NSSL's Dual-polarization Censoring Algorithm

This technique is recommended for the first release of the dual-polarimetric WSR-88D. In general, it applies to any radar that transmits and receives simultaneously horizontally and vertically (SHV) polarized waves at a uniform PRT of duration T_{s}.

Let H_{i} denote a complex signal (in-phase and quadrature phase) of horizontally polarized echoes at a fixed range location (same range gate) where the first echo received is H_{0}. The spacing between H_{i} samples is T_{s} and the total number of H samples is M (that is the index i goes from 0 to $M-1$). Let V_{i} denote a complex signal of vertically polarized echoes, the spacing between $V_{i} \mathrm{~s}$ is also T_{s} and the total number of V_{i} samples is also M. So the sequence of sample pairs is (H_{0}, $\left.V_{0}\right),\left(H_{1}, V_{1}\right),\left(H_{2}, V_{2}\right),\left(H_{3}, V_{3}\right) \ldots$ etc.
The two quantities used for the censoring are the signal-to-noise (SNR) estimate in the H channel $\left(S N R_{h}\right)$ and the "uniform sum" (US). The $S N R_{h}$ is computed as
$S N R_{h}=\frac{\frac{1}{M} \sum_{i=0}^{M-1}\left|H_{i}\right|^{2}}{N_{h}}-1$,
where N_{h} is the measured noise in the H channel. The uniform sum is computed as

$$
\begin{equation*}
U S=\frac{1}{M} \sum_{i=0}^{M-1}\left|H_{i}\right|^{2}+\frac{1}{M} \sum_{i=0}^{M-1}\left|V_{i}\right|^{2}+\frac{1}{M-1}\left|\sum_{i=0}^{M-2} H_{i}^{*} H_{i+1}+\sum_{i=0}^{M-2} V_{i}^{*} V_{i+1}\right|+\frac{1}{M}\left|\sum_{i=0}^{M-1} H_{i}^{*} V_{i}\right| \tag{2}
\end{equation*}
$$

where * stands for the complex conjugate.
Let $T H R_{d B}$ be the SNR threshold specified in dB used in the legacy detector for the given variable (i.e., Z, v, or σ_{v}; for $Z_{D R}, \rho_{h v}$, and $\phi_{d p}$ the threshold is the same as for Z). The SNR threshold is computed as
$T H R_{S N R}=10^{\frac{T H R_{d B}}{10}}$.
The threshold for the "uniform sum" is computed as
$T H R_{U S}=\max \left(N_{h}, N_{v}\right) \cdot\left(\frac{\min \left(N_{h}, N_{v}\right)}{\max \left(N_{h}, N_{v}\right)}\right)^{B} \cdot \exp \left(A+C \cdot \frac{\min \left(N_{h}, N_{v}\right)}{\max \left(N_{h}, N_{v}\right)}\right)$,
where N_{v} is the measured noise power in the vertical (V) channel, and the coefficients A, B, and C are obtained from Table 1 . Note that each M value has the corresponding set of coefficients associated to it. It is recommended that Table 1 be implemented so that the coefficients can be easily updated (e.g., as part of adaptation data or in a separate configuration file). Note that only a partial table is given in this paper, and a full table is provided in a separate file.

The step by step procedure of the proposed signal censoring algorithm that applies to each range gate is as follows.

```
if M > 89
    if SNRR
        accept as "significant return"
    else
        reject as "non-significant return"
    end
else
    if (SNR 
        accept as "significant return"
    else
        reject as "non-significant return"
    end
end
```

M	6	7	8	9	10	11	12
A	1.4463	1.4367	1.4296	1.4044	1.3975	1.3615	1.3298
B	-0.1011	$-8.9699 \mathrm{e}-2$	-0.0863	$-9.3613 \mathrm{e}-2$	$-9.3940 \mathrm{e}-2$	$-8.0318 \mathrm{e}-2$	$-6.7912 \mathrm{e}-2$
C	0.6126	0.59579	0.5898	0.59864	0.59725	0.58165	0.56929
M	13	14	15	16	17	18	19
A	1.3024	1.2576	1.239	1.1946	1.2039	1.1552	1.1511
B	$-5.5740 \mathrm{e}-2$	$-6.1595 \mathrm{e}-2$	$-4.8790 \mathrm{e}-2$	$-3.9140 \mathrm{e}-2$	$-2.9329 \mathrm{e}-2$	$-4.5421 \mathrm{e}-2$	$-2.9440 \mathrm{e}-2$
C	0.55685	0.56567	0.55126	0.54377	0.52846	0.55309	0.53341
M	20	21	22	23	24	25	26
A	1.1223	1.1026	1.0953	1.0798	1.0691	1.0622	1.0454
B	$-3.2664 \mathrm{e}-2$	$-3.1927 \mathrm{e}-2$	$-2.1782 \mathrm{e}-2$	$-1.8855 \mathrm{e}-2$	$-1.3561 \mathrm{e}-2$	$-6.1736 \mathrm{e}-3$	$-6.1895 \mathrm{e}-3$
C	0.54113	0.53956	0.52826	0.52593	0.51962	0.50996	0.51269
M	27	28	29	30	31	32	33
A	1.0313	1.028	1.0098	0.99348	0.99406	0.98481	0.98154
B	$-5.1542 \mathrm{e}-3$	$2.1922 \mathrm{e}-3$	$-2.6402 \mathrm{e}-4$	$-2.9082 \mathrm{e}-3$	$6.8651 \mathrm{e}-3$	$9.0159 \mathrm{e}-3$	$1.5671 \mathrm{e}-2$
C	0.51222	0.50091	0.50718	0.51114	0.49914	0.49704	0.4895
M	34	35	36	37	38	39	40
A	0.96288	0.95693	0.94897	0.93505	0.93681	0.92138	0.9188
B	$9.7531 \mathrm{e}-3$	$1.3140 \mathrm{e}-2$	$1.5368 \mathrm{e}-2$	$1.2681 \mathrm{e}-2$	$2.0367 \mathrm{e}-2$	$1.5745 \mathrm{e}-2$	$2.0107 \mathrm{e}-2$
C	0.49788	0.49382	0.49269	0.49756	0.48692	0.49384	0.48811
M	41	42	43	44	45	46	47
A	0.93523	0.90515	0.91548	0.89475	0.89016	0.89692	0.8842
B	$3.9809 \mathrm{e}-2$	$2.2990 \mathrm{e}-2$	$3.5888 \mathrm{e}-2$	$2.6591 \mathrm{e}-2$	$2.8431 \mathrm{e}-2$	$3.9408 \mathrm{e}-2$	$3.5303 \mathrm{e}-2$
C	0.46344	0.48666	0.46772	0.48242	0.47995	0.46646	0.4728
M	48	49	50	51	52	53	54
A	0.87752	0.87178	0.86942	0.85894	0.85721	0.85255	0.83821
B	$3.5153 \mathrm{e}-2$	$3.4939 \mathrm{e}-2$	$3.8871 \mathrm{e}-2$	$3.5241 \mathrm{e}-2$	$3.9386 \mathrm{e}-2$	$3.9818 \mathrm{e}-2$	$3.3166 \mathrm{e}-2$
C	0.47314	0.47245	0.46917	0.47388	0.47038	0.46945	0.47848

Table 1. Excerpt of the table with coefficients for the "uniform sum" threshold (THR ${ }_{U S}$) calculation as a function of the number of samples M. The complete table is provided in an electronic form as a separate file.

