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ABSTRACT

This paper is concerned with the value of climatological, categorical, probabilistic and perfect forecasts
in the cost-loss ratio situation. Expressions are derived for the expense associated with these different types
of forecasts, and measures of value and relative value are formulated in terms of these expressions. Some
relationships among these expressions and measures are described, and these relationships are illustrated
by examining both hypothetical and real sets of forecasts.

It is demonstrated that, if the probabilistic forecasts of concern are (completely) reliable, then the value
of these forecasts is greater than the value of climatological and categorical forecasts for all activities or
operations (i.e., for all values of the cost-loss ratio C/L). On the other hand, if the forecasts are unreliable,
then the value of climatological and/or categorical forecasts may be greater than the value of probabilistic
forecasts for some values of C/L. However, examination of hypothetical and real sets of unreliable forecasts
indicates that the relationships between the value of reliable probabilistic forecasts and the value of clima-
tological and categorical forecasts are quite robust in the sense that these relationships appear to hold for
most if not all values of C/L even for moderately unreliable forecasts.

The results presented in this paper have important implications for operational forecasting procedures
and practices. These implications relate to the desirability of formulating and disseminating a wide variety
of weather forecasts in probabilistic terms and of achieving and maintaining a high degree of reliability in
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probabilistic forecasts.

1. Introduction

The value of weather forecasts is a topic of con-
siderable importance, and applied meteorologists,
economists and others have attempted to assess the
value of such forecasts in a variety of contexts (e.g.,
Thompson and Brier, 1955; Kolb and Rapp, 1962;
Lave, 1963; Nelson and Winter, 1964; Thompson,
1972; Anderson, 1973; Howe and Cochrane, 1976).
In a particular context or decision-making situation,
the value of weather forecasts depends upon many
factors, including the nature of the forecasts themselves.
With regard to the latter, several different types of
forecasts can be identified: 1) climatological forecasts
(e.g., forecasts based upon climatological probabilities);
2) categorical or deterministic forecasts; and 3) prob-
abilistic forecasts.? Since these three types of forecasts

! The National Center for Atmospheric Research is sponsored
by the National Science Foundation.

2 These three types of forecasts do not, of course, form a mu-
tually exclusive or collectively exhaustive set. In this regard,
forecasts based upon climatological probabilities are also prob-
abilistic forecasts and forecasts based upon persistence or some
combination of persistence and climatology are not included in
this set. However, they do represent three of the principal types of
weather forecasts which are currently produced on a routine,
operational basis.

are all currently available and could be disseminated to
potential users and decision makers, it would seem to
be particularly important to determine end compare
the value of these different types of forecasts, both in
general and in specific decision-making situations.

The so-called “cost-loss ratio situation” is a decision-
making situation frequently encountered in the mete-
orological literature. This situation involves a decision
maker who must decide whether or not to take protec-
tive action in the face of uncertainty as to whether or
not adverse weather will occur. In the original model
of this situation (Thompson, 1952; see also Section 2
of this paper), the decision maker incurs a cost (of
protection) if he takes protective action and he suffers
a loss if he does not take protective action and adverse
weather subsequently occurs. While this model is a
very simple normative model, it appears to provide a
realistic description of situations faced by many fore-
cast-sensitive decision makers, and, as a result, the
model has been used extensively by meteorologists
and others in both real and hypothetical decision-
making situations (e.g., Thompson, 1952; Kolb and
Rapp, 1962; Allen and Lambert, 1971a, b; Kernan,
1975). Moreover, more complex decision-making situa-
tions can, in some cases, be investigated using this
model, either by simplifying the situations or by general-
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izing the model (e.g., Nelson and Winter, 1964 ; Epstein,
1969; Howe and Cochrane, 1976; Murphy, 1976).

Some 25 years ago, Thompson (1952) showed that
the expense (i.e., costs and/or losses to decision makers)
associated with the use of quite accurate categorical
forecasts in the cost-loss ratio situation could exceed
the expense associated with forecasts based solely upon
sample climatological probabilities. This result demon-
strated, for the first time, the potential value of ex-
pressing weather information in probabilistic terms.?
More recently, Thompson (1962, 1972) has investigated
the (potential) economic benefits associated with
“operational improvements” and “scientific advances”
in weather forecasting within the context of the cost-
loss ratio situation. In this terminology, gains related
to operational improvements refer to the benefits
associated with the formulation and use of probabilistic
forecasts (based on current levels of forecasting ability),
while gains related to scientific advances refer to the
additional benefits which could be realized if the fore-
casts which resulted from such advances always led to
“optimal” decisions. While Thompson’s recent studies
are closely related to the work to be described in this
paper, these studies were primarily concerned with
estimating the economic gains associated with these
improvements and advances, rather than with com-
paring the gains or expenses associated with different
types of forecasts. In this study we investigate—from a
theoretical point of view—the relationships among
the expenses associated with the usé (by decision
makers) of different types of forecasts, including the
conditions under which such relationships hold, and
then consider the practical implications of these results
by examining hypothetical and real sets of forecasts.

The purposes of this paper are to describe some rela-
tionships among the expenses associated with the use of
climatological, categorical, probabilistic and perfect
forecasts within the framework of the cost-loss ratio
situation and to illustrate these relationships by examin-
ing both hypothetical and real sets of forecasts. The
cost-loss ratio situation itself is briefly described in
Section 2. Some basic expressions for and relationships
among the expenses associated with these different
types of forecasts are derived in Section 3, and these
relationships are illustrated in Section 4 using hypo-
thetical and real sets of forecasts. Section 5 consists of
a summary and conclusion, including a discussion of
some implications of the results of this study for opera-
tional forecasting procedures and practices.

3 That paper, however, did not consider the expense associated
with day-to-day probabilistic forecasts. Its purpose was not to
compare the value of categorical and probabilistic forecasts,
but rather to determine the accuracy—defined in terms of the
percentage of correct categorical forecasts—that would be re-
quired for the expense associated with such forecasts to be equal
to the expense associated with forecasts based solely upon sample
climatological probabilities.
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2. The cost-loss ratio situation

The cost-loss ratio situation involves a decision maker
who must-decide whether or not to take protective
action, with respect to some activity or operation, in
the face of uncertainty as to whether or not weather
adverse to the activity will occur. Specifically, the
decision maker has two possible actions, ‘“protect”
and “do not protect,” and two weather events can
occur, “adverse weather” and “no adverse weather.”
In the terminology of decision analysis, this situation
is a two-action, two-state decision-making situation.
We shall denote the actions by a; (protect) and a;
(do not protect) and the events or states by s; (adverse
weather) and s» (no adverse weather). Each action-
state pair {am,s.}(m, n=1, 2) leads to a different
outcome or consequence. If we denote the consequences
by Oma(m, n=1, 2), then oyn={protect, adverse
weather}, ojp={protect, no adverse weather}, oo
={do not protect, adverse weather}, and o0s={do
not protect, no adverse weather}.

The payoffs associated with the consequences in
the cost-loss ratio situation are generally expressed
in terms of the monetary expenses of the decision maker.
In the original model of this situation (Thompson,
1952), the cost of protection is denoted by C and it is
assumed that, when protective action is taken, the
activity is completely protected against the effects of
adverse weather. Thus, if we denote the expense asso-
clated with consequence om. by emn(m, n=1, 2),
then eyy=e12=C. Further, if the loss which results
when protective action is not taken and adverse weather
occurs is denoted by L, then ey =L. Finally, since no
loss results in this latter case when adverse weather
does not occur, e2=0 (zero). The expense matrix
E=(emn) (m, n=1, 2) associated with this model of the
cost-loss ratio situation is depicted in Table 1. It can be
assumed, without any loss of generality, that the
bounds on the values of C and L are such that
0<CLL< ™,

Within the framework of the cost-loss ratio situation,
the weather forecast of concern is a probability vector
r=(r1,72) (.20, r1+r,=1), in which r, is the prob-
ability of occurrence of state s,(n=1, 2). Since ro=1—ry,
we can use the symbol » without a subscript to denote
r1 (i.e., r1=r, rp=1—r). It will be assumed that the

TasLE 1. The cost-loss ratio situation, including the expense
matrix E and the expected expense En (m=1, 2).

Expense matrix E

States
s1 s2
(Adverse  (No adverse
weather) weather) Expected expense (E)
. a1 (Protect) C C Ei=rC+r:iC =C
Actions
az (Do not
protect) L 0 E:=nlL
Probability
vector T 4] re
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decision maker uses the forecasts in their original form
(i.e., that he does not modify the forecasts). The fore-
casts may be produced by objective or subjective fore-
casting procedures, and, as a result, the probability (r)
can be interpreted as a relative frequency or as a sub-
jective degree of belief (see, e.g., Murphy and Winkler,
1971).

We shall assume that the decision maker wants to
select the action which minimizes his expected expense.*
If the expected expense associated with action an
in this model is denoted by E.(m=1, 2), then E;
=7C+(1—r)C=C and E.=rL (see Table 1). Thus,
the decision maker should select action a;(as) when the
probability r of adverse weather is greater (less) than
the cost-loss ratio C/L, and he is indifferent between
the two actions (i.e., E1=FE,) when »=C/L’ Thus,
the decision rule in this situation can be summarized
as follows: “protect” if »>C/L and ‘“‘do not protect”
if <C/L. This rule describes the way in which the
forecast (r) should be used by the decision maker to
minimize his expected expense within -this framework.

3. Value of climatological, categorical and
probabilistic forecasts: Some expressions and
relationships

a. Some preliminaries
1) THE FORECASTS

We shall use the symbol p to denote an individual
probabilistic forecast, where p is the probability of
adverse weather (the probability of no adverse weather
is then 1—p). In addition, we shall assume that p
can assume only a finite number of K distinct values
pr(k=1, ..., K). Then a set of #» probabilistic forecasts
can be divided into K subsets, where the kth subset
consists of the %, forecasts for which

p=p: m=n; k=1, ..., K).
k

The categorical forecasts of concern in this paper are
derived from the probabilistic forecasts by comparing
the forecast probabilities p,(k=1, ..., K) with some
critical probability wvalue p*. -Specifically, pi2p*
would lead to categorical forecasts of adverse weather,
while p<p* would lead to categorical forecasts of no
adverse weather. A Value of p* which is frequently used
to transform probabilistic forecasts into categorical
forecasts in two-state situations is 0.5.

¢ This assumption is equivalent to assuming that the decision
maker’s utilities (i.e., his preferences for the consequences) are
linearly related to the expenses.

5 Since 0 CKL<», 0KC/LL1. However, if C/L=0, then
C=0(L>0) and the decision maker would always protect. On
the other hand, if C/L=1, then C=L and the decision maker
would never protect. Thus, the “effective range” of the cost-loss
ratio C/L is the open unit interval (0, 1).
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The climatological forecasts of concern here are based
upon sample climatological probabilities and, as a result,
they can be derived from the set of observations which
corresponds to the basic set of (probabilistic) forecasts.®
In this regard, we use the symbol d to denote an in-
dividual observation, where d=1 if adverse weather
occurs and d=0 otherwise. Further, we shall denote
the relative frequency of adverse weather for the subset
of forecasts for which p=p, by dx. Then, the sample
climatological probability of adverse weather is p¢,
where

p'-‘=(1/n)2k wd, (B=1,...,K).

Finally, a perfect forecast is a probabilistic forecast
for which the probability p is one if adverse weather
occurs and zero otherwise (i.e., for which p=d). A set
of »n perfect forecasts would consist, in general, of two
subsets, a subset of #; forecasts for which p;=d,=0
and a subset of n, forecasts for which p.=ds
=1(m+n2=mn).

2) RELIABLE AND UNRELIABLE PROBABILISTIC
FORECASTS

In this study we will be interested in whether or not
the sets of probabilistic forecasts of concern are reliable
or unreliable. In this regard, a set of # probabilistic
forecasts will be said to be completely reliable if and’
only if the forecast probability corresponds exactly to
the observed relative frequency for each subset of fore-
casts; l.e., if and only if pr=d; for all £ (=1, ..., K).
On the other hand, the set of forecasts will be said to
be unreliable if the forecast probability does not cor-
respond to the observed relative frequency for one or
more subsets of forecasts; i.e., if py7%d; for some %
(k=1, ..., K). Empirical studies involving the evalua-
tion of probabilistic forecasts for a variety of weather
variables have shown that such forecasts are, in general,
quite reliable (see, e.g., Root, 1962; Hughes, 1965;
Roberts et al., 1969; Sanders, 1973; Sadowski and
Cobb, 1974 ; Bosart, 1975; Murphy and Winkler, 1977).
However, a set of real probabilistic forecasts will
seldom if every be (completely) reliable.”

b. Basic expense expressions

In this subsection we formulate expressions for the
expenses (to decision makers) associated with the use

6 In effect, we are assuming that the long-term and sample
climatological probabilities are equal. If they are not equal, then
the expense associated with climatological forecasts (which must
necessarily be based upon long-term climatological probabilities)
would actually be greater than that given by the expression
for E(CLIM) for some values of C/L (see Section 3b). Moreover,
since £(CLIM) serves as the zero point on the value scale (see
Section 3c), the value of categorical, probabilistic and perfect
forecasts is underestimated, in general, in this paper.

7 Hereafter the term “reliable” will be taken to mean completely
reliable.
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F16. 1. The basic expense diagram in the cost-loss ratio situa-
tion, when the sample climatological probability p¢ is equal
to 0.3.

of climatological, categorical, probabilistic and perfect
forecasts. Hereafter, the term expense will be defined
as the expense per unit loss per forecast. To determine
this standardized expense, the total expense for the
set of forecasts of concern will be divided by the loss (L)
and the number of forecasts (). Thus, the expected
expenses associated with taking and not taking pro-
tective action on # occasions, in standardized terms,
are C/L and 7, respectively (cf. Table 1).

1) CLIMATOLOGICAL FORECASTS

When a climatological forecast p° is available to the
decision maker, he will always protect if p>C/L and
he will never protect if p*<C/L. Thus, the (standard-
ized) expense associated with climatological forecasts
is E(CLIM), where

C/L if p>C/L
E(CLIM)= (1
peif pe<C/L.

E(CLIM) is a nondecreasing, piecewise linear function
of C/L, and this function is depicted in an “expense
diagram” in Fig. 1 for p°=0.3.8 This diagram, in which
expense is plotted as a function of C/L, provides a
basic framework within which many of the results
described in this paper will be presented.

-2) PERFECT FORECASTS

If perfect forecasts were available, then the decision
maker would protect when adverse weather was fore-

cast and he would not protect when no adverse weather-
was forecast. For a set of such forecasts, the decision

maker’s fotal expense would be the cost of protection
(C) multiplied by the number of occasions on which
adverse weather was forecast (and observed). Thus,
the (standardized) expense associated with perfect
forecasts E(PERF) is .

E(PERF)=p°(C/L) )

(for perfect forecasts, $° is the “rate’ at which adverse

8 Specifically, E(CLIM) is an increasing linear function of C/L
for C/L< p° and a constant function for C/L> pe.

MONTHLY WEATHER REVIEW

VoLuME 105

weather is forecast amd observed).® E(PERF) is an
increasing linear function of C/L, and this function is
also depicted in Fig. 1 for p¢=0.3. It should be noted
that E(PERF) represents a lower bound on the expense
associated with all types of forecasts.

3) CATEGORICAL FORECASTS

The total expense associated with a set of categorical
forecasts is simply the cost of protection (C) multiplied
by the number of occasions on which protective action
is taken (i.e., the number of occasions on which p; 2 p*)
plus the loss (L) multiplied by the number of occasions
on which protective action is not taken (i.e., the num-
ber of occasions on which p, < p*) and adverse weather
subsequently occurs. Thus, the (standardized) expense
associated with a set of »# categorical forecasts, E(CAT),
is

BCAT)=(/w[(C/L) & mt ¥ mde]. (3)

e
P2 ¥ P <p*

E(CAT) is an increasing linear function of C/L, and,
for a particular set of forecasts, it can be represented by

a line in an expense diagram such as Fig. 1 (see Section
4).

4) PROBABILISTIC FORECASTS

An expression for the (standardized) expense asso-
ciated with a set of # probabilistic forecasts, E(PROB),
can be “derived” in a manner similar to that used to
obtain an expression for E(CAT), except that the
decision as to whether or not to take protective action
(and thus to incur costs and possibly suffer losses)
depends upon C/L rather than the critical probability
value p*. Thus,

E(PROB)=(1/n)[(C/L) ¥ m+ ¥ mdil. (4)©

k k
22 C/L 2 <C/L

Since C/L appears in the limits of the summations,
E(PROB) is a nonlinear function of C/L, and, for a
particular set of forecasts, it can be represented by a
curve in an expense diagram such as Fig. 1 (see Section
4).1

9 Of course, for a given value of C/L, perfect forecasts are not
required to “reach” this lower bound on expense. In particular,
the expense associated with a set of probabilistic forecasts for
which p>C/L when adverse weather occurs and p<C/L when
no adverse weather occurs, will be equal to E(PERF). However,
only perfect forecasts can attain this minimum expense for all
values of C/L.

10 E(PROB)=2p°¢ when C/L=1.

11 Since the set of probability values px(k=1, ..., K) is discrete,
E(PROB) is actually a piecewise linear function of C/L. Speci-
ficially, £(PROB) is a linear function of C/L between p; and
pre(k=1, ..., K—1), and the slope of these K linear segments
decreases, in general, as C/L increases. As the number of prob-
ability values (or segments) K increases, E(PROB) “approaches”
a nonlinear function of C/L.
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c. Some value expressions

In this paper the value of a set of perfect (cate-
gorical, probabilistic) forecasts will be defined as the
expense associated with climatological forecasts minus
the expense associated with perfect (categorical,
probabilistic) forecasts. Thus, the expense associated
with climatological forecasts represents the zero point
on the value scale.

1) PERFECT FORECASTS

The value of perfect forecasts, V(PERF), is simply
the difference between E(CLIM) and E(PERF), or,
from (1) and (2),

— HC f CZ
V(1>ERF)={(C/L)(1 ) 1 pr2CiL (5)
pf1—(C/L)] if pe<C/L.

V(PERF), a linear function of C/L, is greater than or
equal to zero for all values of C/L, with equality only
if C/L=0 or 1 (assuming that, in general, 0<p°<1).
Further, V(PERF) is a maximum when C/L=p".
Thus, V(PERF)max=p°(1—p¢), and this maximum
value cannot exceed 0.25 (when C/L=p°=0.5), or
one-fourth of the loss L. V(PERF) is depicted as a
function of C/L in a “value diagram” in Fig. 2 for
$°=0.3, and this function represents an upper bound
on the value of all other types of forecasts, including
categorical and probabilistic forecasts. Thus, the
functions defining the value of categorical and proba-
bilistic forecasts cannot exceed the piecewise linear
function defining V(PERF) in Fig. 2 (when $°=0.3).

2) CATEGORICAL FORECASTS

The value of categorical forecasts, V(CAT), is, from
(1) and (3),

A/n) ¥ m[(C/L)—d] if p>C/L
k

i K p¥
V(CAT)= (6)
(n) T mlde—(C/L)] if p°<C/L.
Pk;ﬂ* :
03— T T T T T T ¥
o2k V(PERF)
3 ouf
W o0
-
s oub i
-02} ﬁ
-03L I U R S VA RN S |

00 01 02 03 04 05 06 07 08 09 10
COST-LOSS RATIO (C/L)

Fi1G. 2. The basic value diagram in the cost-loss ratio situa-
tion, when the sample climatological probability p¢ is equal
to 0.3.
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V(CAT) is a linear function of C/L, with a positive
slope equal to
(A/n) ¥, nx for pe>C/L
e iﬁ*
and a negative slope equal to
(/n) 3 np for pe<C/L.
m§ p*
Thus, V(CAT) attains relative minima at C/L=0
and 1. Specifically,

V(CAT)=—(1/n) ¥ mid, when C/L=0
k

br <p*
and
V(CAT)=—(1/n) ¥ ni(1—dy) when C/L=1.
&
P2 p*

Note that these minima are, in general, negative.
V(CAT) attains its maximum value at C/L=p°,
and this value, V(CAT) max, is, from (6),
V(CAT)max=(1/m) 3 ni(pc~di).
k

pr <p*

M

V(CAT)max can be positive, negative or zero. Speci-
fically, V(CAT)max is positive (negative, zero) when

P> (<,=) & mdi/ X mie
% %

. br<p¥ i <p*

If V(CAT)max Is negative, then the expense associated
with categorical forecasts is greater than the expense
associated with climatological forecasts for all values
of C/L. In general, however, V(CAT)max will be
negative only for very inaccurate sets of categorical
forecasts.? V(CAT)max will be positive for most sets
of forecasts, and, when V(CAT)max is positive,
V(CAT)=0 when

C/L=Y mdy/ ¥ mp for pe>C/L
% %

i <p* i <p*

and when

k k

D2 p* D2 D*

Thus, even when V(CAT)max is positive, V(CAT) is

2 If the set of n categorical forecasts of concern consists of 711
occasions on which adverse weather was both forecast and ob-
served, 712 occasions on which adverse weather was forecast but
not observed, 72 occasions on which adverse weather was observed
but not forecast, and #zs: occasions on which adverse weather
was neither observed nor forecast (#i1+ni2-+#21+n2=n), then
V(CAT) max is positive (negative, zero) if numnes> (<, =)mana.
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negative over the two half-open intervals

k k

Pr <p* Pe <p*

and

(X mde/ X mi,1]
) Pk;ﬁ* q

The fact that V(CAT) is negative for some values of
C/L for all sets of categorical forecasts (except perfect
forecasts) was first demonstrated by Thompson (1952).

It may also be of interest to determine the value of
categorical forecasts relative to the value of perfect
forecasts. If- we define the relative value of categorical
forecasts, RV(CAT), as the fraction of V(PERF)
which is realized with the set of categorical forecasts
of concern, then

RV (CAT)=V(CAT)/V (PERF). (8)

The range of RV(CAT) is the half-open interval
(— o, 17. Specifically, RV(CAT)=1 when the cate-
gorical forecasts are perfect, while RV(CAT)=—
when C/L=0 or 1. Moreover, RV(CAT) is negative
when E(CAT)>E(CLIM)..

e p*

3) PROBABILISTIC FORECASTS

The value of probabilistic forecasts, V(PROB), is,
from (1) and (4),

(/) T wl(C/L)—d] i p3C/L

b <kC/L
V(PROB) = (9)
(1/n) ¥ m[di—(C/L)] if pc<C/L.
Pk?kC/L

V(PROB) is a nonlinear function of C/L (see Footnote
11), with a positive slope when C/L< p¢ and a negative
slope when C/L> pc. Thus, as in the case of V(CAT),
V(PROB) attains relative minima at C/L=0 and 1.
V(PROB) also attains its maximum value at C/L=p¢,
and this value, V(PROB) max, is, from (9),

V(PROB)wax=(1/n) ¥ mi(pr—d).  (10)
k
P <pe

V(PROB) max is postive (negative, zero) when
o> (<,=) L mdi/ T
k k

b <p° b <p°

However, unless the set of probabilistic forecasts of
concern is extremely unreliable, V(PROB)max will
be positive. 3.

Now, a set of probabilistic forecasts is either reliable
or unreliable. If the forecasts are reliable, then p,=d;

- B Of course, V(PROB) uax, in (10), is positive if the forecasts
are reliable (i.e., if pr=d; for all k; k=1, ..., K)
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for all £ (k=1, ..., K). In this case, V(PROB) in (9)
is greater than or equal to zero for all values of C/L,
with equality only if C/L=0 or 1. Thus, the value
(expense) associated with reliable probabilistic forecasts
is, in general, greater (less) than the value (expense)
associated with climatological forecasts for all activities
or operations. On the other hand, if the forecasts are
unreliable, then p<d; for some k& (k=1, ..., K).
In this case, V(PROB) can be positive, negative or
zero. Specifically, V(PROB) is positive (negative, zero)
if :

C/L>(<,=) ¥ mdy/ Y #np when 0SC/LEpe
m<kC/L p;i<]eC/L

and if

C/L<(>,=) ¥ mdy Y nx when pe<C/L<1.
Pk ZkC /L Dk ;C /L

We determine V(PROB) [or, equivalently, £(PROB)
and E(CLIM)] as a function of C/L, for several sets
of unreliable forecasts in Section 4.

The relative value of probabilistic forecasts can be
defined in a manner similar to that used to define the
relative value of categorical forecasts. Specifically, if we
denote the ratio of concern by RV (PROB), then

RV(PROB)=V(PROB)/V(PERF). (1)

The range of RV(PROB) is also, in general, the half-
open interval (—, 1]} Moreover, RV(PROB) is
negative when E(PROB) is greater than E(CLIM).

d. Comparison of categorical and probabilistic forecasts

It is obviously of some interest to compare the value
of categorical and probabilistic forecasts. Such a
comparison can be accomplished simply by taking the
difference between V(PROB) and V(CAT), or equiva-
lently between E(CAT) and E(PROB), since V(PROB)
—V(CAT)=E(CAT)—E(PROB). Thus, from (3) and
4),

V(PROB)—V (CAT)

(1/n) ¥ mldi—(C/L)] if C/L<p*
C/L Skm <p*
= 0 if C/L=p* (12)
(I/n) X wml(C/L)—di] if C/L>p*.
p*<pf<C/L

This difference is, of course, a nonlinear function of
C/L (see Footnote 11).

'

14 When the forecasts are reliable, RV(PROB) approaches
m/[n(1—p°)] as C/L approaches zero and RV(PROB) ap-
proaches nx/np® as C/L approaches one, where #; and nx are the
number of forecasts for which p=p=0 and p=pr=1, re-
spectively. .
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TaBLE 2. Two hypothetical samples of reliable probabilistic forecasts, in which the forecasts are uniformly (Sample 1)
and nonuniformly (Sample 2) distributed over the standard set of 11 equally spaced probability values.

Sample 1 Sample 2
Observed Observed
Probability Number of relative Number of relative
Class number value forecasts frequency forecasts frequency
k Pk ni dr Cn dr
1 0.0 10 0.0 20 0.0
2 0.1 i0 0.1 30 0.1
3 0.2 10 0.2 30 0.2
4 0.3 10 0.3 20 0.3
5 0.4 10 0.4 15 04
6 0.5 10 0.5 16 0.5
7 0.6 10 0.6 15 0.6
8 0.7 10 0.7 20 0.7
9 0.8 10 0.8 15 0.8
10 0.9 10 0.9 10 0.9
i1 1.0 10 1.0 9 1.0
Total/average 110(=n) 0.50(=p°) 200( =n) 0.41(=p°)

Now, if the probabilistic forecasts of concern are
reliable (ie., if p,=d; for all %), then V(PROB)
—V(CAT) in (12) is greater than or equal to zero
for all values of C/L, with equality (in general) only
if C/L=p*" Thus, the value of reliable probabilistic
Jorecasts is, in general, greater than the value of categorical
forecasts for all activities or operations. On the other
hand, if the forecasts are unreliable (i.e., if py5%d; for
some k), then V(PROB)—V(CAT) can be positive,
negative or zero. Specifically, this difference is positive
(negative, zero) if

C/L<(>,=) ¥

k
C/L £ pr <p*

mde/ Y mk
P
C/L < pr <p*

when C/L<p*
and if

C/L>(<,=) X

k
p*< o <C/L

nk&k/ 2 M
k
p*<p<C/L

when C/L>p*

We examine this difference [or equivalently E(CAT)
—E(PROB)], as a function of C/L, for several sets
of unreliable probabilistic forecasts in Section 4.

The difference in value between probabilistic fore-
casts and categorical forecasts, relative to the difference
in value between perfect forecasts and categorical
forecasts, may also be of interest. If we denote this
ratio by RV(PROB/CAT), then

RV (PROB/CAT)=[V(PROB)—VCAT)]/

X[V(PERF)—V(CAT)], (13)

15 Since E(PROB) is a piecewise linear function of C/L (see
Footnote 11), V(PROB)— V(CAT) is actually equal to zero for
all values of C/L in the interval from the largest p; less than
p* to the smallest p, greater than or equal to p*.

or, from (8) and (11),

RV(PROB/CAT)=[RV(PROB)—RV(CAT)]/

X[1—-RV(CAT)]. (14)
The total range of RV(PROB/CAT) is the half-open
interval (— e, 1], while the range of RV (PROB/CAT)
for reliable probabilistic forecasts is the closed unit
interval [0, 1]. RV(PROB/CAT)=1 when V(PROB)
=V(PERF), and it is positive (negative) when the
value of probabilistic (categorical) forecasts exceeds
the value of categorical (probabilistic) forecasts.

4, Value of climatological, categorical and
probabilistic forecasts : Some hypothetical and
real sets of forecasts

Some expressions for and relationships between the
expense and/or value associated with the use (by
decision makers) of climatological, categorical, prob-
abilistic and perfect forecasts were derived in Section 3.
In particular, we demonstrated that the value (expense)
for reliable probabilistic forecasts is greater (less)
than or equal to the value (expense) for climatological
and categorical forecasts. These and other results and
relationships will be illustrated in this section by com-
puting the expenses associated with these different
types of forecasts for both hypothetical and real sets
of forecasts.

a. Reliable probabilistic forecasts

We first consider sets of reliable probabilistic fore-
casts, and since real samples of forecasts are generally
not (completely) reliable, we shall be concerned with
hypothetical sets of forecasts in this subsection. Two
such sets of forecasts are presented in Table 2. The first
set (Sample 1) consists of 110 forecasts uniformly
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F1c. 3. (a) The expense diagram for the first set of forecasts
(Sample 1) presented in Table 2, with p*=0.5; (b) the value
diagram for Sample 1 (p*=0.5); and (c) the relative value diagram
for Sample 1 (p*=0.5).

distributed over the “standard” set of 11 equally
spaced probability values. The sample climatological
probability p¢ for this set of forecasts is 0.50 (=55/110).
The expense and value diagrams for Sample 1, when
*=0.5, are depicted in Figs. 3a and 3b, respectively.
Fig. 3a shows the (standardized) expense associated
with climatological, categorical, probabilistic and
perfect forecasts as a function of C/L, while Fig. 3b
describes the value of categorical, probabilistic and
perfect forecasts also as a function of C/L.

With: regard to the expenses associated with (value
of) climatological and categorical forecasts, note that
E(CLIM) 2 E(CAT) [ie, V(CAT)>0] for 0.20
<C/LL0.75 and E(CLIM)<E(CAT) [i.e., V(CAT)
<0] for 0.00{C/L<0.20 and for 0.75<C/L<£1.00
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(see Figs. 3a and 3b and Section 3c). That is, the
expense (value) for categorical forecasts is less (greater)
than the expense (value) for climatological forecasts
for a central range of values of C/L, while the expense
(value) for categorical forecasts i3 greater (less) than
the expense (value) for climatological forecasts for
values of C/L outside of this interval. Further, the
minimum values of V(CAT) are —0.091 at C/L=0
and —0.136 at C/L=1, while the maximum value of
V(CAT), V(CAT)max, is 0.136, which occurs at
C/L=p°=0.50 [see Eq. (7)].

Since the forecasts in Sample 1 are reliable, £(CLIM)
2 E(PROB) [ie., V(PROB)>0] and E(CAT)>
E(PROB) [ie, V(PROB)2 V(CAT)] for all values
of C/L (see Sections 3¢ and 3d). That is, the expense
(value) for probabilistic forecasts is less (greater) than
or equal to the expense (value) for climatological and
categorical forecasts for all activities or operations. In
this regard, V(PROB)=0 only for C/L=0 and 1
and V(PROB)=V(CAT) only for 0.40<C/L<0.50
(see Footnote 15). Moreover, the expense (value) for
probabilistic forecasts is less (greater) than the expense
(value) for climatological and categorical forecasts—i.e.,
E(PROB)[V(PROB)]< (>)min[ E(CLIM), E(CAT)]
{max[0,V(CAT)]}—by an appreciable amount over
significant ranges of values of C/L (specifically, for
0.1<C/L50.3 and for 0.6<SC/L50.9).1 Finally, the
maximum value of V(PROB), V(PROB)umax, is also
0.136, which occurs at C/L=$°=0.50 [see Eq. (10)].

A ‘“‘relative value diagram” for this set of forecasts is
depicted in Fig. 3c. As expected, RV (CAT) is positive
for 0.20<C/L<0.75 and negative for all values of
C/L outside of this interval (it actually approaches
minug infinity as C/L approaches zero or one). On the
other hand, RV(PROB) and RV (PROB/CAT) are
non-negative for all values of C/L. RV(CAT) and
RV(PROB) both attain a maximum value of 0.544
(=0.136/0.250) at C/L=p*=0.50, while RV (PROB/
CAT) attains a maximum value of one at C/L=0 and
1. Finally, RV(PROB) approaches a minimum value
of 0.182 when C/L‘approaches zero or one (see footnote
14).

The effect of selecting a different value of p*, the
critical probability value used to transform prob-
abilistic forecasts into categorical forecasts, is indicated
in Fig. 4, in which expense diagrams for Sample 1 are
presented for p*=0.3 (Fig. 4a) and for p*=0.7 (Fig.
4b). First, it should be noted that changing the value
of p* changes the slope of the line representing £(CAT)
[however, it does not affect the “‘curves” representing
E(CLIM), E(PROB) and E(PROB)]. For reliable
forecasts, this line is, in general, tangent to the curve
representing E(PROB) at the point C/L=p* [actually,
E(CAT) may be tangent to E(PERF) over a set of

16 The symbol & denotes an “inexact inequality,” and it is
used in this paper to describe approximate intervals over which
certain relationships and/or results hold.
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FiG. 4. The expense diagrams for Sample 1 (Table 2), with (a)
$*=0.3 and (b) p*=0.7.

values of C/L in the vicinity of p*; see Footnote 15].
Thus, while E(CAT) is tangent to E(PROB) at C/L
=$*=0.5 in Fig. 3a, E(CAT) is tangent to £(PROB)
at C/L=$*=0.3 in Fig. 4a and at C/L=p*
Fig. 4b. Specifically, the effect of selecting a different
value of p* is to decrease E(CAT) for some values of
C/L and to increase E(CAT) for other values of C/L,
and these changes, in turn, lead to increases (decreases)
and decreases (increases) in V(CAT) [V(PROB)
—V(CAT)], respectively. When p*=0.3 (Fig. 4a),
E(CAT) decreases appreciably for C/LS0.30 and
increases appreciably for C/Lz0.50, uvis-d-vis the
situation in which p*=0.5 (cf. Fig. 3a). Thus, for
example, V(PROB)— V(CAT) decreases for C/L<0.30
and increases for C/L=0.50. Moreover, Fig. 4a indi-
cates that, in this case, appreciable differences between
E(PROB) and min [E(CLIM),E(CAT)] are realized
for 0.4SC/LS0.9. When p*=0.7 (Fig. 4b), the situa-
tion is reversed ; that is, E(CAT)—E(PROB) is smaller
for C/LZ0.7 and larger for C/LS0.5, relative to the
situation in which p*=0.5 (cf. Fig. 3a). In this case,

=07 in ~

MURPHY 811
appreciable differences between E(PROB) and min
[E(CLIM),E(CAT)] are obtained for 0.1<C/L<0.5
and for 0.8<C/LS50.9. Thus, the selection of a particu-
lar value of p* can substantially decrease the positive
difference between the expense associated with cate-
gorical forecasts and the expense associated with
reliable probabilistic forecasts for some values of C/L
(viz., for those values of C/L in the vicinity of p*),
but at the same time this choice of p* will necessarily
lead to increases in this difference for other values of
C/L.

The second set of forecasts presented in Table 2
(Sample 2) consists of 200 forecasts nonuniformly
distributed over the same set of 11 equally spaced
probability values (pc=0.41 for this set of forecasts).
This hypothetical sample of reliable forecasts is con-
sidered here because the distributions of forecasts found
in real sets of forecasts more closely approximate the
distribution of forecasts in Sample 2 than the uniform
distribution in Sample 1 (see Section 4b). The expense
diagram for this set of forecasts, when p*=0.5, is
depicted in Fig. 5 (to conserve space, the value and
relative value diagrams for Sample 2 are not presented).
As expected (since the forecasts are reliable), £(PROB)
is less than or equal to E(CLIM) and E(CAT) for all
values of C/L. Moreover, E(PROB).is appreciably
less than min[ E(CLIM),E(CAT)] for 0.15C/L<0.3
and for 0.6 SC/LS0.9. A comparison of Fig. 5 and Fig.
3a reveals that these expense diagrams are very similar
despite the fact that the number and distribution of
forecasts in the two samples are quite different.

b. Unreliable probabilistic forecasts

1) HYPOTHETICAL SAMPLES

Two hypothetical sets of unreliable probabilistic
forecasts are presented in Table 3. These samples both
consist of 110 forecasts uniformly distributed over the
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Tasre 3. Two hypothetical samples of unreliable probabilistic forecasts, in which the forecasts are uniformly distributed over the
standard set of 11 equally spaced probability values. Sample 3 is moderately unreliable, while Sample 4 is extremely unreliable.

Sample 3 Sample 4
Observed Observed
Probability Number of relative Number of relative

Class number value forecasts frequency forecasts frequency
k b e dy ni %
1 0.0 10 0.1 10 0.5
2 0.1 10 0.2 10 0.5
3 0.2 10 0.3 10 0.5
4 0.3 10 04 10 0.5
5 04 10 0.5 10 0.5
6 0.5 10 0.5 10 0.5
7 0.6 10 0.5 10 0.5
8 0.7 10 0.6 10 0.5
9 0.8 10 0.7 10 0.5
10 0.9 10 0.8 10 0.5
11 1.0 10 0.9 10 0.5

Total/average 110(=n) 0.5(=p° 110(=n) 0.5(=p°)

standard set of 11 equally spaced probability values
(p°=0.50 for both sets of forecasts). The first sample
in this table (Sample 3) is similar to Sample 1 in Table
2, except that p,=d,—0.1(k=1, ..., 5), pr=dr(k=6),
and pr=d,+0.1(k=7, ..., 11) in Sample 3, whereas
pr=ds for all £ in Sample 1. We shall refer to Sample 3
as “moderately unreliable.” The expense and value
diagrams for this set of forecasts, when p*=0.5, are
depicted in Figs. 6a and 6b, respectively. First, note that
E(CLIM)2 E(PROB) [ie, V(PROB)>0] for all
except very small and very large values of C/L.
Specifically, V(PROB) is slightly negative for 0.0
<C/L50.1 and for 0.90S5C/L<1.0. With regard
to the expense (value) associated with categorical
and probabilistic forecasts, E(CAT)> E(PROB) [i.e.,
V(PROB)2 V(CAT)] for all values of C/L, with
equality only for 0.40<C/L<0.50. These (and other)
relationships -are also illustrated in the relative value
diagram in Fig. 6c. Thus, despite the fact that this set
of forecasts is moderately unreliable, the value of
probabilistic forecasts exceeds the value of clima-
tological and categorical forecasts for most activities or
operations.

The second hypothetical set of forecasts presented
in Table 3 (Sample 4) will be referred to as “‘extremely
unreliable,” because the observed relative frequency
dy is equal to 0.50 for all 2 (k=1, ..., 11). That is,
for Sample 4, adverse weather occurred on exactly
one-half of the 10 forecasting occasions associated with
each of the 11 probability values (pi; k=1, ..., 11).
The expense diagram for this set of forecasts, when
$*=0.5, is depicted in Fig. 7. Note that E(CLIM)
S E(PROB)X E(CAT) for all values of C/L. Thus,
for all activities or operations, the expense for clima-
tological forecasts is less than or equal to the expense
for categorical and probabilistic forecasts and, in addi-
tion, the expense associated with probabilistic forecasts

is less than the expense associated with categorical
forecasts. Thus, decision makers, in general, would
prefer probabilistic forecasts to categorical forecasts,
but they would prefer climatological forecasts to both
categorical and probabilistic forecasts. It should be
emphasized that since the forecasts in Sample 4 are
extremely unreliable, such forecasts are not representa-
tive of probabilistic forecasts prepared on either an
operational or an experimental basis in meteorology
in recent years (see, e.g., Murphy and Winkler, 1977).

2) REAL SAMPLES

A set of operational probability of precipitation
(PoP) forecasts for Chicago, Ill, is presented in Table
4. This sample consists of all of the PoP forecasts formu-
lated by the National Weather Service (NWS) fore-
casters at Chicago during the four-year period from
July 1972-June 1976. The reliability of these forecasts
is representative of the reliability of PoP forecasts
currently issued to the public by NWS forecasters.
Specifically, these forecasts are quite—but not com-
pletely—reliable. The expense, value and relative value
diagrams for this set of forecasts, when p*=0.5, are
depicted in Figs. 8a, 8b and 8c, respectively. Note that,
despite the fact that these forecasts-are not (completely)
reliable, E(PROB)[V (PROB)]< () min[ E(CLIM),
E(CATJ{max[0,V(CAT)]} for all values of C/L.
Moreover, probabilistic forecasts provide an appreciable
increase in value wis-d-vis both climatological and
categorical forecasts for significant ranges of values
of C/L (specifically, for 0.055C/L<0.30 and for
0.50<C/L<0.75). It should also be mentioned that
the expense, value and relative value diagrams cor-
responding to specific subsets of this set of forecasts
(for example, subsets of forecasts formulated by indi-
vidual forecasters) are very similar to the diagrams
presented in Fig. 8.



JuLy 1977

1.0 T T T T T 7

09

f
|

o8 -

0.7+

— e

E(CLIM) Z

0.6

o5

0.4 "—

03

EXPENSE (E)

0.2 - e
V-

0.1 |- -

00 &L ] ) ) | 1 I I |
00 O1 02 03 04 05 06 07 08 09 {0

COST-LOSS RATIO (C/L)

03 | N S I B R S R R
V (PERF)
02 4
V(PROB)

3 ol _

2 ,:’/\ e /

Y o0 e >

3 - .

S -oipycan T
-02f 3
-03 | | I | |

00 01 02 03 04 05 06 07 08 09 10
COST-1.0SS RATIO (C/L)
S S L A SR A B R R e

S ':m»,:;’_f

g %o~ <

i

w 1ol “J

3 ! !

g Lol —— RV(CAT) A

w -~-- RV(PROB]

Z 3ol 4

‘<_I ) —-— RV{PROB/CAT)

@ -40f -

@
solll 1 vy

00 0l 02 03 04 05 06 07 08 09 10

COST-LOSS RATIO (C/L)

Fic. 6. (a) The expense diagram for the first set of forecasts
(Sample 3) presented in Table 3, with $*=0.5; (b) the value
diagram for Sample 3 (p*=0.5); and (c) the relative value dia-
gram for Sample 3 (p*=0.5).

The effect of using a different value of p* to transform
the probabilistic forecasts into categorical forecasts
for this sample of PoP forecasts is indicated in Fig. 9,
in which expense diagrams are presented for $*=0.3
(Fig. 9a) and p*=0.7 (Fig. 9b). As indicated in Section
4a, the choice of a particular value of p* has the effect
of decreasing the (generally positive) difference between
the expense associated with categorical and prob-
abilistic forecasts for values of C/L in the immediate
vicinity of p* and of increasing this difference for other
values of C/L. These effects are readily apparent if
we compare Figs. 9a and 9b with Fig. 8a.

Finally, a set of probabilistic minimum temperature
forecasts formulated by NWS forecasters at Albu-
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F16. 7. The expense diagram for the second set of forecasts
(Sample 4) presented in Table 3, with p*=0.5.

querque, N. M., is presented in Tabie 5. These forecasts
were prepared during a six-week period each spring -
from 1970-76, first on an experimental basis and then
more recently on an operational basis.” Since the
forecasters have not had very much experience making
such forecasts, the forecasts are not as reliable as the
PoP forecasts considered previously. The expense
value and relative value diagrams for this set of fore-
casts, when p*=0.5, are presented in Figs. 10a, 10b and
10c, respectively. A comparison of categorical and
probabilistic forecasts reveals that E(CAT)> E(PROB)
(i.e., V(PROB) 2> C(CAT)] for all values of C/L except
for a very narrow range of values in the vicinity of
C/L=0.35. Further, note that E(CLIM> E(PROB)

TasBLE 4. A sample of operational precipitation probability fore-
casts formulated by NWS forecasters at Chicago, Ill., during the
period from July 1972-June 1976.

Observed
Probability Number of relative
Class number value forecasts frequency
k Pk : nk dr
1 0.00 1134 0.014
2 0.02 816 0.020
3 0.05 2502 0.039
4 0.10 3138 0.086
5 0.20 3206 0.181
6 0.30 1574 0.285
7 0.40 1031 0.353
8 0.50 1277 0.447
9 0.60 587 0.627
10 0.70 1065 0.667
11 0.80 564 0.730
12 0.90 468 0.861
13 1.00 152 0.974
Total/average 17514{=n) 0.251(=p°)

17 The forecasts were made for several areas in New Mexico
in which deciduous fruits are grown in significant quantities, and
they relate to the probability that the minimum temperature
will not exceed 28°F. They were first disseminated to orchardists
and others on a regular basis in 1975.
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TABLE 5. A sample of experimental probabilistic minimum tem-
perature forecasts formulated by NWS forecasters at Albuquerque,
N. M., during the months of April and May from 1970-76.

Observed
Probability Number of relative
Class number value forecasts frequency
k Pk nE dr
1 0.00 524 0.013
2 0.02 14 0.000
3 0.05 45 0.022
4 0.10 161 0.118
5 0.20 115 0.174
6 0.30 76 0.342
7 0.40 57 0.298
8 0.50 56 0.393
9 0.60 84 0.429
10 0.70 79 0.544
11 0.80 81 0.654
12 0.90 79 0.696
13 . 1.00 72 0.764
Total /average 1443(=n) 0.245(=p°)
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the relative value diagram for this set of forecasts (p*=0.5.)
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[i.e., V(PROB)20] for 0.00<C/L<0.70, while
E(CLIM)S E(PROB) [i.e., V(PROB)<0] for 0.70
SC/LL1.00. Specifically, the value of probabilistic
forecasts is appreciably greater than the value of
climatological forecasts for activities for which 0.05
S C/L50.65, while the value of climatological forecasts
exceeds the value of probabilistic forecasts for opera-
tions for which 0.75<C/L<0.95. Thus, despite the
fact that the probabilistic forecasts of concern are
quite unreliable, many (if not most) decision makers
would prefer these forecasts to climatological and
" categorical forecasts.!* Moreover, the value of the
probabilistic forecasts can be expected to increase still
further, wis-d-vis the wvalue of climatological and
categorical forecasts, as the forecasters become more
experienced at making such forecasts.

5. Summary and conclusion

In this paper we have been concerned with the value
of climatological, categorical, probabilistic and perfect
forecasts within the framework of the cost-loss ratio
situation. First, we derived general expressions for
the expense associated with the use—by decision makers
—of the different types of forecasts. In these expres-
sions, the expense is specified as a function of the cost-
loss ratio and the term ‘‘expense” refers to the decision
makers’ costs and/or losses per unit loss per forecast.
The expense associated with perfect forecasts represents
a lower bound on the expense associated with the other
types of forecasts. Then, we formulated measures of
the value of categorical, probabilistic and perfect
forecasts, in which the value of categorical (prob-
abilistic, perfect) forecasts is defined as the difference
between the expense associated with climatological
forecasts and the expense associated with categorical
(probabilistic, perfect) forecasts. The value of perfect
forecasts represents an upper bound on the value of
categorical and probabilistic forecasts. Finally, ex-
pressions for the relative value of categorical and
probabilistic forecasts were defined, in which the rela-
tive value of categorical (probabilistic) forecasts is the
ratio of the value of categorical (probabilistic) forecasts
to the value of perfect forecasts. We also formulated a
measure of the value of probabilistic forecasts relative
to the value of categorical forecasts.

The expressions for the expense and value associated
with these different types of forecasts were examined
and compared for situations in which the basic prob-

18 In this regard, the available data indicate that the cost-loss
ratios of orchardists in New Mexico range from approximately
0.02-0.05 (G. T. Gregg, personal communication). Thus, the cost-
loss ratios of the decision makers of concern fall in an interval
in which the value of these experimental probabilistic forecasts
exceeds the value of both climatological and categorical forecasts
(see Fig. 10).
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abilistic forecasts!® were assumed to be 1) (completely)
reliable and 2) unreliable. Specifically, we showed that,
when the forecasts are reliable, the expense (value)
associated with probabilistic forecasts is less (greater)
than or equal fo the expense (value) associated with
climatological and categorical forecasts for all values of
the cost-loss ratio (i.e., for all activities or operations).
On the other hand, when the forecasts are unreliable,
the expense (value) associated with probabilistic fore-
casts may be greater (less) than the expense (value)
associated with climatological and/or categorical fore-
casts for some values of the cost-loss ratio. With regard
to the latter, the conditions under which decision
makers would prefer climatological and/or categorical
forecasts to unreliable probabilistic forecasts were
briefly described.

The relationships between the expense and/or value
associated with climatological, categorical, probabilistic
and perfect forecasts were illustrated by examining
several samples of forecasts. Specifically, we considered
hypothetical sets of reliable probabilistic forecasts
and both hypothetical and real sets of unreliable
probabilistic forecasts. The latter included forecasts
of precipitation occurrence and minimum temperature
formulated by NWS forecasters. The examination of
these and other samples of unreliable probabilistic
forecasts has indicated that the relationships between
the expense (and value) of reliable probabilistic fore-
casts and the expense (and value) of climatological and
categorical forecasts are quite robust, in the sense that
these relationships appear to hold for most (if not all)
values of the cost-loss ratio even for moderately un-
reliable forecasts?! Moreover, these empirical studies
have suggested that, when the forecasts are unreliable,
the value of probabilistic forecasts is more likely to be
exceeded by the value of climatological forecasts than
by the value of categorical forecasts.

The results presented in this paper have some
implications for operational forecasting procedures and
practices. The most important implication, of course,
relates to the fact that the value of reliable—and even
moderately unreliable—probabilistic forecasts generally
exceeds the value of climatological and categorical
forecasts. This result suggests that the value of day-to-
day weather forecasts could be significantly increased,
within the context of many decision-making situations,
if such forecasts were routinely expressed in probabilistic
terms and disseminated to decision makers (including
the general public). In this regard, it should be empha-

1 The climatological, categorical and perfect forecasts are
derived from the probabilistic forecasts and the relevant observa-
tions (see Section 3a).

2 Actually, E(PROB)=E(CLIM) only for C/L=0 and 1
and E(PROB)=E(CAT) only for values of C/L in the immediate
vicinity of p* (see Footnote 15).

21 Many hypothetical and real sets of probabilistic forecasts
have been examined in this study, only six of which are considered
in Section 4.






