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1. Introduction 
Bird strikes are a hazard for aviation. They are defined by the Federal Aviation Administration (FAA) as 

collisions between a bird and an aircraft resulting in the injury/death of the bird, damage of the aircraft or 

both (Seidenman and Spanovich 2016). According to the National Wildlife Strike Database (Federal Aviation 

Administration, 2016), the number of reported annual strikes has increased 7.4 times from 1,847 in 1990 

to a record 13,795 in 2015. Within this timeframe, 169,856 strikes were reported either as happened in 

the USA or by U.S. registered aircraft in foreign countries. Birds accounted for 95.8 percent of the 2015 

reported strikes. Perhaps the most high-profile incident occurred on 15 January 2009. The US Airways Flight 

1549 encountered a flock of Canada Geese shortly after takeoff from the New York City LaGuardia Airport. 

Some birds were ingested into both engines leading to loss of thrust. Luckily, the pilots successfully landed 

the airplane on the Hudson River saving the lives of all 155 people on board.  

 

Results of radar bird detection algorithm can be used for two major applications. The first is for aviation to 

detect areas of birds to help with avoiding bird strikes with aircrafts. The second application is for detecting 

situations with low bird contamination. In such a case, radar echoes are from insects and clear air returns 

(Bragg scatter) and the Doppler velocity field can be used to correctly obtain the wind not contaminated 

with strong bird velocities. Correct radar identifications of birds and insects in the atmosphere is also useful 

for many non-meteorological applications such as ecology, ornithology, and entomology. Such applications 

could increase the use of the WSR-88D data.    

 

The WSR-88D delivers six variables: reflectivity (Z), Doppler velocity (V), spectrum width (W), differential 

reflectivity (ZDR), differential phase (ΦDP), correlation coefficient (ρhv), and specific differential phase (KDP). 

All these variables can be used in a bird detection algorithm. The criteria of using these variables in an 

algorithm is discussed in the next section. Jatau and Melnikov (2019) have designed an algorithm for 

distinguishing bird and insect radar echoes, which uses some of the radar variables and the texture of the 

variables. It was noted in that algorithm that polarization properties of atmospheric biota depends on range 

from radar that could mean that various species fly at different heights because the radar range is directly 

connected to heights in radar observations. Thus, the range from radar can be an additional input variable 

to a bird detection algorithm. 

 

The polarization properties of atmospheric biota depend on radar azimuth. This dependence is caused by 

the shapes of birds and insects and their orientation relative to the radar beam. Orientations of species 

depend on the wind. To account for changing wind directions, the polarization properties of biota echoes 

should be considered relative to the main orientations of the scatterers. That is, orientation of the species 

can be considered as an input parameter to the algorithm. This feature is discussed in the next section.  In 

this project, we devised a method for converting radar measurements from being relative to the radar to 

be relative to the target by leveraging cases of migration toward a known direction. 

 

In the algorithm by Jatau and Melnikov (2019), the membership function approach was used. Two 

algorithms presented in this report are based on machine learning approaches. The first algorithm uses the 
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ridge regression approach and the second one is based on decision trees. The input variables for these 

algorithms and their implementation are discussed in the next section.  The machine learning algorithms 

require training and test data sets, which are presented below with a detailed description of the machine 

learning methods. The obtained results from the two algorithms are compared and conclusions are 

presented in section 6.   

2. Processing features for biological targets 

2.1. The input algorithm variables 
The WSR-88D is capable of detecting a single biota echo up to a range of 200 km from the radar. However, 

distinguishing their taxa (birds or insects) is a challenge because they frequently have similar radar 

signatures. While reflectivity provides information about size of a scatterer, it is also directly proportional 

to their number concentration in the radar resolution volume. A high reflectivity value could indicate a 

larger target (like a bird) or a dense aggregation of small targets (insects). Because of this ambiguity, 

reflectivity was excluded from the input to this version of the algorithm. 

Birds are larger and can fly faster than insects. While both animals will leverage the wind velocity to aid 

their flight, birds would be expected to have less reliance on the wind. It would make sense to use these 

features for separating bird and insect echoes. Radial velocity is a projection of target velocity on the radar 

beam. Since biological targets often take advantage of the wind velocity, it is difficult to know how much 

of the measured radial velocity is generated by the targets themselves. Insects can be measured at higher 

velocities on windy days while birds can be measured at lower velocities when the wind field is mild. The 

Doppler velocity was also excluded as an input to the algorithm due to this limitation for different target 

flight directions and underlying wind fields though still used for VAD analysis to reorient variables relative 

to the target’s aspect. Spectrum width is also not used because of high noise contamination. 

Another factor that motivated the exclusion of the legacy radar products is volume coverage pattern of 

NEXRAD. Birds and insects are most common at the lowest elevation (~0.5°) scan. At this elevation, the 

radar completes 2 sweeps, each about 30 seconds apart. The first sweep (surveillance mode) measures the 

dual polarization variables and Z, while the next sweep (Doppler) collects the legacy radar products. 

Assuming a target flies with a radial velocity of 10 m/s, it would have migrated about 300m between both 

sweeps, more than the length of one range gate.  The measurements from only the surveillance scan is are 

used to ensure temporal coherence. 

Birds and insects frequently orient themselves relative to the wind, especially during migration. The wind 

changes its directions in time and height. To account for changing winds, polarimetric variables should be 

considered relative to orientations of birds and insects. To do so, the direction of migration has been 

obtained for every range interval using VAD analysis. A left shift is then performed to normalize the radar 

variables relative to the target aspect. Aspect averaging is then applied to improve the signal to noise ratio 

(SNR). To account for the azimuthal dependence of the dual-pol radar variables, 18 azimuthal sectors have 

been created in the whole 360o field (Fig. 1) so that the width of an azimuthal sector is 20o. Each azimuthal 

sector represents a target aspect. The radar distance has been also divided into 10 km long range intervals 

(Fig. 1). Radar data from the first range interval have not been used because of strong contamination from 

ground clutter (the empty smallest circle in Fig. 1).  The final variables used in training the classifiers are the 

dual polarization variables, their textures, range, and target aspect. Dual pol variables are used because 
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they are robust to differing target size and concentration. They also provide information on the shape and 

uniformity of the targets.  

 

Fig. 1. Layout of the range intervals and azimuthal sectors used in the algorithms.  

2.2. Blob coloring with minor region removal  
Blob coloring is a low-level image processing step performed prior to some higher-level computer vision 

process. It is usually performed to extract an object against a back ground. Objects (or regions) are defined 

as connected target pixels in the image surrounded by background. They are identified by iterating over 

the image in raster scan order with a 3 by 3 filter that assigns a unique number to each region. Surroundings 

were defined using a 4 connected neighborhood (Bovic, 2009). After the first pass of the algorithm, several 

blobs would be identified. Each blob has a count for the number of pixels (or range gates) that it covers. 

The blob with the largest count is kept and all other blobs deleted. Usually the coloring process is imperfect 

leaving with some holes in the target blob. This is addressed by inverting the image, repeating the coloring 

process, extracting the largest blob again and finally re-inverting the image (Bovic, 2009). 

Radar data from insects and birds were collected for clear air days with minimal precipitation 

contamination, thus the biggest object in this case is always the migration echoes centered at the radar 
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location. Figure 2 shows an example of a bird migration contained within a range of about 150 km. Let this 

original image be 𝐼. A new binarized image is obtained setting the background pixels to zero and non-

background pixels to 1. The result is a large connected region close to the radar location and more isolated 

regions at the fringe of the echo. The binarized image is dilated twice to join the isolated region to the main 

echo.  The new dilated image 𝐽 is given as 

𝐽 = (𝐼 ⨁ 𝐵) ⨁ 𝐵   (1) 

Where  𝐵 is the 3 by 3 window, and ⊕ represents the dilation operation. 

Next, blob coloring with minor region removal is performed on 𝐽 to get a map 𝑀 of the target, shown in 

figure 3.  The final extracted image 𝐾 of the radar echo (fig 4) is obtained by element wise multiplication of 

the original image and the target map 

𝐾 = 𝐼 ⊙ 𝑀   (2) 

The same procedure was repeated to extract the insect echo. Fig. 5 shows the original image of insect 

reflectivity. This case had a little contamination from weather seen west of the insect migration echoes. 

Blob coloring with minor region removal excludes this contamination. The map of the region of interest can 

be seen in figure 6. The final extracted image (fig 7) is less noisy recovering only the insect echoes. 

 

 

Figure 2: Reflectivity Z of bird migration echo 
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Figure 3: Mask of major region extracted by blob coloring algorithm 

 

 

Figure 4: Reflectivity of extracted bird migration echo 
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Figure 5: Reflectivity of insect migration echo 

 

Figure 6: Mask of major region extracted by blob coloring 
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Figure 7: Reflectivity of extracted insect migration echo 

 

2.3. Texture  
Texture gives information about the variation of radar products over a 3 by 3 range gate window. The 

window is slid across the image in raster scan order, and the mean absolute difference of the 8 surrounding 

gates from the reference gate is output (Jatau and Melnikov, 2019). Edge effects along the azimuth are 

handled by periodic extension. There are no edge effects for range because our analysis starts from 10 km 

and never uses the full range extent. Calculations were also confined to only gates that have targets present 

in all 8 neighbors in a star neighborhood topology. Mathematically, texture is given as 

∆𝑥𝑎𝑏 =  
1

𝑁−1
∑ ∑ |𝑥𝑎𝑏 −  𝑥𝑎+𝑖,𝑏+𝑗|+1

𝑗 = −1
+1
𝑖 =  −1    (3) 

Where  ∆𝑥𝑎𝑏 is the texture of product 𝑥 at range gate 𝑎 and azimuth 𝑏. 

 𝑖 is the range index offset, 

 𝑗 is the azimuth index offset, and 

 𝑁 is the window size. 

 

2.4. Reference with respect to bird/insect azimuth 
Migration have been observed to have a strong azimuthal dependence due to the different aspects being 

sampled (Stepanian et al, 2016). This is characterized by symmetry patterns in the dual pol variables. We 
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explored a method for handling this dependence by reorienting radar variables relative to the target’s 

azimuth.  First, a sinusoidal model is fit to every range of the form 

 

𝑉𝑟(𝜃𝑎𝑧) = |𝑉|𝑐𝑜𝑠(2𝜋𝑓𝜃𝑎𝑧) +  𝜑𝑝ℎ𝑎𝑠𝑒    (4) 

 

Where 𝑉𝑟 is the radial velocity, |𝑉| is the magnitude of velocity along the migration direction, 𝑓 is frequency,  

𝜃𝑎𝑧 is the radar azimuth (in degrees) and 𝜑𝑝ℎ𝑎𝑠𝑒 is a phase offset. It is assumed that the wind field is uniform 

at every height, therefore 𝑓 ≈  
1

360 
 cycles/ degree.  The migration direction 𝜃𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 is recovered as the 

angle that maximizes radial velocity, 

𝜃𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 =  𝑎𝑟𝑔𝑚𝑎𝑥 𝜃𝑎𝑧
 𝑉𝑟(𝜃𝑎𝑧)     (5) 

 

An example of a VAD cut for 70 km taken from KTLX on 03rd May, 2015 at 05:08:15 UTC is shown in fig 8. 

The blue line represents the filtered Doppler velocity while the green line represents the sinusoid fit. 

Migration in this case is toward 13.73° azimuth relative to the radar. Other markers at 103.73° and 

283.73° are the zero iso-dops of velocity while 193.73° is the direction from which the migration 

originates. These azimuths also give information on the back scatter from different aspects. For example, 

13.73° is sampling the tail aspect of the birds, 103.73°,  the left wing, 193.73°  the head and 283.73° the 

right wing. Migration direction changes with wind, range (height) from the radar, time of day and weather. 

This coupled with the complex shapes of biological targets make signal processing along aspects 

challenging. 

 

Figure 8: VAD for 70 km relative to radar 
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The velocity relative to the aspect of the birds (or insects) is obtained by left shifting 𝑉𝑟 by 𝜃𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛  

 

𝑉𝑟(𝜃𝑎𝑠𝑝𝑒𝑐𝑡) =  𝑉𝑟(𝜃𝑎𝑧 −  𝜃𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 )    (6) 

 

The result is a radial velocity field such that 0° represents tail on sampling, 90° left wing, 180° head on and 

270° right wing shown in fig. 9 below. The same shift is applied to normalize 𝑍𝐷𝑅, 𝛷𝐷𝑃 and 𝜌𝐻𝑉. Further 

analysis of the VAD pattern also showed that dual pol variables had little fluctuations over 20° sectors. 

Thus, range gates were aggregated into 20° azimuth by 10 km range-sector bins to have more 

measurements per bin.  

 

 

Figure 9: VAD at 70 km relative to bird aspect 

 

3. Data analysis 

3.1. Train and test data 
45 cases (PPIs) of biota migration were collected from KLTX for both birds and insects. Migration echoes 

were extracted using blob coloring with minor region removal and labelled by their comprising scatterers. 

All gates that are part of a bird migration blob are labelled birds and vice versa. In reality, biota echoes are 

frequently cross contaminated. There will be many gates that contain both scatterers at the same time. 
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There will also be gates that contain insects within a bird migration blob or birds within an insect migration 

blob. Furthermore, verifying each individual gate will be impossible given that the data used was collected 

within a radius of over 200 km. 

To mitigate this, further processing was applied to the data set. First, the migration direction at all ranges 

were recovered using VAD fit and then reoriented relative to the target azimuth. Each PPI was then 

randomly divided into 3 batches each containing 30 cases (15 for each class). Two batches were selected 

as the training set while the last batch was the test set.  

The next step attempts to improve the signal to clutter ratio within each batch. For each class, all 15 cases 

are averaged for each range gate within 0.5∘aspect bins. For example, within a batch, all 𝑍𝐷𝑅 values within 

an aspect angle of 0° − 0.5° will be averaged to get one 𝑍𝐷𝑅 value. A similar process is repeated for 0.5° −

1.0°, 1.0° − 1.5° and so on. The result of this step is that all 15 ppi’s within one batch are averaged into 1 

ppi with less contamination. The final training data contained 2 of such averaged ppi’s.  The test cases are 

kept in its original form since classification at test time will always be done for one PPI. 

 

3.2. Results 
The aspect averaging gives an insight into how the transmitted wave interacts with the complex shape of 

birds/insects. Fig 10 shows the averaged 𝑍𝐷𝑅 of the training data as a function of 𝜃𝑎𝑠𝑝𝑒𝑐𝑡 at ranges 15, 30, 

45 and 90 km. It can be seen that  𝑍𝐷𝑅 generally has a sinusoidally pattern with the highest value of around 

230𝜊 (between the head and the right wing), and the lowest values are around 75°. The sinusoidal aspect 

dependence is also evident (Fig. 10 right) in the bimodal nature of the bird distributions. Insects on the 

other hand generally have higher values, accumulating around the 8 𝑑𝐵 limit. Other data collected from 

research radars have shown that insects can have 𝑍𝐷𝑅 up to 𝟐𝟒 𝒅𝑩.  The clamping of values at the 8 dB 

limit could explain why there is not as obvious a pattern as in the bird case. Insects also have larger 

fluctuations which could imply that they are more sensitive to changes in viewing angle. The right part of 

fig. 10 also shows their distributions. Birds have most of their 𝑍𝐷𝑅 in the interval (−2,4) 𝑑𝐵 while insects 

have values over the whole 𝑍𝐷𝑅 range.  

More analysis was carried out to observe the distribution of radar variables over different sector range 

intervals shown in fig 11. From left to right the range intervals considered are 1, 3, 5 and 7. From top to 

bottom, the sectors considered are 1,5, 9, 14 and 18. Recall that sectors represent 20° bins of the aspect 

angle, so sector 1 will be for 𝜃𝑎𝑧 between 0 − 19.99𝜊 (contains the direction of migration), sector 9 is 

directly opposite sector 1 and sector 18 is adjacent to sector 1. The separation between bird and insect 

distributions is better for sectors 5, 9 and 18.  Generally, there is clearer separation when sector is 

incorporated in fig. 11 compared to the distributions in figure 10. 

𝛷𝐷𝑃 for bird echoes (fig 12) also show a pattern with peak values at about 50° and 300° . This result is 

consistent with the observed bilateral symmetry seen in bird migration studies (Stepanian et al, 2016) 

where there are two regions about 180° apart with high 𝛷𝐷𝑃 values. The minimum value across all 

considered ranges is found at 180° which is the head aspect of the bird. Additionally, 𝛷𝐷𝑃 for insects is 

more random possibly due to aliasing of low values into higher values. True values should be around 70°. 

Generally, birds can be seen (right of fig. 12) to have higher 𝛷𝐷𝑃 than insects. Fig 13 shows once again that 

using sector information enhances the separation between both classes.  
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𝜌𝐻𝑉 for bird migration have been observed to have low values corresponding to tail-on viewing angles and 

high values for head on angles (Stepanian and Horton 2015, Van Den Broeke 2013). This can be seen in the 

sinusoid-like pattern of figure 14 with high values between 60° and 250° and low values otherwise. As a 

result, the distributions (figure 14, right) are strongly bimodal. Incorporating sector dissolves the bimodal 

distributions into the more desired normal distributions within range sector bins. Sector 1, 5 and 18 have 

the clearest separation between birds and insects while sectors 9 and 14 have more overlap between both 

classes. 

 

 

Figure 10: ZDR as a function of aspect angle (left) and distribution of ZDR (right) at 15, 30, 45 and 90 km. The insect data are in 
red and bird data are in blue. 
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Figure 11: Distribution of ZDR  at range interval 1,3,5 & 7 and sectors 1,5,9, 14 & 18. Insect data are in red and bird data are in 
blue. 

 

 

Figure 12: 𝜑𝐷𝑃 as a function of aspect angle (left) and distribution of 𝜑𝐷𝑃 at 15, 30, 45 and 90 km. Insect data are in red and bird 
data are in blue. 
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Figure 13: Distribution of  𝜑𝐷𝑃 at range interval 1,3,5 & 7 and sectors 1,5,9, 14 & 18. Insect data are in red and bird data are in 
blue. 

 

 

Figure 14: 𝜌𝐻𝑉 as a function of aspect angle (left) and distribution at 15, 30, 45 and 90 km. Insect data are in red and bird data 
are in blue. 
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Figure 15: Distribution of 𝜌𝐻𝑉 at range interval 1,3,5 & 7 and sectors 1,5,9, 14 & 18. Insect data are in red and bird data are in 
blue. 

4. Machine learning methods 

4.1.  Logistic regression 

Logistic regression is a model for predicting a categorical variable as a function of linear combination of it’s 
predictors. In our case, prediction is whether a range gate contains birds or insects based on the level II 
dual polarization variables. The predictors used are 𝑍𝐷𝑅, 𝜑𝐷𝑃, 𝜌𝐻𝑉, sector and range interval.  The target 
variable 𝑖𝑠𝐵𝑖𝑟𝑑 is a binary label used to indicate whether the current range gate contains birds  or insects. 

The probability of that a range gate contains bird echo 𝜇𝑖𝑠𝐵𝑖𝑟𝑑 is given by 

 

𝜇𝑖𝑠𝐵𝑖𝑟𝑑 =
1

1 + 𝑒−(𝛽0+𝛽𝑍𝐷𝑅𝑍𝐷𝑅+𝛽𝜙𝐷𝑃
𝜙𝐷𝑃+𝛽𝜌𝐻𝑉

𝜌𝐻𝑉+ 𝛽𝑠𝑒𝑐𝑡𝑜𝑟𝑠𝑒𝑐𝑡𝑜𝑟+𝛽𝑟𝑖𝑟𝑖)
             (7) 

 

Where 𝛽′𝑠 are weights given to each variable and ri stands for range interval. Final classification is made 

for birds if 𝜇𝑖𝑠𝐵𝑖𝑟𝑑  exceeds a threshold of 0.5 and insects otherwise. This will be a binary outcome, though 

we can alternatively just consider the probabilities depending on the desired application. Logistic regression 

is trained by finding weights that minimize the root mean squared error 𝑒 defined as  

𝑒(𝛽𝑗) =  √
∑(𝑦𝑖−𝑦�̂�)2

𝑛
     (8) 
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Where 𝑦𝑖  is the label provided for whether a gate contains birds (1) or insects (0), and 𝑦�̂� is the predicted 

outcome. 

In this project, we used ridge regression which uses an additional regularization hyperparameter 𝜆 on 

normal logistic regression that penalizes overconfident weighting on predictors. The modified loss function 

𝐿(𝛽𝑗) will be 

𝐿(𝛽𝑗) =  𝑒(𝛽𝑗) +  𝜆 ∑ 𝛽𝑗
2𝑝

𝑗=1      (9) 

Training in this case involves finding both 𝛽’s and 𝜆 that minimizes this loss function. Ridge regression was 

executed using the glmnet (Friedman et. al, 2010) and ipflasso (Boulesteix and Fuchs, 2019) in R 

programming language. 

 

4.2. Decision trees 
Decision trees uses a combination of thresholds on the predictor variables to divide data so that subsets 

are as homogenous as possible. They are formed by hierarchy of parent nodes and children nodes. Another 

way to understand the tree is using root, decision and leaf nodes. The root node is exclusively a parent 

node. Decision nodes are both parents and children, while leaf nodes are exclusively children.  

There are many loss functions used to guide the splitting on the trees.  In this project, we wanted to 

maximize information gain thereby minimizing the entropy of children nodes. Entropy measures the 

homogeneity of a node. The entropy of a single variable 𝐸(𝑥) defined as 

𝐸(𝑥) =  − ∑ 𝑝𝑖 𝑙𝑜𝑔2 𝑝𝑖𝑖     (10) 

where 𝑝𝑖  is the probability of the 𝑖𝑡ℎ class. 

Consider a split on variable 𝑥1 that have classes true and false. If it produces a node with 99% true and 1% 

true respectively, the entropy will be  𝐸(𝑥1) =  −0.99 × 𝑙𝑜𝑔20.99 − 0.01 × 𝑙𝑜𝑔20.01 = 0.08. It is almost 

zero because the children nodes are almost pure. Alternatively, an impure split 50-50 split would have a 

high entropy. 

Entropy at nodes in decision trees defined relative to the target variable 𝑇 given as  

𝐸(𝑇, 𝑋) = ∑ 𝑝(𝑐)𝐸(𝑐)𝐶 ∈𝑋    (11) 

Where 𝑋 is the current variable. Information gain 𝐺 of a split measures the reduction in entropy relative to 

the target class. It is given as 

𝐺(𝑇, 𝑋) = 𝐸(𝑇) − 𝐸(𝑇, 𝑋)   (12) 

Growing the decision tree at every node involves analyzing the information gain of possible splits.  The one 

with the highest gain is always executed first. Splitting continues recursively until the final leaf nodes are 

sufficiently pure. The rpart package (Therneau and Atkinson, 2018) was used for training the model.  
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4.3. Metrics 
We used four different metrics to measure the performance of a classifier. These are accuracy ACC, true 

positive rate TPR, true negative rate TNR, and the area under the Receiver Operating Characteristic (ROC) 

curve. Table 1 below shows how this metrics are obtained for bird detection. The true label is the marker 

provided by Jatau and Melnikov to indicate whether a range gate contains bird or non-bird echo. After 

training, the classifier is applied to predict the already labelled gates. The number of gates that are labelled 

as birds and predicted as birds make up the true positive (TP) cases. Gates that are labelled as birds but are 

predicted as insects are false negatives (FN). Gates that are labelled as insects and predicted as insects are 

true negatives (TN). Finally, gates that are labelled as insects but predicted as birds are false positives (FP). 

Three metrics are calculated as   

 

Classifier output True label 

 Birds Insects 

Birds True Positives (TP) False Positives (FP) 

Insects False Negatives (FN) True Negatives (TN) 

Table 1: Confusion matrix for bird detection 

 

𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝐹𝑁
   (13) 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (14) 

𝑇𝑁𝑅 =  
𝑇𝑁

𝐹𝑃+𝑇𝑁
    (15) 

 

In practice, values close to 1 are desirable for this metrics. These metric were calculated using the caret 

package (Khun et al, 2019). The ROC curve plots the 𝑇𝑃𝑅 against 1 − 𝑇𝑁𝑅 (or False Positive Rate 𝐹𝑃𝑁) for 

different thresholds on the probability of birds and insects. An example of the ROC curve for the ridge 

regression model using 𝛷𝐷𝑃, 𝜌𝐻𝑉, and sector is shown in figure 16. This curve was generated using the 

ROCR package (Sing et al, 2005). The left side of the figure represents a threshold on the probability of birds 

close to 1. This strict threshold will detect no insects and only a few gates with very high probability of birds. 

Moving right along fig 16 signifies decreasing the threshold toward zero. The lower probability threshold 

on the other hand detects almost all bird gates but also misclassifies a huge portion of insect gates. The 

diagonal line signifies random chance. A metric used to summarize the ROC curve is called the Area Under 

Curve (AUC) which is calculated as the name implies. An ideal classifier will have the elbow of the ROC curve 

close to the top left corner and an AUC of 1 while a random chance model will have an AUC of 0.5 (Fawcett, 

2006) with the ROC curve tracing a diagonal.  
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Figure 16: ROC curve for ridge regression model using  𝜑𝐷𝑃, 𝜌𝐻𝑉, and sector. 

5. Performance 
The classification metrics for the ridge regression and decision tree classifiers on the test set are shown in 

table 2 below. They are based on the labels provided for the extracted migration echoes. Recall that all 

gates within a bird migration blob for example are labelled birds though in practice, such blobs will also 

contain insects.  These insects, if detected by the classifier will be wrongly considered as a misclassification. 

As a result, the metrics obtained will be an approximation. We believe that the true performance of the 

some of these classifiers is better than the metrics will lead us to believe. The final decision on which 

classifiers should be used will be a result of combined analysis on these metrics and the performance on 

qualitative validation cases. 

Different models were explored because not all predictors can be obtained in real time situations. For 

example, sector depends on a sinusoid fit on the velocity of migration echoes. So, in non-migration cases 

or even migration cases with heavy velocity aliasing, it will be difficult to obtain sector. Additionally, our 

calculation of texture depends on the current gate having targets present in all 8 neighboring gates. Texture 

cannot be obtained in an alternative scenario. 

Comparison of the two algorithms show that decision tree models with range interval performs best on 

insect cases (having TNR ≥ 0.93). This is because the algorithm learns a range threshold (~ 100 km) such 

that all gates below this range are classified as insects, with birds classified otherwise. This decision node 

makes sense because insects are in fact found at lower ranges. However, the rigid binary threshold will 
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result in many birds at low altitudes being misclassified. The effect is a worse performance on bird cases, 

with a maximum 𝑇𝑃𝑅 of 0.75.  

 ACC TPR TNR AUC 

Ridge regression     

Dual pol (ZDR, ΦDP, ρhv) 0.80 0.82 0.76 0.85 

Dual pol + texture 0.86 0.87 0.84 0.92 

Dual pol + sector 0.82 0.85 0.77 0.86 

Dual pol + range interval 0.81 0.79 0.84 0.89 

Dual pol + texture + sector 0.87 0.88 0.85 0.92 

Dual pol + sector + range interval 0.82 0.80 0.84 0.89 

Dual pol + texture + range interval 0.88 0.87 0.91 0.94 

Dual pol + texture + sector + range interval 0.88 0.87 0.91 0.94 

     

Decision trees     

Dual pol (ZDR, ΦDP, ρhv) 0.73 0.68 0.86 0.87 

Dual pol + texture 0.79 0.75 0.89 0.89 

Dual pol + sector 0.73 0.68 0.88 0.87 

Dual pol + range interval 0.69 0.60 0.93 0.88 

Dual pol + texture + sector 0.79 0.75 0.89 0.89 

Dual pol + sector + range interval 0.71 0.61 0.95 0.88 

Dual pol + texture + range interval 0.73 0.64 0.97 0.88 

Dual pol + texture + sector + range interval 0.73 0.64 0.97 0.89 
Table 2: Classifier metrics on test cases 

 

Overall ridge regression performs better than the decision trees with higher ACC, TPR and AUC. The more 

gradual approach of increasing bird probability every 10 km also allows for better detection of birds at low 

ranges while still recovering insects’ echoes at a good rate. Texture has the additional effect of smoothening 

radar products. Models with texture generally have better metrics because test data was for migration 

where the windowed gates will contain similar targets. However, we believe that cases with a 

heterogeneous mixture of scatterers could have worse performance for models with texture.  

 

Qualitative validation cases 
In this section, the different classifiers were tested on known cases of bird and insect activity. The first two 

cases are for bird roosts on an insect background. Bird roosts form a good validation case because they are 

easily recognized in radar images. They also provide diverse scattering characteristics by providing different 

viewing angles to the radar. Furthermore, there were no roosts in the training set so the ability to detect 

them will be a good test of performance.  The remaining cases are for bird and insect migration. 

5.1. KHTX Bird Roost  

The first case is a 0.5°elevation scan collected by KHTX on 11 August 2015 at 11:15 UTC (shown in fig 17 

below) containing bird roosts. It was chosen because the scatterers have already been identified by 



20 
 

Stepanian et al 2016. It was also obtained from a different WSR-88D so the performance of classifiers here 

will illustrate their capability to be used on the NEXRAD network. 

Stepanian et al 2016 identified three main causes of echoes for this case. First are two colonies of purple 

martins engaging in their morning roosts verified by ground observers from the Purple Martin Conservation 

Society. They are located north-west and south-west of the radar location. Second, insects were confirmed 

by their comparatively low mean airspeed of 1.80 m/s and concentration at lower altitudes. Air speed was 

calculated by vector subtraction of windspeeds obtained from balloon soundings from ground speeds 

obtained from radial velocity (Stepanian and Horton 2015).  Finally, weather echoes were identified using 

their near 0 dB 𝑍𝐷𝑅, near 1 𝜌𝐻𝑉 and 𝛷𝐷𝑃 near the system calibration offset of 60°. A region of overlap 

between insects and weather was also identified (enclosed in the red circle, fig 17). 

 

 

Figure 17: Reflectivity of Purple martin roosts (in light green) observed with KHTX on 11 August, 2015 at 11:15 UTC. Insects were 
location around the radar location (in pink). The red circle shows the region where insect and weather echoes overlap. 

 

In this case, it is not possible to recover sector because of the presence of different targets with diverse 

velocities. The models without sector as inputs are therefore used. Fig 18 shows the results for using the 

dual pol variables and range interval. Birds are colored blue while insects are red. The ridge regression 

results (shown on the left) correctly identifies the rings as mostly birds and insects as mostly insects. We 

believe this is the best performing model. A class was not trained for weather echoes, so they tend to be 

misclassified as birds. This should not be a problem in practice because the model is meant to be used on 

the biological class identified by the hydrometeor classification algorithm. Also notice that the gates were 

weather and insect echoes overlap are similarly classified as birds. The decision tree results (shown on the 

right) picks up a larger part of the rings as insects. Classification on the insect echoes also seem more 

accurate. However, this is because decision trees set a range threshold around 110 km. Most echoes below 
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this range are classified as insects. Decision trees generally misclassify more parts of the roost (seen in fig. 

18 - 21). Also, models with texture (fig 19 and 21) perform worse probably because of the heterogeneity 

of scatterers. 

 

 

Figure 18: Ridge regression (left) and decision tree (right) classification results using dual pol variables and range interval for the 
case in Fig. 17. Bird roosts are enclosed in the black circles. 

 

Figure 19: As in Fig. 16, but for different input variables. 
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Figure 20: As in Fig. 16, but for different input variables. 

 

 

Figure 21: As in Fig. 16, but for different input variables. 
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5.2. KTLX bird roosts 

The second case is for a 0.5° elevation scan collected by KTLX on 08 August 2017. This case was chosen to 

compare the classification results to the output already obtained from a fuzzy logic classifier (Jatau and 

Melnikov, 2019). Comparison will be to see what areas the machine learning approach improves upon and 

also using the fuzzy logic output as validation for our results. We identified four expanding rings which we 

attributed to birds against a background of insect echoes. The fuzzy logic classifier detected three of these 

roosts using membership functions of 𝑍, 𝑍𝐷𝑅, 𝛷𝐷𝑃, and 𝜌𝐻𝑉 from the surveillance scan up to a maximum 

range of 100 km. A further post processing 𝑍𝐷𝑅 threshold of 7.6 𝑑𝐵 was applied. All gates with greater 

𝑍𝐷𝑅 values are classified as insects. All gates with 𝜌𝐻𝑉 > 0.95 were also classified as weather echoes (Jatau 

and Melnikov, 2019). The final classification results are shown in figure 22 below.  

While the fuzzy logic approach worked well for separating bird and insect echoes, there are still some 

drawbacks. The use of reflectivity will aid in detecting bird roosts because there is a dense aggregation of 

birds. However, it also led to many highly populated insect gates to be misclassified as birds. Hence, the 

need for human input to correct the results in form of the additional thresholds. Also notice that the fourth 

roost is not detected because it is outside the 100 km range limit considered.  

 

 

Figure 22: Fuzzy logic classification output for KTLX bird roosts for 08 August 2017. Birds are in red, insects are in yellow. The last 
case (lower right) was examined using machine learning. 

 

The machine learning classifiers were trained using only dual pol variables which are more robust to the 

concentration of scatterers within a range gate. They were also trained to detect echoes up to ranges of 

about 200 km from the radar. The reflectivity image of the 11:47 UTC scan is shown in fig. 23. Fig. 24 shows 
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the machine learning classification output using only dual pol variables and range interval. It was difficult 

to obtain sector because of the heterogenous combination of scatterers.  The ridge regression model (left) 

detects birds as the major cause of all the roosts without using any additional post processing step. It also 

detects the fourth roost which is located about 120 km north-east of the radar. We believe these qualities 

make it better than the fuzzy logic classifier. Regardless, the similar output for both classifiers despite being 

based on different methods further affirms our belief in the composition of clear air echoes. We also believe 

that ridge regression is the best performing machine learning classifier.  

 The decision tree (fig 24, right) picks up part of the north-east roost and misclassifies most of the south-

eastern part of the roosts, which are closer to the radar.  This again is the effect of the binary splitting on 

range so that low ranges tend to be classified as insects. As a result, the boundary between birds and insects 

at the north eastern roost draws out an unrealistic chord. Figures 25 – 27 shows the results for other 

models. Generally, ridge regression produces more accurate output than decision tree. Models with texture 

also do not seem to perform as well. For example, notice that figures 25 and 27 does not clearly pick up 

the bird roosts. 

 

 

Figure 23: Reflectivity of bird roosts collected by KTLX by 11:47 UTC at 0.5°on 08 August, 2017. 
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Figure 24: Ridge regression (left) and decision tree (right) classification results using dual pol variables and range interval. The 
location of the roosts are enclosed within the black circles. 

 

Figure 25: Ridge regression (left) and decision tree (right) classification results using dual pol variables, their textures and range 
interval 
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Figure 26: Ridge regression (left) and decision tree (right) classification results using only dual pol variables 

 

                 

Figure 27: Ridge regression (left) and decision tree (right) classification results using only dual pol variables and their textures 

 

 

5.3. Bird migration case 

The third case is for bird migration collected from the 0.5° elevation scan by KTLX on 03 March 2018.  

Echoes are assumed to be birds because temperature is too cold for insect activity. Classification using the 

fuzzy logic classifier (Jatau and Melnikov, 2019) detected birds as the main source of migration for that 
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night. These results are shown in figure 28. Few insect echoes were also detected close to the radar 

location. 

The 𝛷𝐷𝑃 field for the 04:41 UTC scan is shown in figure 29. This case will be used to analyze the machine 

learning classifiers. Classification output for dual pol variables and range interval using machine learning 

are shown in fig. 30. Ridge regression (left) detects 85.26% of gates to be bird dominated with few insects 

also found close to the radar. This is consistent with the observation of bird migration. Decision trees on 

the other hand detects 62% of gates to be insects due to its range thresholds. Introduction of texture (fig 

31) slightly reduces the proportion of birds detected for both algorithms probably due to most gates with 

8 neighbors being located close to the radar. Generally, ridge regression performs better than decision 

trees for this case.  

 

 

Figure 28: Fuzzy logic classification result for scans between 04:51 UTC and 09:13 UTC. Birds are in red, insects are in yellow. 
Notice that many insects are detected close to the radar (shown in the black circle). 
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Figure 29: A 0.5°  scan for differential phase for measured by KTLX at 04:41 UTC  on 03 March, 2018. Echoes were assumed to be 
birds because temperature is too cold for insect activity. 

 

Figure 30: Ridge regression (left) and decision tree (right) classification results using dual pol variables and range interval 



29 
 

 

Figure 31: Ridge regression (left) and decision tree (right) classification results using only dual pol variables. 

 

 

 

 

Figure 32: Ridge regression (left) and decision tree (right) classification results using dual pol variables and their textures. 
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Figure 33: Ridge regression (left) and decision tree (right) classification results using dual pol variables, their textures and range 
interval 

 

 

5.4. Insect test case 

This case is for insect echoes collected by KTLX at 17:08 UTC on 11 July 2019 at 0.5° elevation. Here 

migration was toward a defined direction, so sector was obtained. Figure 34 and 35 show classification 

output for ridge regression and decision trees respectively. Models with range interval detect many bird 

echoes at the fringe of the migration blob. For ridge regression, the addition of texture worsens the output 

so that the boundary between birds and insects trace out an artificial circle. This artifact is even worse for 

similar predictors in the decision tree models (fig. 35) where there is a sharper transition between bird and 

insect echoes for models with range interval. Ridge regression without texture seem to perform best for 

these range interval models. For the remaining models however, ridge regression performs better for 

inputs without textures while decision trees perform better when input textures are added. 
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Figure 34: Results of ridge regression on insect test case 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

 

 

 

Figure 35: Result of decision trees on insect test case 

 

 

5.5. Bird test case 

The final case is bird echoes collected by KTLX at 04:13 UTC on 2 May 2015 at 0.5° elevation. Sector was 

also obtained for this case. Fig 36 shows the classification result for the ridge regression model. It 

outperforms the decision tree model (shown in fig 37) classifying 88.76 – 93.96% of gates as birds compared 

to 74.83 – 83.69% respectively. Addition of textures in both cases increase the proportion of birds detected 

for all models except the ridge regression model using dual pol variables and texture. Use of sector in the 

ridge models also increase the proportion of birds detected. 
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Figure 36: Result of ridge regression on bird test case 
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Figure 37: Result of decision trees on bird test case 

 

6. Conclusions 
A new method for processing echoes from biological targets has been proposed. It works by leveraging 

highly directional migration of atmospheric biota to recover the aspect of targets. Aspect averaging on data 

from 30 ppi’s reveal important features of bird and insect radar echoes.  Ridge regression and decision 

trees supervised machine learning classifiers were trained and tested using different combination of dual 

pol variables, sector and range interval. This variety ensures that classification can be done even when 

some variables cannot be obtained. 

Previous work on bird detection for NEXRAD was based on fuzzy logic (Jatau and Melnikov, 2019).  This 

algorithm used membership functions of 𝑍, 𝑍𝐷𝑅, 𝛷𝐷𝑃 and 𝜌𝐻𝑉 from the surveillance scan and post 

processing thresholds on 𝑍𝐷𝑅 and 𝛷𝐷𝑃 . The fuzzy logic classifier detected the bird roosts obtained in a 
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0.5° elevation scan collected by KTLX on 08 August 2017 at 11:47 UTC. The use of reflectivity in particular 

helps detect birds in cases of dense aggregation but is also easily misled by dense population of insects. As 

a result, it depends on the thresholds used to correct misclassification. The ridge regression classifier is 

more robust being able to detect these roosts without depending on their concentration (reflectivity) or 

any additional post processing step. 

 Another case analyzed was for bird migration collected from the 0.5° elevation scan by KTLX at 04:41 UTC 

on 03 March 2018. The fuzzy logic classifier detected birds as the main cause of migration on this night with 

a few insects close to the radar. The ridge regression classifier using dual pol variables and range interval 

also detects mostly birds (85.3% of range gates) with insects contained at a low height.  

Further analysis was carried out to verify if the classifiers can be used for other WSR-88D radars. One case 

considered was 0.5°elevation scan collected by KHTX on 11 August 2015 at 11:15 UTC. Analysis by 

Stepanian et al 2016 had verified the composition of these scan. They detected two bird roosts, insects 

close to the radar and some weather echoes. The ridge regression classifier based on dual pol variables and 

range interval correctly detects the bird and insect classes. This result shows the potential for applying this 

algorithm to other WSR-88D radars. Other cases for bird and insect migration were also identified as being 

dominated by the expected scatterers. 

Comparisons was also done between the ridge regression and decision tree methods using classifier 

metrics. Results showed that the ridge regression algorithm has better performance. This was further 

highlighted its ability to detect confirmed bird roosts though roosts were not part of the training set. We 

conclude that the best classifier for separating bird and insect echoes is ridge regression using dual pol 

variables, range interval and sector for highly directional migration. In the absence of sector, the ridge 

regression based on dual pol variables and range interval performs best. The latter version will, probably, 

be used most often. They also have a simple mathematical form that can easily be translated into any 

programming language. To the best of our knowledge, this is the first machine algorithm that separates 

bird and insect radar echoes using information from a single range gate without any post processing.  

There are many aspects that can be further improved upon. First, collecting more validated data for birds 

and insects can allow for training at a finer resolution than 10 km in range and 20° in azimuth. There also 

are more advanced machine learning algorithms that have deeper implementations than the two 

considered. For instance, the random forest grows a large amount of uncorrelated decision trees and 

assigns its classification output as the majority vote of this collection. Another possible approach is the 

neural networks, which use a deep network built on different weighted averages of input variables. Both 

latter methods should in principle improve classification results. It should be noted however that they are 

also black box models. More classes of radar echoes like weather, bats and Bragg scatter could also be 

included in the algorithm for more robust classification. 
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Appendix 
 

All files used in this project can be found in 
C:\Users\Precious\Desktop\Research\Summer 2019 
 
The data set for birds  
C:\Users\Precious\Desktop\Research\Summer 2019\Radar Data\Birds\45 cases. 
 
Data set for insects  
C:\Users\Precious\Desktop\Research\Summer 2019\Radar Data\Insects\45 cases 
 

Matlab scripts for processing features 

C:\Users\Precious\Desktop\Research\Summer 2019\Matlab scripts 

 

Averaged training data, test data, trained classifiers, training scripts, testing scripts in both R and matlab 

C:\Users\Precious\Desktop\Research\Summer 2019\Models 

 

Classification results 

C:\Users\Precious\Desktop\Research\Summer 2019\Models\ViewClassi
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