm per forecast period. To
help evaluate the systems’ performance on the heavier
rain cases, the contingency tables were recomputed with
higher thresholds, 5 and 20 mm h21 for rain rate, and
1 and 5 mm per forecast period for the quantitative
forecasts.

Various scores were computed from the elements of
the contingency tables. The frequency bias is the ratio
of the number of forecasts of rain to the number of rain
observations:

hits 1 false alarms
frequency bias 5 .

hits 1 misses

It measures an algorithm’s tendency to over- or under-
forecast rain frequency or rain area. A value of 1 in-
dicates an unbiased forecast, where rain is forecast as
often as it is observed.

The critical success index (CSI), also known as the
threat score, measures the ratio of correct rain forecasts
to the total number of rain forecasts and observations:

hits
CSI 5 .

hits 1 misses 1 false alarms

A CSI of 1.0 indicates perfect correspondence between
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FIG. 3. The 30- (blue lines) and 60-min (red line) nowcasts for the
sea-breeze front at 0130 UTC 20 Oct 2000, from the ANC algorithm.
The black lines show the observed position.

the forecast and observed rain occurrences. The CSI
decreases when there is bias in the forecast rain area
(increasing the frequency of misses or false alarms), and
when there are errors in forecast rain location or timing
(increasing both misses and false alarms).

A third score called the Hanssen–Kuipers (HK) dis-
criminant, or true skill statistic, was computed for the ver-
ification against gauge data. This score is of the form

hits false alarms
HK 5 2

hits 1 misses false alarms 1 correct negatives

and gives information about the utility of the forecasts
for decision making. The first term, called the hit rate
or the probability of detection, is the percentage of all
rain cases that were correctly forecast. The second term,
the false alarm rate, is the percentage of all no rain cases
that were incorrectly forecast (false alarms). The HK is
the difference of these two quantities, the range is 11
to 21, and a useless forecast scores a value of 0. The
score measures the ability of the forecast system to sep-
arate the rain cases from the no-rain cases. Positive val-
ues are obtained if rain is forecast relatively more often
when it occurs than when it does not.

Verification of the rain forecasts against both the radar
analyses and the gauge observations gives a more com-
prehensive evaluation of the system performance char-
acteristics. The analysis represent a uniform high-res-
olution data coverage in space, and the ‘‘observed’’
quantity, rain rate, is the same as the predicted quantity.
Especially when compared against persistence, this
evaluation gives a good estimate of the system’s ability
to predict rainfall patterns. However, the analyses that
are used as ‘‘observations’’ may themselves be biased,
since they are subject to all the sources of error inherent
in radar precipitation estimates. The gauge data, on the
other hand, are more likely to provide completely un-
biased verification data since they represent direct sur-
face-based precipitation estimates. The gauge data are
essentially point observations in space that are averaged
in time, while the radar rain rates are instantaneous in
time, but (nearly) continuous in space, at least to the
pixel level. The matching strategy described above tries
to preserve the integrity of both forecast and observa-
tion.

c. Boundary layer convergence lines

Both the location and length of nowcast convergence
lines were verified. The forecast and analyzed conver-
gence lines were represented in the FDP dataset as
joined line segments. The location errors are determined
by calculating, at each vertex in the forecast conver-
gence line, the shortest distance to the adjacent analyzed
convergence line. In cases where the forecast and an-
alyzed lines had different lengths the ‘‘tails’’ (i.e., the
segments present in one, but not both, line) are not used
in the location error calculation. The shortest distances
are then integrated over the length of the convergence

line to obtain the mean and mean absolute location er-
rors. The mean and mean absolute errors in predicted
length are also calculated.

d. Hail

The small sample available for comparison of severe
weather leads us to concentrate on the hail reports for
the 3 November case and make a qualitative assessment
of performance of the two systems that assessed severe
thunderstorm potential, namely CARDS and WDSS.
Both algorithms’ forecasts are compared to the hail sizes
from the observed reports. In addition, the temporal
extent of large hail radar detections are compared to the
time period of reports from the storm.

5. Verification of Auto-nowcaster

The Auto-nowcaster advects rain cells using either a
reflectivity area tracker or steering-level winds derived
from nearby soundings. Enhancement of convection is
predicted to occur along boundary layer convergence
lines and, particularly, where lines intersect. Although
boundaries can now be detected automatically using var-
iational analysis of the Doppler wind velocities and a
mesoscale model (Sun and Crook 2001), in the FDP
they were manually entered into the radar analysis. The
boundaries are then extrapolated to produce 30- and 60-
min nowcasts. Figure 3 shows an example of a nowcast
for a sea-breeze front moving toward the northwest on
20 October 2000. The ANC made a very accurate pre-
diction of its motion, with less than 2-km error in the
60-min forecast.

The mean and mean absolute errors in forecast bound-
ary position are shown in Fig. 4 for 30- and 60-min
forecasts. In a few isolated cases (not shown) the error
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FIG. 4. Mean errors (solid) and mean absolute errors (hatched) in ANC forecasts of boundary position,
as a function of weather type. The number in parentheses indicates the number of boundaries verified in
each category.

in the forecast boundary position was as large as a few
tens of kilometers after an hour, but the mean and mean
absolute errors were much smaller. Looking first at the
results for the weather types, the mean absolute errors
were greatest for the most convective events where gust
fronts moved rapidly through the domain. The errors
were least for the days with light convection; the bound-
aries in these cases were sea-breeze fronts (see Table
4). Figure 4 shows that the MAE for sea-breeze fronts
was half the value for other types of fronts. The mean
error (bias) for sea-breeze front positions was very
small, averaging 20.3 km. The forecast movement for
other types of convergence lines averaged 3 km h21 too
fast.

The mean length of boundaries analyzed in the FDP
was about 80 km. The length of the sea-breeze fronts
did not change significantly over a 1-h period, but the
average growth of gust fronts was about 15%. Figure 5
shows the mean absolute errors in forecast convergence
line length, again stratified by weather type and front
type. Discounting the stratiform category because of its
small sample size, the mean absolute length errors av-
eraged 6–18 km (7%–25%) after an hour. Not surpris-
ingly, the length of sea-breeze fronts was better pre-
dicted than the length of gust fronts and other fronts.

The mean cell location error, determined using CRA
verification, is plotted in Fig. 6 as a function of lead
time. Errors were on the order of 10 km after 30 min.
There was little overall difference in performance be-

tween the ANC and EXTRAP forecasts, and both per-
formed much better than PERSIS.

Selected spatial verification statistics are shown as a
function of lead time and rain threshold in Fig. 7. ANC
had little bias for light and moderate rain, but showed
a tendency to underforecast rain occurrence for rain ex-
ceeding 20 mm h21. The CSI for the nowcast and EX-
TRAP forecasts was about 0.3 after 30 min, decreasing
to about 0.2 after an hour. The probability of detection
for 30-min nowcasts in the FDP was 0.46, with a false
alarm ratio of 0.51, an improvement over the values of
0.25 and 0.48, respectively, for 30-min nowcasts of Col-
orado storms (Wilson et al. 1998). The mean absolute
errors were about 0.4 mm h21. The spatial correlation
coefficient was 0.25 after 30 min and 0.15 after 60 min,
slightly better than EXTRAP. ANC had lower MAEs
than EXTRAP, but this is partly due to its tendency to
underforecast heavy rain.

To test whether the differences in performance be-
tween ANC and EXTRAP were statistically significant,
95% confidence intervals were estimated using boot-
strapping (Mason and Mimmack 1992). If the intervals
overlap, then the two estimates cannot be considered
significantly different. The confidence intervals for all
measures were on the order of 1%–2% of the values
themselves. The improvement of ANC over EXTRAP
was statistically significant at the 95% confidence level
only for the correlation coefficient and the mean ab-
solute error (Fig. 7c).
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FIG. 5. Mean absolute errors in ANC forecasts of boundary length, as a function of weather type. The
number in parentheses indicates the number of boundaries verified in each category.

FIG. 6. Mean rain location error for the ANC algorithm (solid line),
PERSIS (dotted line), and EXTRAP (dashed line), for all rain cases
in Table 4.

The verification of ANC predictions of 30-min rain-
fall against gauge data is shown in Fig. 8. The scores
at the initial time give a measure of how well the radar
rainfall analyses agree with the gauge data. The apparent
‘‘errors’’ are due primarily to differences in spatial and
temporal sampling, that is, the comparison of a snapshot
for a 1-km radar pixel with an accumulation over 30
min at a point. These provide baseline scores against
which forecast performance can be compared.

Compared to rain gauge observations, the ANC un-
derpredicted the frequency of rain, with the underpred-
iction being more pronounced for higher rain amounts.
Gauge-based PERSIS, with its natural scale advantage
with respect to the verification data, outperformed ANC
and EXTRAP both in terms of frequency bias and HK.
The Hanssen and Kuipers score was slightly better for
ANC than for EXTRAP for light rain rates (Fig. 8b).
The mean bias was 20.15 mm for 60-min forecasts of
half-hourly accumulation. The MAE-based skill with
respect to persistence was quite low but improved with
time as expected, going from 20.04 after 30 min to
10.08 after an hour. The extrapolation forecast was
slightly more skillful in this respect.

6. Verification of CARDS

CARDS is a severe weather detection scheme that
incorporated the TITAN cell display in the FDP. For the
rain forecast CARDS used the original nowcasting tech-
nique of Bellon and Austin (1978) where the domain is
subdivided into 3 3 3 subdomains and the latest con-
stant altitude plan position indicator (CAPPI) image is
extrapolated by the nine velocity vectors. Rain rates
were predicted at 11 sites in the Sydney region.

The CARDS system produced two estimates of hail
size, an average size and a maximum size for each radar
volume scan every 5 min. Detections associated with
the 3 November 2002 storm began on 0330 UTC and
continued until 0605 UTC (Fig. 9). Estimated hail size
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FIG. 7. (a) Frequency bias, (b) CSI, and (c) MAE and spatial cor-
relation coefficient for the ANC algorithm (solid line), PERSIS (dot-
ted line), and EXTRAP (dashed line), as verified against radar anal-
yses, for all rain cases in Table 4.

FIG. 8. (a) Frequency bias, (b) HK score, and (c) linear bias and
MAE-based skill with respect to persistence for the ANC algorithm
(solid line), PERSIS (dotted line), and EXTRAP (dashed line), as
verified against rain gauge data, for all rain cases in Table 4. In (a)
and (b) the black line corresponds to all rain, the blue to rain $1
mm, and the red to rain $5 mm.

grew rapidly from less than 1 cm to 6 cm or more for
the maximum hail size in approximately half an hour
and to about 2 cm for the average hail size over that
time period. High values were observed consistently

from 0400 to 0600 UTC, after which time the detections
ended abruptly. In order to smooth the radar estimates
in time, a three-point boxcar median filter was applied,
followed by a five-point running mean, resulting in a
relatively smooth signal. The smoothed estimates sug-
gest that there were two maxima detected, one shortly
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FIG. 9. Time series of estimated hail size from CARDS for the 3
Nov 2000 storm. Filled (open) circles are raw maximum (average)
hail size in cm. Thick (thin) line is smoothed maximum (average)
hail size. Triangles show reported hail size.

FIG. 10. As in Fig. 8 but for the CARDS algorithm.

after 0400 UTC and a second between about 0445 and
0510 UTC.

When the radar estimates are compared to the re-
ported hail size, we see that the reported sizes generally
fall between the maximum and average estimated sizes.
There is a lag at the beginning of the period after first
detection by radar before the first report. This could be
an artifact of reporting problems, but it is also possible
that it is physically real. Radar detections necessarily
occur first above the ground. Hailstones take time to
fall, so that we would expect, even with perfect re-
porting, to see the reports lag the detections.

The other item of interest concerns the Greystanes
report of 4.5-cm hail at 0600 UTC. This report seems
to be late compared to the track of the storm. If it is
moved 30 min earlier in time, consistent with the track,
it would provide a third large hail report in a series from
0450 to 0530 UTC. If so, then the impression given by
the reports is of a period of relatively small hail (2–3-cm
diameter), followed by much larger hail, and, finally, at
the end of the storm, relatively small hail (2 cm). The
qualitative impression is that the CARDS system pro-
vides an envelope in time, given the lag between hail
formation aloft and hail reaching the ground, and size
of hail for this event. Lead times from first detection of
2-cm hail to first report, and from first detection of 4-
cm hail to first report, are both on the order of half an
hour. If this performance could be sustained over a larg-
er dataset, the hail detection would certainly be of value
for forecasters.

CARDS made rainfall predictions for 11 sites, but
unfortunately verifying gauge data were easily available
for only two of them, Fairfield and Ryde. However, the
long time series of observations led to a large variety
of weather being sampled, so we expect that the results
for the two sites will not be unrepresentative of the
overall performance of CARDS for the Sydney domain.
EXTRAP forecasts were not available for this algorithm.

CARDS overpredicted the frequency of light rain, but
underpredicted the frequency of heavier rain (Fig. 10a),

with this tendency increasing with time. Encouragingly,
its skill at predicting rain occurrence, as measured by
the HK score, was greater than PERSIS for both 30-
and 60-min forecasts of heavier rain, although this was
not the case for lighter rainfall. The decline in perfor-
mance with increasing rain rate was also found by Bel-
lon and Austin (1978), who reported CSI values of 0.33
and 0.12 for rain exceeding 1 mm h21 and 5 mm h21,
respectively, for storms near Montreal during the sum-
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FIG. 11. As in Fig. 6 but for the Gandolf algorithm.

FIG. 12. As in Fig. 7 but for the Gandolf algorithm.

mer of 1976. Those nowcasts were made at a spatial
resolution of about 6 km, and verification was performed
against radar analyses as opposed to gauge observations.
The SkillMAE was positive for both forecast periods, and
CARDS had a small negative mean bias of 20.05 mm
for 30-min accumulations.

7. Verification of Gandolf

The Gandolf algorithm diagnoses and predicts the life
cycle of individual thunderstorms, based on a combi-
nation of radar, satellite, and numerical weather predic-
tion (NWP) data. Storms are represented in the radar
analyses and nowcasts as square cells with enhanced
rainfall. The cells are horizontally advected according
to a representative NWP model wind vector. The version
of the Gandolf algorithm used in Sydney ran at a spatial
resolution of 2 km.

The mean location error for Gandolf rain nowcasts is
shown in Fig. 11. As discussed by Pierce et al. (2004,
in this issue) the scheme had an unfortunate tendency
to rapidly decay the rain cells, resulting in few cells
remaining after 30 min, and even fewer after 60 min.
While the performance of Gandolf was better than PER-
SIS early in the forecast period, it was poorer than EX-
TRAP for the same set of cases.

The bias score in Fig. 12a clearly illustrates Gandolf’s
tendency to shrink rain cells. The predicted frequency
of moderate and heavy rain was much smaller than ob-
served after the first 10 min, and virtually nonexistent
after 30 min. This leads us to suspect that the nowcast
scheme had not been properly tuned for the NWP model
input and/or the Sydney conditions, since Gandolf now-
casts have previously performed well in the United
Kingdom. According to Pierce et al. (2000) Gandolf
achieved CSI values of 0.47 for 30-min nowcasts of 15-
min accumulated rainfall in a 2.5 km2 catchment during
the summers of 1995 and 1996. During the FDP it dis-

sipated the rain cells when the atmospheric sounding
was stable, which was for most of the experiment. Gan-
dolf’s decaying tendency was also responsible for its
poor performance in predicting the occurrence of rain
of any magnitude beyond the first 10 or 20 min (Fig.
12b), and its poor spatial correlation coefficients for 30
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FIG. 13. As in Fig. 8 but for the Gandolf algorithm.

FIG. 14. As in Fig. 6 but for the Nimrod algorithm.

min and beyond (Fig. 12c). The mean absolute error
remained about 0.3 mm h21 for the whole forecast pe-
riod.

The gauge verification in Fig. 13 is for 10-min rain
accumulations. The noisiness of the figure reflects the
fact that many Gandolf forecasts were missing, espe-
cially during the most convective events. The Gandolf
analyses had a much greater frequency of rain .0 mm
and rain .5 mm than was observed at the gauge sites.
The frequency of heavy rain rates decreased quickly
during the forecast, but the frequency of very small

amounts was overforecast throughout the period. The
Hanssen and Kuipers scores (Fig. 13b) show that after
the first 10 min Gandolf did not perform as well as
PERSIS or EXTRAP at predicting rain occurrence.
However, in an MAE sense (Fig. 13c), Gandolf did show
greater skill than PERSIS later in the forecast because
it did not make erroneous predictions of heavy rain. The
mean error of the algorithm was 20.03 mm 10 min21

for a 1-h forecast.

8. Verification of Nimrod

The Nimrod algorithm is unique among the nowcast
algorithms used in the FDP, in that it extends the forecast
period beyond the usual 60 min by blending the nowcast
into the forecast from a mesoscale NWP model. This
means that nowcasts at 30 and 60 min, while repre-
senting mainly the advection of radar-detected rain cells,
have a small component of NWP model forecast in
them. This scheme was run at a fairly coarse spatial
resolution of 5 km.

The mean location error is plotted as a function of
time in Fig. 14. The location errors for Nimrod forecasts
averaged 9 km after 30 min, roughly the same as EX-
TRAP and much better than PERSIS. However, at 90
min and beyond, Nimrod forecasts had greater location
errors than EXTRAP, possibly reflecting the influence
of errors in the NWP model forecasts.

Nimrod showed a slight positive bias in predicting
the frequency of light and moderate rain, as shown in
Fig. 15a, but the frequency of heavy rain was under-
predicted by 20%–30% throughout the forecast period.
The CSI (Fig. 15b) showed that Nimrod had some skill
in predicting light rain occurrence out to at least 3 h,
while the skill for rain exceeding 20 mm h21 was ex-
hausted in the first hour. The performance of Nimrod
was comparable to that of EXTRAP during the first 60
min, which is not surprising since the Nimrod forecasts
are heavily weighted toward radar-based advection. The
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FIG. 15. As in Fig. 7 but for the Nimrod algorithm.

FIG. 16. As in Fig. 8 but for the Nimrod algorithm.

probability of detection for 60-min Nimrod nowcasts
during the FDP was 0.66 and the false alarm ratio was
0.48, slightly poorer than the values of 0.77 and 0.26,
respectively, reported for a 40-day test period in the
United Kingdom during the summer of 1995 (Golding
1998). Nimrod had mean absolute errors that were fairly

high, about 1 mm h21 for 60-min forecasts. Its MAE
and spatial correlation coefficients appeared to be slight-
ly better than EXTRAP. However, none of the differ-
ences between Nimrod and EXTRAP shown in Fig. 15
were significant at the 95% level.

When compared to the gauge observations, Nimrod
had very large frequency biases throughout the forecast
period, particularly for the higher rain rates (Fig. 16a).
This may be partly due to its coarse spatial resolution,
since the occurrence of rain anywhere within the grid
box would be represented by a 25 km2 region of rain.
It is also related to a broader overestimation of spatial
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FIG. 17. As in Fig. 6 but for the S-PROG algorithm.

FIG. 18. As in Fig. 7 but for the S-PROG algorithm.

rain rates (e.g., see Fig. 1). Figure 16c shows that the
mean bias for 30-min nowcasts of half-hourly rain is
0.25 mm. The bias decreases with time as an increas-
ingly greater fraction of the forecast is derived from the
NWP model, so that after 3 h the bias is close to 0. The
large bias is also responsible for the MAE-based skill
score being negative for at least 3 h into the forecast.
The occurrence of rain .0 mm was better predicted by
PERSIS than by Nimrod or EXTRAP (Fig. 16b), a result
of the high false alarm rate in the radar-based forecasts.
EXTRAP provided the best forecasts of heavier rainfall
occurrence for the first 2 h.

9. Verification of S-PROG

S-PROG, short for Spectral Prognosis, is an advection
based algorithm that represents rain as a multiplicative
cascade of structures characterizing a spectrum of spa-
tial and temporal scales (Seed and Keenan 2001). The
version used in the Sydney FDP assumes that the total
rain area remains constant in time, with the smaller-
scale structures (usually corresponding to the more in-
tense rain cells) decaying more quickly than the larger-
scale structures. This produces an increasingly smooth
field as the forecast progresses.2

Figure 17 shows the mean rain location errors for the
S-PROG algorithm. It had slightly greater location er-
rors than EXTRAP nowcasts throughout the forecast
period, with values of about 10 km after 30 min. The
difference was most likely due to the influence of S-
PROG’s smoothing of rain maxima on the CRA pattern
matching results.

The smoothing is also evident in the plot of bias score
versus time (Fig. 18a). Few occurrences of rain greater
than 20 mm h21 remained after only 10 min, and after

2 A more recent version of S-PROG also requires the mean rain
rate to remain constant with time.

60 min the frequency of rain exceeding 5 mm h21 was
also severely underestimated. The CSI plot (Fig. 18b)
shows that for the duration of the forecast period S-
PROG provided slightly better predictions of light rain
occurrence than did EXTRAP and PERSIS, with a value
of 0.25 after 60 min. Performance for moderate rain was
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FIG. 19. As in Fig. 8 but for the S-PROG algorithm.

slightly worse than that of EXTRAP, while performance
for heavy rain was significantly worse. The occurrence
of convective rain was predicted with greater skill than
stratiform rain. In terms of both the mean absolute error
and the spatial correlation coefficient, S-PROG per-
formed notably better than EXTRAP and PERSIS (Fig.
18c). This is the result of the conservative nature of S-
PROG forecasts, and is consistent with the scheme’s
philosophy of not attempting to predict the smaller-scale
structures beyond their natural timescales. Because of
the large number of samples, the 95% confidence in-
tervals for the verification statistics were very tight, and
all differences between S-PROG and EXTRAP were
statistically significant at the 95% level.

The verification of S-PROG rain nowcasts against the
observed 10-min accumulation at rain gauges is pre-
sented in Fig. 19. The radar analysis produced excessive
very light rain and insufficient heavier rain when com-
pared to the gauge data, and this was carried through
to the forecasts. As was seen in Fig. 18, the algorithm
decayed the heavier rain rates quickly with time. S-
PROG outperformed both EXTRAP and gauge-based
PERSIS in predicting the occurrence of rain .0 mm
(Fig. 19b). The opposite was true for the heavier rain
rates due to the low hit rate. The MAE-based skill with
respect to persistence was positive for both S-PROG
and EXTRAP, reaching 0.25 after an hour. The mean
bias was negative throughout the forecast period at
about 20.06 mm 10 min21. Even though the heavy rain
rates decayed quickly, the mean bias decreased only
slowly because most of the rain was of low intensity.

10. Verification of TITAN

TITAN is a cell tracking algorithm in which the in-
tensity, speed, and direction of an individual thunder-
storm are determined from its past history. In the FDP
each TITAN rain cell was represented as an idealized
ellipse whose area was equal to the area enclosed by
the 35-dBZ isoline, and whose rain rate was constant at
5.6 mm h21. TITAN can also forecast cell growth or
decay, but this ‘‘trending’’ feature was not applied in
the FDP. Rather, to suggest uncertainty in cell move-
ment, the major and minor axes of each ellipse were
systematically increased by 3 km h21. The verification
results pertain to this highly simplified ‘‘cartoon’’ ver-
sion of TITAN (see Fig. 1). TITAN was run using re-
flectivities from two different radars, the C-band Dopp-
ler radar near Sydney Airport, which had 5-min sam-
pling, and an S-band weather radar in Wollongong, with
10-min sampling. The results shown in this section are
for the TITAN forecasts made using the Sydney radar
data.

The cell position errors for TITAN are compared to
EXTRAP for two ranges of cell intensity in Fig. 20.
Although the typical position errors were similar for
both forecasts, the mean and median errors were con-
sistently smaller for TITAN than for EXTRAP. This

demonstrates the advantage that cell trackers have over
area trackers in allowing the motion of individual storms
to deviate from the mean rain field motion. The mean
position errors were slightly lower for the more intense
cells than for the less intense cells, with fewer large
errors. This is not surprising since the storms with great-
er reflectivity are generally larger, longer lived, and
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FIG. 20. Box plots of cell position errors for TITAN nowcasts (left
member in each pair) and EXTRAP (right member), for two ranges
of maximum cell intensity: (a) 30–50 and (b) .50 dBZ. The asterisk
indicates the mean value, the boxes indicate the 25th, median, and
75th percentiles, and the lines indicate the 10th and 90th percentiles.
Although forecasts were made every 5 min, values are shown only
every 10 min in the figure.

therefore easier to track. The median (mean) track error
after an hour was 10 km (15 km). The TITAN forecasts
from the Wollongong radar with 10-min sampling had
a mean error of 18 km, illustrating the benefit of more
frequent sampling.

The spatial verification for the idealized TITAN now-
casts should be considered as cell, as opposed to rain
rate, verification. The imposed cell growth is reflected
in the linear increase in bias score with time, as shown
in Fig. 21a. The values of CSI for TITAN and EXTRAP
were 0.25 after 30 min and 0.15 after 60 min, signifi-
cantly better than PERSIS. These values correspond
quite closely to the CSI value of 0.22 found by Brown
and Brandes (1997) for 30-min 2-km resolution TITAN
nowcasts for 11 convective storm days in 1994 and

1996, and a CSI of 0.25 for 30-min 5-km resolution
nowcasts in Colorado during the summers of 1989 and
1990 (Dixon and Wiener 1993).

The TITAN algorithm in this cartoon form should not
be used to predict quantitative rainfall, so no verification
against the rain gauge data was done.

11. Verification of WDSS

WDSS generates probability of severe hail (diameter
$2 cm), probability of hail, and a maximum expected
hail size. The time series of the probability of the hail
product indicates the WDSS first gave a nonzero prob-
ability of hail with the 3 November 2000 storm at 0350
UTC (Fig. 22). By 0400 UTC, the hail probability was
100% and remained at that level for all but two volume
scans (0420 and 0430 UTC) through 0555 UTC after
which it rapidly declined to 0% by 0610 UTC. The first
nonzero probability of severe hail (hail of at least 2-cm
diameter) (POSH) was at 0400 UTC. The POSH re-
mained at 80% or higher for all but one volume scan
through 0555 UTC. Using a three-point median, five-
point running mean smoother on POSH, the maximum
around 0500 UTC is apparent. Taking into account the
lag between hail formation and hail on the ground, high
values of POSH describe the period of time during
which the largest hail fell very well. When the time
discrepancy of the Greystanes report is accounted for,
the time series of POSH and report size match up well.
This is in agreement with the more extensive study of
Witt et al. (1998), where the probability of detection for
severe hail from the WDSS hail algorithm was about
70%.

WDSS also produces a maximum expected hail size.3

Although the time series of the maximum size shows a
maximum between 0500 and 0530 UTC that might cor-
respond to the times of the largest reports (Fig. 23), it
also shows a maximum at the earliest stages that values
are estimated, around 0410 UTC. In general, after cor-
recting the time of the Greystanes report, the decrease
in hail size at the end of the storm is captured well, but
the apparent maximum in the middle of the storm life-
time is not as obvious in the estimated size as it is in
the reports. It is important to remember the caveats
about the accuracy of reports, though. Much larger sam-
ple sizes would be needed to evaluate the forecast hail
size adequately.

The WDSS Storm Cell Identification and Tracking
(SCIT) algorithm tracks cell cores, defined by the in-
nermost 3D contour of reflectivity in consecutive vol-
ume scans [contour interval of 5 dBZ; Johnson et al.
(1998)]. The cell position errors are plotted as a function
of lead time in Fig. 24. The median track error for the

3 The values shown here are the correct values produced by the
algorithm. Values that were available to the Sydney 2000 forecasters
in real time differed from these and were in error due to a coding
error in transferring information from the algorithm to the text display.
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FIG. 21. (a) Frequency bias and (b) CSI for the idealized TITAN
algorithm (solid line), PERSIS (dotted line), and EXTRAP (dashed
line), as verified against radar analyses, for all rain cases in Table 4.
Note in (a) that the values of PERSIS and EXTRAP are 1.0 and in
(b) the dashed EXTRAP line overlays the solid TITAN line.

FIG. 22. Time series of the probability of hail from WDSS for the
3 Nov 2000 storm. Filled (open) circles are raw probability of severe
(any) hail size in %. Thick (thin) line is smoothed probability of
severe (any) hail. Triangles show reported hail size in cm multiplied
by 20.

FIG. 23. Time series of maximum expected hail size from WDSS
for the 3 Nov 2000 storm. The filled circles are raw maximum hail
size in cm and the line is the smoothed maximum hail size. Triangles
show reported hail size.

most intense cells is 7 km after 30 min and 14 km after
an hour. The mean values are much higher (14 and 34
km, respectively), the result of some very large indi-
vidual errors that were most likely caused by incorrect
association of cell cores in consecutive radar analyses.
For weaker cells the mean track errors are greater be-
cause they typically have shorter life spans, and because
their motion is more difficult to diagnose. By way of
comparison, Johnson et al. (1998) reported mean track
errors of about 10 km after 30 min and about 23 km
after 60 min for 17 storms in the United States during
1992–95.

Compared with EXTRAP, the WDSS nowcasts have
lower track errors for the most intense cells but greater

errors for the weak cells. This supports many earlier
findings that cell trackers are best suited for the most
convective situations because individual thunderstorm
motion can often deviate from the mean flow.

12. Verification of TIFS

The Thunderstorm Interactive Forecast System
(TIFS) is an interactive tool that allows the user to mod-
ify the details of any storm displayed by a cell-based
nowcast algorithm. The location, speed, direction,
shape, size, and intensity of a cell are all attributes that
can be easily changed, and the graphical output can be
annotated to make it simple for external users to un-
derstand [Bally (2004) describes the TIFS system in
detail]. TIFS used TITAN nowcasts as the starting point
in the majority of situations during the FDP. Forecasters
made modifications to the nowcasts, usually to remove
uninteresting or erroneous cells, occasionally to change
the speed and direction of the cells of interest, and to
draw storm warning areas. The modified graphical out-
put was then sent electronically to external users. Com-
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FIG. 24. As in Fig. 20 but for the WDSS algorithm.

parison of the verification results for the modified and
unmodified forecasts can help to answer question 6 in
the introduction, ‘‘Do the forecasters improve the qual-
ity of the forecasts compared to the ‘raw’ FDP products
alone?’’

Twenty-three TIFS nowcasts were issued on 5 days
during the FDP, marked by asterisks in Table 4. They
all corresponded to periods of significant convection that
would be of concern to the external users. The fore-
casters used TIFS to manually filter out about two-thirds
of the cells that they considered less important or in-
correct. The speed and direction were modified in only
4% of the remaining cell tracks, suggesting that the
forecasters were usually satisfied with the quality of the
automated tracks for those cells.

The location errors for TIFS and the original (unfil-
tered) nowcasts are plotted as a function of lead time
in Fig. 25. Only those cells that were visible in the
products sent to users are included in the TIFS verifi-
cation. As seen previously for the cell tracking algo-

rithms, the track errors increase with time and are greater
for the shallow cells than for the more intense cells.
The greatest improvement made by the forecasters was
the removal of unimportant and obviously erroneous
cells, which significantly reduced the mean track error
for the moderate and intense cells. Examination of the
few tracks that were modified indicated that their mean
errors were 20% greater than those that were unmodi-
fied, suggesting that the automated track forecasts for
these generally more intense and longer-lived cells
might better be left alone.

13. Conclusions

The quantitative verification results shown in this pa-
per provide some answers to the questions posed at the
start of the Forecast Demonstration Project. In inter-
preting these results it is important to bear in mind that
(a) the results apply to springtime weather in the region
surrounding Sydney, Australia, and that extrapolation
to other situations must be done with caution; (b) in
general the algorithms were not optimally tuned for the
Sydney conditions, and some were missing certain types
of input data; (c) the verification data were imperfect
in terms of spatial and temporal resolution, bias, radar-
related quality control issues, and extent and frequency
of hail reports; and (d) only the most ‘‘interesting’’ sub-
set of the full FDP dataset was verified.

1) Is it feasible to predict the location of convection
with enough accuracy and skill to be useful?

The nowcast algorithms were able to successfully
predict the location of the most convective cells with
about 15–30-km mean error, and 10–14-km median
error, for 1-h forecasts. Since the speed of these sys-
tems was typically 60 km h21, the median errors are
on the order of 15%–25% of the distance traveled.
The track errors for less intense cells were slightly
greater than for the most intense cells, due to their
less organized nature. The positive values of the crit-
ical success index and spatial correlation coefficient
for 60-min forecasts confirm that all of the algo-
rithms had skill in predicting the location of the cells.
However, only the cell tracking algorithms were able
to outperform a simple extrapolation (Lagrangian
persistence) forecast.

2) What are the accuracy and skill of rainfall rate and
occurrence forecasts as a function of lead time and
accumulation period?

The answer to this question depends not only on
the inherent skill of the algorithm, but also its spatial
and temporal resolution, and whether the gauge data
or radar analyses are used as ‘‘truth.’’ Almost all of
the algorithms gave good predictions of the overall
rain frequency throughout the forecast period. Closer
examination of the rain-rate distribution showed that
the frequency of high rain rates was underestimated
by most of the algorithms. Comparison with rain
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FIG. 25. Mean cell position errors for TIFS nowcasts (solid lines) and original unfiltered nowcasts
(dashed lines), for three ranges of cell height.

accumulation at gauges showed that most of the al-
gorithms were biased slightly low. This could easily
be corrected by adjusting the Z–R relationship used
to calculate the rain rates (R) from the radar reflec-
tivities (Z).

When used to verify spatial forecasts, the CSI
quantifies the ability of the algorithms to forecast
rain in the correct location. The CSI values dropped
very quickly with increasing forecast period, with
typical values of about 0.2 after 60 min. The CSI
for rain $20 mm h21 was essentially nil after 30
min, indicating that the algorithms were unable to
skillfully predict the precise location of heavy rain.
In so far as the heaviest rain is usually embedded in
a larger field of lighter rain, the nowcasts can still
be considered useful for predicting the general lo-
cation of heavy rain.

The algorithms consistently performed much bet-
ter than radar persistence in predicting the spatial
distribution of rain. When predicting rain occurrence
at point locations, gauge persistence was difficult to
beat, mainly because of differences in the spatial and
temporal resolution. The MAE-based skill with re-
spect to (gauge) persistence was negative early in
the forecast period, then increased with time. The
algorithms that performed best according to this
measure were those that did not predict very much
heavy rain later in the forecast period, thus avoiding

the double penalty of ‘‘rain in the wrong spot, no
rain in the right spot.’’ Whether this is a feature to
be desired depends on the needs of the user.

3) Is it feasible to predict wind speed and direction at
points with enough accuracy and skill to be useful?

This question could not be answered because the
nowcast algorithms did not explicitly predict wind
speed. The Auto-nowcaster scheme was an excep-
tion, but the adjoint winds produced by the meso-
scale model assimilation of Doppler velocities (Sun
and Crook 2001) were not considered robust enough
during the FDP to be quantitatively verified.

4) What is the accuracy of severe thunderstorm wind
gust diagnoses and forecasts?

The Auto-nowcaster was the only algorithm to
predict the motion of gust fronts. Although the sam-
ple size was fairly limited, the verification results
showed a mean absolute error of about 7 km h21,
and a mean bias of 3 km h21 in the speed of the gust
fronts during the FDP. The errors were smaller for
the prediction of sea-breeze fronts, with a mean ab-
solute error of 3.5 km h21 and bias of 20.3 km h21.
The length of the fronts was also verified, with mean
errors between 6 and 18 km (7%–25%) for 1-h fore-
casts.

5) What is the accuracy of hail location and size de-
tections and forecasts?

It was possible to verify only one hail case, namely
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that associated with the tornadic storm on 3 Novem-
ber. The two algorithms that estimated hail size and
occurrence, CARDS and WDSS, successfully di-
agnosed the onset and cessation of the hail to within
30 min of the reported sightings from ground-based
observers. The time evolution of hail size was rea-
sonably well captured by the algorithms, and the
predicted mean and maximum hail diameters were
consistent with what was observed. It would have
been better to have had a more extensive dataset, but
the results for the 3 November case indicate that both
algorithms showed notable skill in hail detection.

6) Do the forecasters improve the quality of the fore-
casts compared to the ‘‘raw’’ FDP products alone?

The TIFS system allowed this question to be at
least partially addressed, and the results were strong-
ly positive. By giving forecasters the ability to mod-
ify the output of the cell tracking nowcasts, they were
able to remove cells that were insignificant or di-
agnosed with incorrect motion. In essence, the fore-
casters could ‘‘clean up’’ the forecasts before sending
them out to clients. About two-thirds of the cells
were manually filtered out over the 5 days in which
TIFS was used. The verification results showed that
the mean cell position errors were markedly reduced
when compared to the unfiltered forecasts, particu-
larly for the more intense storms. However, when
forecasters attempted to adjust the storm tracks for
a small number of well-defined intense storms, the
position errors increased by 20%, suggesting that the
objective guidance is probably the best estimate of
storm motion in these cases. Further testing for a
much larger number of samples is necessary to more
accurately assess the effects of forecaster interven-
tion.

A related question is whether the quality of the
forecasts issued to the public was enhanced as a
result of the objective guidance provided by the now-
cast algorithms. In the survey discussed by Ander-
son-Berry et al. (2004), the Sydney forecasters in-
dicated that they would have liked more time to be-
come comfortable with the nowcast systems prior to
the FDP, and so did not make optimum use of them
during the high-stress severe storm situations that
they were designed to help with. However, the fore-
casters believed, and the verification results here
strongly confirm, that the nowcast algorithms do in-
deed provide useful guidance for predicting severe
weather, rain, and boundary layer convergence lines.

It is also important to note that most nowcast sys-
tems were designed to be used with forecasters as a
supporting element. To minimize potentially dam-
aging misses and alert the forecaster to potential
worst-case scenarios, many systems inherently ov-
erforecast extreme conditions, then allow the fore-
caster to make the final decision. Such algorithms
will generally have poorer verification results than

if they had been optimized to achieve the best scores
(but provide less value in an operational setting).

This verification exercise provided a unique oppor-
tunity to evaluate a variety of different nowcasting
schemes in a comparable setting. Unfortunately, it was
not possible to directly compare the nowcasts produced
by these systems, due to the important differences in
their input data, spatial and temporal resolution, and
their output. Ideally, future demonstration programs will
involve verification planning at the outset of the process
of designing the program, so that these sources of dif-
ferences can be avoided. In order to compare forecasts,
it is critical to carefully control any other factors that
might lead to differences in the outcomes. For example,
a single, agreed-upon, ‘‘best’’ high-resolution radar re-
flectivity field using optimized quality control, calibra-
tion, etc. should be available for initializing and veri-
fying the algorithms.

This exercise also provides an impetus for advancing
the science of verification through development of more
meaningful verification approaches that are appropriate
for evaluating mesoscale forecasts (e.g., Ebert and
McBride 2000). Although the statistics presented here
do provide measures of the overall quality of the fore-
casts, and they indicate some strengths and weaknesses
in the systems, in general they do not provide specific
guidance regarding which aspects of the forecasts need
to be repaired, or how those repairs should be done. In-
depth evaluations of the individual algorithms should
involve more complete characterization of a variety of
types of errors associated with the forecasts (e.g., lo-
cation, size, timing, etc.), which could facilitate these
types of diagnoses.
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