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SIGNAL DESIGN AND PROCESSING TECHNIQUES
FOR WSR-88D AMBIGUITY RESOLUTION

PART -3

1. Introduction.

The Operational Support Facility (OSF) of the National Weather Service (NWS) has
funded the National Severe Storms Laboratory (NSSL), the National Center for Atmospheric
Research (NCAR), and the Forecast Systems Laboratory (FSL) to address the mitigation of
range and velocity ambiguities in the WSR-88D. This is the third report in the series that deals
with velocity and range ambiguity resolution in the WSR-88D. The first two reports mainly
dealt with uniform PRT transmission and phase coding techniques to resolve the range
ambiguity. Although the phase coding techniques do not directly address the velocity ambiguity
problem, its capability of separating overlaid echoes allows the use of shorter PRTs which, in
turn, diminishes the occurrence of ambiguous velocities. In this third part, we consider the
staggered PRT technique and its variants. Because the pulse repetition time is varied in all thesé
schemes, we classify these methods as time coding methods. A comparison of the SZ phase
coding technique and the time coding techniques is also carried out to arrive at a best strategy
to be adopted for ambiguity resolution in the WSR-88D.

There are several variants of the time coding schemes reported in the literature. Notable
among them are (i) staggered PRT technique (Zmic and Mahapatra, 1985), (ii) spaced pair
with polarization coding (Doviak and Sirmans, 1973), (iii) interlaced sampling (Sirmans et. al.
1976; Doviak and Zrnic, 1993), (iv) multi-PRI scheme suggested by Lincoln Lab, MIT,
(Chornoboy and Weber, 1994), (v) alternating codes suggested by Finnish scientists (Pirttila et.
al., 1999). A detailed discussion on some of the methods is available in the book by Doviak

and Zrnic (1984). Conceptually, some of these methods can provide a large unambiguous



velocity and range. However, their practical utility has been limited by three major problems:
(a) the difficulty in filtering the ground clutter, (b) resolving overlaid echoes, and (c) obtaining
spectral moment estimates with a reasonably low variance. The clutter filtering introduces
unacceptably large bias error in velocity estimates in certain Doppler bands, and the overlaid
echoes increase the variance of the spectral estimates.

Most promising among the schemes listed in the previous paragraph are the staggered
PRT schemes, and they are possible candidates at least for the higher elevation scans in the
WSR-88D. Therefore, in addition to examining all the available schemes, extra effort was put
in solving the outstanding problems of the staggered PRT schemes; viz., the clutter filtering and
improving the variance of the estimates. We shall focus on the staggered PRT scheme in which
2 PRTs are alternately transmitted.

At least half a dozen different ways of processing the staggered PRT samples were
examined using simulation procedures, before a successful solution was arrived at. All these
methods are not included in this report, but only the successful method has been given. Here
we briefly recount the story of investigations that led to the successful solution to the clutter
filtering problem. The decreased variance of the spectral moment estimates was an additional
gain that results from the new procedure.

To begin with, we started from an examination of the available results in Zrnic and
Mabhapatra (1985) and Banjanin and Zrnic (1991). Banjanin and Zrnic (1991) have used a pair
of filters on uniform sample sequences derived from the staggered PRT sequence. Torres (1998)
has investigated the use of an orthogonal polynomial based regression filter on the non-uniform
staggered PRT samples directly. These efforts have indicated that the rejection bands are not
easily removed. This is because the problem is in the non-uniform sampling itself and not in
the clutter filtering method. The non-uniform sampling produces aliasing of some of the signal
power into the clutter spectral regions, and hence, these portions are indistinguishable from the
clutter.

The rejection bands in the clutter filter can be traced to the periodicity in the staggered
PRT sampling scheme. Therefore, our first approach was to remove the periodicity in the

sampling wave form with the hope that this will remove the rejection bands in the clutter filter



or smear the rejection bands over the entire spectrum while greatly reducing the attenuation.
There are two ways this could be done: (i) vary the PRTs randomly about some mean value,
or (ii) switch between the two PRTs, T, and T,, randomly. In the first case, computation of
autocorrelation is complicated; hence, the second method was studied using simulation. It was
observed that with randomly switched PRTs, the variance of the velocity estimate is higher
(sd(v) was 2 to 3 times larger), and the clutter filter rejection bands do spread out and have a
much lower attenuation. The rejection level could be reduced to almost 1dB and spread
throughout the spectrum, but at the expense of an increased error in the velocity estimate.

In order to improve the error performance, next we considered spaced pair transmission.
The pulse spacing T, is made small so that the velocity can be computed from R(T,) directly
rather than using the difference, as in the staggered PRT scheme. Although it is well known
that signal overlay cannot be avoided in this case unless polarization switching is used, we
encounter other problems such as isolation between the two channels, differential propagation
phase shift, etc., which need to be considered in evolving an algorithm for spectral moment
estimation. Therefore, the spaced pair scheme was considered without the polarization switching,
and with the hope that some kind of phase coding can be worked out to separate the overlaid
signals once an effective way of clutter filtering is designed. The advantage seen here is the
lower sd(v) available with a spaced pair.

A successful clutter filtering procedure was developed for the spaced pairs scheme,
which involved polynomial interpolation to reconstruct an equivalent uniform PRT sequence
from the spaced pair sequence of complex samples. Since the clutter signal is of low frequency,
the reconstruction is very good; therefore, a spectral domain filter can reduce the bias error in
the velocity estimate to a reasonably low value while still maintaining a low sd(v). However,
we could not make much headway in separating the overlaid signal with phase coding, without
which the spaced pairs scheme is not useful in practice.

The polynomial interpolation was then tried on the staggered PRT sample sequence, but
with much less success. The clutter filtering was effective, but the rejection bands in the
frequency response of the clutter filter, which produced large bias errors in the velocity

estimate, were still present. In all the simulation studies of the clutter filtering, it was observed



that the bias error is systematically negative for positive velocities and positive for negative
velocities. It was logical to look for a clutter filtering scheme which produced an exactly
opposite bias so that it can be canceled. The result of this search produced the new algorithm.

A major turning point in the search for a clutter filtering method occurred when we
started looking at the staggered PRT signal in the spectral domain. This gave us an insight into
the spectral properties of the staggered PRT signal which subsequently lead to the development
of an effective clutter filtering scheme and also resulted in an improvement in the spectral
moment estimates. Thus, two problems were solved at the same time. The new algorithm
developed for the staggered PRT scheme overcomes the problem of clutter filtering completely.
The algorithm also estimates the spectral moments with much lower variance than that reported
earlier. With this new algorithm, it becomes practical to use the staggered PRT scheme to
achieve a larger unambiguous velocity and range with acceptable error levels in the Doppler
spectral moment estimates.

Although the study was started with an intention of an in depth examination of other
available time coding schemes (e.g., the block staggered, spaced pair with polarization
switching, etc.) to evaluate their suitability to the WSR-88D ambiguity problem, the discovery
of the new clutter filtering and spectral processing method, whose performance surpassed all
our expectations, has prompted a change in the emphasis so that a major part of the report is
devoted to the delineation of the new algorithm for the staggered PRT scheme and its

performance.

2. The staggered PRT technique.

Here, we describe the staggered PRT scheme briefly before we embark on a discussion
of the new method of processing. In the staggered PRT technique (Zrmic and Mahapatra, 1985),
two different pulse spacings, 7, and T,, are used alternately (Fig. 2.1a). Then, alternate pairs
of return samples are used to compute autocorrelation estimates, R; at lag T, and R, at lag T,.

The velocity is estimated from the phase difference between the two using the formula,

v =AargRR,* | [A(T,T)] . 2.1)



Thus, the difference in PRT, (7,-T)), determines the unambiguous velocity, v,, for the staggered

PRT technique and is given by
v, =% A / [4(T2'T1)] 5 T] < T2 . (22)

Zmic and Mahapatra (1985) suggest a testing procedure to estimate mean velocity and signal
power for echoes received within the time delay (7,+7),). In theory, this seems to be possible
because the overlaid signals in any two consecutive samples are from two different ranges and,
therefore, are uncorrelated. Thus, the expected value of the overlaid signal contribution to the

autocorrelation is zero, and the effective unambiguous range becomes
r, = c(T,+T,)/2. (2.3)

Eq. 2.1 and 2.3 suggest that the staggered PRT is equivalent to a uniform PRT = (T,+T,) for
the unambiguous range and a uniform PRT = (7,-T,) for the unambiguous velocity, and each
can be selected independently. However, the practical utility of this scheme is limited due to
the quality of estimates. The overlaid signal increases the variance of the estimates because it
acts as noise. Thus, the ratio of the overlaid signal powers is the equivalent signal-to-noise ratio
(SNR), and for a reasonable accuracy of the estimates, the unwanted signal has to be at least
3 dB below the desired signal power.

Let r,;, = cT,/2 and r, = cT,/2 so that r,=r,+r, . If r,; is chosen sufficiently large
so that no echoes are received from ranges greater than r,,;, then the problem of overlaid echoes
could be eliminated. For weather radars, r,, would have to be 460 km (for 0.5 deg. elevation
scan), but this would degrade the variance of the estimates considerably. Thus, the practical
limit for r,, is smaller than 460 km unless some means of separating the overlaid signals is
employed. It may be possible to extend the unambiguous range to r,, with some additional
processing to resolve the resulting single signal overlay (i.e., alternate samples only have
overlaid echoes) in some of the range gates. This possibility will be explored in the future, but

in this report, we consider data which have no overlay.



It is shown by Zrnic and Mahapatra (1985) that the standard error in the velocity
estimate increases as the ratio x = T,/T, approaches unity, and a good choice is x =2/3. Thus,
the unambiguous range and unambiguous velocity are indirectly tied in practice via the estimate
accuracy. However, compared to the uniform PRT, it is possible to achieve a much larger r,
and v, because the limiting equation is v, r,;= [k /(1-k )}cA /8 for the staggered PRT scheme.

A major problem with staggered PRT scheme has been the ground clutter filtering. The
non-uniform sampling aliases power from certain Doppler frequencies into the clutter frequency
band around zero Doppler. Then, filtering the clutter also removes the aliased signal power from
a band of spectral coefficients and introduces phase perturbations at these bands which bias the
velocity estimate. The widths of these bands depend on the spectrum width of the signal as well
as the clutter filter width. Banjanin and Zrnic (1991) have investigated several methods of
ground clutter filtering to mitigate the phase perturbations. A scheme they proposed uses two
filters sequentially such that the overall filter coefficients are time varying. In the Doppler bands
where the filter phase response is not linear, special decision logic corrects velocity estimates.
To overcome these obstacles, Chornoboy (1993) proposed a processing technique applied to a
block staggered sampling and a least squares design of a filter matrix to achieve a desired
frequency response. The added complexity of the pulse pattern enables an improved balance
between the magnitude and the phase response so that Chornoboy(1993) achieved satisfactory
results.

In the following sections, we present a different and novel approach to the clutter

filtering and spectral moment estimation for the staggered PRT sequence.

3. A new approach to processing the staggered PRT samples:

In the proposed new approach, we seek to reconstruct the spectrum of the weather signal
from the staggered time series samples, i.e., reconstruct the spectrum of the time series with
a uniform sampling period of T, starting from the staggered PRT samples sequence, and then
estimate the spectral moments from this reconstructed spectrum. This procedure allows
estimation of the spectral moments with a much lower variance than the earlier methods.

Further, a novel method of clutter filtering in the spectral domain has been proposed which can



achieve a clutter suppression in excess of 40 dB and near complete elimination of all the
spurious rejection bands in the +v, interval encountered by other methods of clutter filtering.
This is the most important feature of the clutter suppression scheme which makes it practical
to use the staggered PRT scheme in weather radars. The processing procedure has two major
parts, 1) the reconstruction of an equivalent uniform PRT sequence for spectral moment
estimation, and 2) the clutter filtering and residual bias removal. These two are interleaved
because the clutter has to be filtered before the spectral moments are estimated. We will explain
the reconstruction of the equivalent uniform PRT sequence first however, and then proceed to
explain the clutter filtering procedure. These two procedures are incorporated in the algorithm

presented later in this report.

3.1. Reconstruction of the signal spectrum.

Our technique requires a small restriction on the selection of the two PRTs used in the
staggered PRT transmission. If 7, and T, are the PRTs, we select them such that they are
integer multiples of some basic PRT T, so that T,=n,T,, and T,=n,T,, where n, and n, are
integers. Although n; and n, can be any integers in general, a good choice is n,=n,+1 from the
point of the performance of the staggered PRT scheme. Thus, (7,-T,)=(n,-n,)T, determines the
unambiguous velocity, v,, and the unambiguous range, r,;=cT,/2. This, of course, assumes that
T, is chosen sufficiently large so that no second trip overlay occurs.

Let g, i=1,2,3,...M, (M even) be the samples of the weather signal sampled at time
intervals T, and T, alternately. We introduce zeros in g; to form a sample sequence v, of length
N=(n,+n,)M/2 with a uniform sampling period of T,, in which the missing samples are
represented by zeros (see Fig. 2.1b). We call this the derived time series. Let ¢; be a code
sequence of length N obtained by replacing all the g, samples in v, by unity. For example, c;
=[1010010100... etc. ] for x = T/T, = n,/n, =2/3. We can write the sample sequence v; as a
product of the sequence c; and e;, where e; is the signal time series sampled at T, intervals.
e ; i=1,23,... N. (3.1)

v,

;= ¢

t



Having converted the staggered PRT sequence into a uniformly sampled sequence (with missing
samples represented by zeros), we can examine the spectrum of the uniform sequence, e¢;. Thus,
the spectrum of v; can be represented as a convolution of the spectrum of the code c¢; and the

spectrum of the complete but unknown signal e,.

DFT( v; ) ={ DFT( ¢;) x DFT( e, ) } (3.2)

where % represents circular convolution, and DFT( ) represents the discrete Fourier transform
of the sequence in brackets. We use the capital letters to denote the spectral coefficients of the
corresponding time domain quantities denoted by lowercase letters and capital bold face letters
to denote matrices. Subscript index ‘i’ is used for the time domain quantities, and subscript
index ‘k’ is used for the spectral coefficients. For example, E, = DFT(e;), are the spectral
coefficients, and E is the column matrix of coefficients E, . Eq. (3.2) can be written in matrix

form as

V=CE. (3.3)

V and E are (Nx1) column matrices containing the spectral coefficients, V, and E,, of the
corresponding time sequences, v; and ¢;, and C is the convolution matrix (size: NXxN) whose
column vectors are cyclically shifted versions of C,. To preserve the power in the spectrum,
the convolution matrix, C, is normalized such that each column vector is a unit vector (i.e., the
norm of each column vector is unity). Note that by normalizing the column vectors, the row
vectors are also normalized automatically. Our objective here is to reconstruct the spectrum E,
from the samples g, It is observed that the convolution matrix is singular (rank of C equals
the number of staggered PRT samples, M), and hence, it cannot be inverted to get E,. If we
discard the phases of the convolution matrix elements, the matrix becomes non-singular. It may
be noted that the magnitude of the spectral coefficients abs{E,} is sufficient to compute the
autocorrelation R(T,), and hence, the velocity and spectrum width. Therefore, we attempt to

retrieve abs(E) using abs(C), which can be inverted.



In general, abs{CE} =# abs{C}abs{E} because of the complex addition of the
coefficients in the process of matrix multiplication. However, because the convolution matrix,
C, has only (n,+n,) non-zero coefficients separated by 'N/(n,+n2) coefficients for x = n,/n, in
each row (or column), we can show that the complex addition does not take place in the
process of convolution if the signal spectrum is narrow so that its spread is less than N/(n,+n,)
coefficients, and hence, the equality is valid. Then, the convolved matrix V has (n,+n,) spectral
replicas of the original spectrum, E (in the complex domain, each replica has a specific
complex multiplier), and these replicas do not overlap. Thus, we define a "magnitude

deconvolution" as
abs{E} = [ abs{C}]" abs{V}, 3.4

where [ abs{C}]"' is the magnitude deconvolution matrix. It is important to note that this
equation provides the exact magnitude spectrum only under the condition that the non-zero
spectral coefficients of the signal e; spread at most N/(n,+n,) coefficients or that the total spread

must be less than
2v /(n+n,) (3.5

in the velocity domain. This condition means the spectrum cannot alias on itself and is obtained
from the average sampling rate 2/(T,+T,) for the staggered sequence. Although wider spectra
are not reproduced with high fidelity using this procedure (because of the overlap of spectral
coefficients in the spectrum V,), the non-ideal reconstruction of wider spectra does not generally
bias the velocity estimate but affects its variance. If 7, and T, are judiciously chosen, the
criterion (Eq. 3.5) can be nearly satisfied for most weather signals. For example, at a 10 cm
wavelength and v, = £50 m s”', Eq. 3.5 can be nearly satisfied for width, w<6 m s,
Nonetheless, it is important to note that the criteria is not satisfied exactly even for w=4 m st

Most of the results presented in this report are based on simulation studies. All the

computations were carried out using simulated staggered PRT time series. The staggered PRT



sequence is generated from a simulated uniform sample sequence by dropping the missing
samples. The time series simulation procedure is explained in Part-1 of this report. There is
an inherent rectangular window associated with a finite sample sequence in practice. This effect
is simulated by generating a long time series and then truncating it. The effect of the
rectangular window is to spread the power in the spectral domain, resulting in overestimation
of the spectrum width. To obtain the true spectrum width, it is necessary to multiply the time
sequence by a suitable tapered window function before processing. For Gaussian spectra the von
Hann window function works very well.

Fig. 3.1 illustrates the spectrum reconstruction using a simulated weather signal time
series. A 10 cm wavelength is assumed, and the magnitude spectrum of the signal time series
(signal sampled at a uniform sampling period of 7,=0.5 ms) is shown in Fig. 3.1a. The
normalized magnitude spectrum of the code for staggered PRT sampling with x =2/3 (code is
1010010100...etc.) is shown in Fig. 3.1b. If the staggered PRT sampling were used (7,=1 ms,
T,=1.5 ms), the spectrum of the derived uniform time series would be as given in Fig. 3.1c,
which is the convolution of the first two spectra. The last spectrum (Fig. 3.1d) is the
reconstructed spectrum from the staggered PRT samples using the magnitude domain
deconvolution procedure. Note that for w=4 m s™', the spectrum does not exactly satisfy the
criteria (3.5); hence, a few residual spectral coefficients remain throughout the spectrum. For
larger width signals, the residuals can be significant because of the spectrum overlap, but this
is not a cause for concern because the residuals maintain a symmetry about the mean Doppler,
and hence, do not bias the mean velocity estimates. The residuals do bias the width estimates,
and the spectrum needs to be modified a little by dropping some of the coefficients before the
width is estimated. Specifically, for k=2/3, dropping all the spectral coefficients outside a 2/5th
of the spectral coefficients centered on the mean Doppler produces the best width estimates; a
small bias remains at widths larger than 6 m s™. The spectrum width is computed using Eq.
6.37 of Doviak and Zrnic (1993). It is important to note that the velocity is estimated with all
the coefficients before truncating the spectrum, and this estimated velocity is used for
determining the extent of spectrum to be retained for width computation. The velocity computed

from the truncated spectrum will have larger errors (variance as well as bias), and hence, only
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the width is computed after truncating the spectrum.

Once the magnitude spectrum is obtained, the spectral domain equivalent of the pulse
pair algorithm can be used to estimate the mean power, p, mean velocity, v, and spectrum
width, w. The autocorrelation, R(T,), can be expressed as

N

R(T,) = 1IN Y|EJ &2V, (3.6)

k=1
and the velocity is obtained from the phase of R(T,). The conventional pulse pair algorithm can
be used for mean power and width estimation. Since the time series is obtained by inserting
zeros in place of missing samples, a correction factor of (n,+n,)/2 has to be applied to get the
correct mean power estimate. But it is best to obtain signal power from the original staggered
PRT samples directly if the clutter filtering procedure (explained later in this report) is not
applied. If the ground clutter is present in the time series, the signal power estimation must be
done after the clutter filtering and bias removal procedures.

An important advantage of this procedure is that the estimate variances are much lower
compared to the method using R(T,) and R(T,). Because the procedure is non-linear, it was
deemed that the derivations of the theoretical expressions for the variance of the estimates
would be too laborious, and the results would be only approximately valid. Therefore, we chose
simulations to obtain the standard errors of the velocity estimate, sd(v), and other statistical
parameters. Results from one typical simulation run is presented in Fig. 3.2, which shows
estimated velocity versus the input velocity. Each point on the figure represents one realization,
and the continuous curve is the mean value. Figs. 3.3 and 3.4 show the bias in the estimated
width using the simulation procedure without and with the von Hann window. The figures also
show that the standard error in the width estimates is small. Each point is one realization, and
the continuous curve shows the bias in the width. There is an overestimation of the width for
narrower signals without the von Hann window. With the von Hann window weights applied,
this bias is removed, and the estimates are better. However, for velocity estimation, it is not
necessary to apply the window; in fact, the velocity estimates have lower variance without the

window than with the window applied because some information is lost. If one estimated the
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spectrum width without using the von Hann window, but accounted for the bias by some other
means, the variance of the width estimate also would be lower. If clutter is present and is to
be filtered, then application of the von Hann window weights becomes necessary.

The standard errors of the spectral moments obtained from the conventional method and
the present method (using the magnitude deconvolution) are compared in the next two figures.
In Fig. 3.5, the variation of sd(v) as a function of the spectrum width is plotted for (a) the pulse
pair velocity estimator that uses the complete time series with a sampling period 7, and length
N, (b) the proposed method using the reconstructed spectrum from staggered PRT samples, and
(c) the pulse pair velocity estimator that uses the phase of [R(T,)/R(T,)]. For each spectrum
width, a large number of simulations were carried out to obtain the value of the sd(v). There
is a significant improvement in the sd(v) using the present method, and it compares very well
with that of the pulse pair estimator on a complete time series for widths up to 5 m s™. The
spectrum reconstruction is good for widths up to 6 m s

Because the spectrum is reconstructed, it is possible to devise a width estimator which
has smaller standard error than what ensues from log[|R(T,)/R(T,)]. For example, the estimator
based on log[|R(0)/R(T,)] (Eq. 6.37 in Doviak and Zrnic, 1993) yields at least a three fold
decrease in the standard error of the estimate - almost the same as the pulse pair estimator
using the complete time series. Since the spectrum is reconstructed, reflectivity and width also
have similar standard error behavior with respect to the width of the signal. Fig. 3.6 shows the
sd(w) computed from extensive simulations. The standard error in the spectrum width estimate

also closely follows that of the equivalent uniform PRT.

3.2. Ground clutter filtering.

The clutter filtering is carried out in the spectral domain before the signal spectrum is
reconstructed using the magnitude deconvolution procedure described in Section 3(a). The
spectrum of the ground clutter returns is assumed to be of narrow width and centered on the
zero Doppler. Because the spectrum of the derived time series, v;, is the convolution of the code
spectrum and the signal spectrum, it will have weighted replicas of the clutter spectrum centered

on each of the non-zero spectral lines of the code spectrum. The weights are the spectral
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coefficients of the code spectrum. An example of the convolved spectrum is shown in Fig. 3.7¢
for x = T\/T, =2/3. The method to be described is not confined to x=2/3, but this example is
used only to illustrate the clutter filtering procedure. Because the code spectrum in this case has
five non-zero spectral coefficients (see Fig. 3.1b), the power from each of the clutter spectral
coefficients is spread over five spectral coefficients separated by N/5 coefficients in the
convolved spectrum. Specifically, power in the k& spectral coefficient is distributed over spectral
coefficients at k, k+M/2, k+M, k+3M/2, and k+2M, cyclically (i.e., if any of these indices exceed
N, subtract N from the number). This type of modulation also affects the weather signal so that
its spectrum, too, would be replicated into five bands. The modulation could cause weather and
clutter that did not overlap in the unmodulated spectrum to overlap after modulation. In general,
the power in each spectral coefficient is spread into only (n,+n,) coefficients separated by
Ni(n,+n,) coefficients. Therefore, we can take (n,+n,) coefficients at a time and try to restore
the spectrum. This is done by rearranging the matrices as described below.

Consider an example with parameters x=2/3, M=64 for which N=160. Because the
convolution matrix has only five non-zero coefficients in each column (or row), we can recast
the matrix Eq. 3.3 in the form

V.=C.E, 3.7)

r

where subscript ‘t’ is used to represent rearranged matrices, which are given by

<
=
=
=
(S

Vs Vi VaseVigy

V.= Vs Ve Ver=VYos |, (3.8)
Vor Vog  Voo-Vizg
Vizo Vise ViarVieo,
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and

Cyy G Cpy Gy G
Cs Gz (€ Cpy G
Cy Ci G ¢ G
_C129 Cyy Ces (3 C
E, E, Ey.E,
Ey Ey EyseEg,
= |Bes Egs EgEyg
Ey; Eyy EggnByyg
_E129 Ey3 E131""E160j

(3.9)

(3.10)

The convolution matrix, C, is modified by deleting first all the rows containing zero in the first

column and then deleting all columns containing zero in the first row, which reduces it to a 5x5

matrix, C,, and the other two matrices are rearranged as 5x32 matrices, row wise as in Eq. 3.8

and Eq. 3.10. The Matrix C, is singular (its rank is 3), and hence, cannot be inverted; its

columns are normalized such that the sum of the magnitudes squared of the elements in each

column is unity. (This also normalizes the row vectors.) In the complete time series spectrum,

E,, the clutter is confined to the first and last few coefficients (k=1,2,..g and N-g-2, ... N). But

the matrix V. would have clutter power spread over the first few and the last few columns.
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To filter the clutter from the first few columns of V., first estimate the complex
amplitude of the clutter vector in the column (which also might contain a signal component).
This is accomplished by taking the inner product of the column with the complex conjugate of
the first column vector of the matrix C. The clutter column vector is constructed by
multiplying the first column vector of C, by this complex amplitude coefficient, and is then
subtracted from the corresponding column vector of matrix V.. This process is carried out for
the first few columns containing clutter. Similarly, the clutter from the last few columns is
removed using the last column vector of C. in place of the first. This complete operation can

be written in matrix notation as
Vi=V,-Cy V. Iy -Cp V. I, (3.11)

where C;; and C,, are the clutter filter matrices, and I;; and I, are matrices which select the

columns to be filtered. These are given by

Cn = C, C¥, (3.122)

and C., = C,C/*, (3.12b)

where C, is the first column vector of C,, C; is the last column vector (5" column for x=2/3)
of C,, the symbol * indicates complex conjugate, and the superscript "t" stands for transpose.
The matrix I; is a M/2xM/2 diagonal matrix with diagonal elements unity for the first ¢
elements and the rest zeros. Similarly, the matrix I, is a M/2xM/2 diagonal matrix with last

(g-1) elements unity and the rest zeros. For example, the diagonals of the matrices for g=4 are

diag {Iy} = [11110000 .... 000],
and diag {Ip} = [0000 ... 000111]. (3.13)

These matrices determine the clutter filter width. Note that (2¢g-1) = n, is the number of
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columns containing the clutter we wish to filter, or it is the clutter filter width in terms of the
number of spectral coefficients. This number should be determined from the expected width of
the clutter signal. The matrix operation indicated in Eq. 3.11 produces the filtered signal matrix
V..

Now, to reconstruct the magnitude spectrum of the weather signal, apply the magnitude
deconvolution procedure to V,, as explained earlier (see Eq. 3.4). This can be done in the

rearranged matrix form by inverting Eq. 3.7, and is given by

E, = [abs{C.}]" abs{V,}. (3.14)

This is faster than using Eq. 3.4 because it involves inverting a 5x5 matrix in place of the
NxN matrix. The magnitude spectrum abs{E,} is rearranged in a column matrix E. The

autocorrelation R(7,) is calculated from the magnitude coefficients of E; using Eq. 3.6, and the

velocity estimate from the phase of R(T)).

In Fig. 3.7 is an illustration of the clutter filtering procedure using a simulated signal
and for the clutter-to-signal power ratio of 40dB. The spectrum of the complete signal (Fig.
3.7a) sampled with a period of (7)-T,) is what we want to reconstruct from the staggered PRT
samples. The clutter spectrum alone is in Fig. 3.7b. The spectrum of the signal plus clutter
computed from the staggered PRT samples (or the derived uniform sequence) is in Fig. 3.7c.
Note that the clutter is spread over five bins across the spectrum. The signal is not visible
because it is 40 dB below the clutter. The spectrum after the clutter is filtered is given in Fig.
3.7d. The signal spectrum reconstructed by the magnitude deconvolution (Fig. 3.7e) has some
residuals at the locations where clutter was present. Note that the residual coefficients at the
places where clutter was removed all have the same amplitude; viz., coefficients # 1, 33, 65,
97, and 129 have the same amplitude; coefficients # 2, 34, 66, 98, and 130 have the same
amplitude, etc. This fact and its relation to the actual signal amplitude is used later to remove
the velocity bias. The spectrum after the residuals are deleted (Fig. 3.7f) is nearly the same as

the original spectrum except for a few coefficients at the tail ends, and the coefficients from

which clutter is filtered will also have an amplitude error which causes the bias.
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Because the columns of C, are not orthogonal, clutter filtering also filters some part
of the signal power from the corresponding spectral coefficients. The signal component removed
is the projection of the signal vector onto the clutter vector, and this results in an alteration of
the relative amplitudes of the signal vector elements. Therefore, the vector does not deconvolve
back into a single signal coefficient in the magnitude deconvolution process but produces
residual spectral coefficients at the locations where clutter was present. However, the amplitudes
of these residuals are comparable or less than the signal coefficients. The residuals do produce
a small bias in the mean velocity estimate which is not appreciable for small clutter filter
widths. The residuals are zero if the signal spectrum and the clutter spectrum do not overlap
in the spectrum of staggered PRT sequence; if there is an overlap, the residuals can be
significant compared to the signal coefficients but are nearly symmetrically placed about the
mean velocity, hence produce a small bias. The maximum bias produced by the small
asymmetry is about +2 m s for a clutter filter width of 44 m s, x=2/3, and v,= 50 m 5",
For larger filter width, the bias increases proportionately, and systematically cycles between
positive and negative maximum values as a function of the mean velocity. There are no
significant dropouts in the velocity recovery. This very important feature of this clutter filtering
procedure implies that the clutter filter response has no spurious rejection bands. The resulting
velocity estimates might be good for some applications, but even this small bias can be
removed by some additional processing as explained later in this section. The spectrum width
estimate is heavily biased because of the residuals. A major part of the spectrum width bias is
removed by deleting all the spectral coefficients outside {2N/(n;+n,)} coefficients centered on
the mean velocity, and then computing the spectrum width. It is the part of the bias produced
by the residual spectral coefficients due to the spectrum overlap in the staggered PRT signal
spectrum, as explained in the previous section (Section 3.a). There is also an additional bias
produced because of the clutter filtering. This bias is comparable to that in the velocity and is
a function of the mean velocity. This part of the width bias is eliminated in the process of
removing the bias error in the velocity. The clutter filtering procedure also produces a bias in
the signal power estimate, which is a function of the mean velocity as in the case of spectrum

width bias. This bias also is removed in the bias removal procedure. Thus, the bias removal
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procedure removes the bias in all three spectral moment estimates.

This method was tested (without the bias correction part) using simulated staggered PRT
weather signals with an unambiguous velocity interval of £50 m s and k=2/3. Fig. 3.8 shows
the mean estimated velocity as a function of the input velocity for one specific set of
parameters indicated in the figure. All the published methods of clutter filtering produce clutter
filter notches at velocities 20 m s and #40 m s (locations corresponding to the first and
second alias of the sampling frequency (7,+T,)") in addition to the notch at zero Doppler. Note
that the velocity recovery is accurate at these values in the present method. There is a small
bias between two of these notch locations because of the residual coefficients at spectral
locations from which the clutter was removed, but it is within about +2 m s, and hence,
would be acceptable for some applications. The bias error is maximum for mean velocities %5,
*15, #25, #35, and #45 m s”, and it is zero for 10, 220, +30, +40, and +50 m s’ In Fig. 3.9,
the bias and the standard deviation of the velocity estimate is shown for the same set of
parameters in an expanded scale. There is a small increase in the standard error whenever the
signal spectrum and the clutter spectrum overlap (i.e., at velocities 0, +20, and 40 m s). For
all these simulations, the clutter filter width used is 2v,(9/160) (i.e., 9 coefficients out of 160
are removed). This is the filter width required to effectively remove clutter for a CSR =30 dB.
For larger CSR values, clutter filter width also needs to be increased, and this produces larger
bias error in the velocity estimate. Fig. 3.10 shows normalized maximum bias error in the
velocity as a function of normalized clutter filter width, (w,/2v,), obtained using a large number
of simulations. The clutter filter width required for effective removal of the clutter, as judged
by the velocity estimate quality, is given in Fig. 3.11. ( {=w, /w,_ ; w; is the clutter filter width,
and w, is the clutter spectrum width.) From these two figures, it can be inferred that for a
clutter spectrum width of 0.35 m s™ if the CSR is less than about 20 dB, the bias error in the
velocity is less than 1.5 m s™' and might be tolerated. For larger CSR, we need to remove the
velocity bias. The curve in Fig. 3.11 indicates that there is an upper limit for the signal velocity
recovery in the presence of strong clutter. The CSR seems to level off around 50 dB with
increasing width of the clutter filter, and about CSR=45 to 50 dB is about the best that can be

filtered. At these highest CSR values, the velocity estimate has large standard error, especially
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if the signal and clutter overlap. For larger width signals (w >6 m s'), the reconstructed spectra
are not accurate because of the spectrum overlap; hence, there is an increase in the variance of
the velocity estimate.

Fig. 3.12 shows the clutter suppression ratio, & = -10 log{P,,, /P,,,}, as a function of the
normalized clutter filter width, ( , ( C:wf Iw,; wyis the clutter filter width, and w,is the clutter
spectrum width) from simulation. The continuous curve is the theoretical curve for a Gaussian
signal. Assuming that the clutter suppression ratio required is equal to the CSR plus the SNR
(about 20 dB), we would expect velocity recovery for CSR=50dB for a clutter filter width, (=20
(see Fig. 3.12). But Fig. 3.11 indicates a velocity recovery only up to about CSR=40 dB for
this clutter filter width. In fact, the velocity recovery is good up to CSR=50dB for regions
where the clutter and signal do not overlap, but in the regions of overlap, there is an increase
in the sd(v) which sets an upper limit of CSR=40 dB.

The clutter filtering produces a bias in the width estimate as shown in one sample plot
in Fig. 3.13 for an input width of 4 m s”. The points show each realization, and the mean
value from several simulations is the continuous curve. It is clearly seen that the bias is a
function of the mean velocity. This pattern continues for any input width. The amplitude of the
bias in the width estimate is a function of the clutter filter width. This bias also is removed in
the process of removing the bias error in the velocity discussed later in this section. The figure

also shows the standard error in the width estimate which is less than 1 m s™.

3.3. Bias removal procedure.

It is mentioned in the previous paragraph that the clutter filtering from a column of the
V, alters the relative amplitudes of the signal components present in the column, thus
preventing it from deconvolving into a single signal component in V. A very interesting feature
of V; is that the amplitude of all the elements of the column vector from which clutter is
filtered is modified such that after the magnitude deconvolution, the amplitude of all elements
of the column vector is the same. Further, this amplitude bears a fixed amplitude relationship
with the actual signal component present in the vector. This amplitude relationship is a function

of the correct signal vector. There are 5 signal vectors for x=2/3 (5 columns of the matrix C,
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). The correct signal vector can be obtained from the estimated mean velocity. The five velocity
regions which correspond to the five signal vectors are (-v, to -3v/5), (-3v,/5 to -v/5), (-v /5
to v/5), (v,/5 to 3v,/5), and (3v,/5 to v,). If we discard the sign of the spectral components,
positive and negative velocities produce the same amplitude relationship. This relationship can
be obtained by performing the matrix operations corresponding to the clutter filtering and

magnitude deconvolution on each of the unit column vectors, C, to Cs, and is given by

E, =1/ abs{ [abs(C)I" [Cy - (C{*COC1}; k=12,.(n;+n,),  (3.15)

where C, is the rearranged code matrix defined earlier, C, is the £* column vector of C,, and
€, is the ratio of the actual signal amplitude to the amplitude after magnitude deconvolution for
the k™ velocity region. The £, values are symmetric with respect to the zero velocity; i.e., the
positive and negative velocities have the same value (except for the sign which is discarded
because we are working in the magnitude domain). Therefore, only the first three values are
taken for k=2/3. Note that £,=e, and hence, cannot be used for signal amplitude correction in
the region |v|<v/5.

The ratio of the actual signal amplitude to the residual amplitude, §,, obtained from
simulation, is shown in Fig. 3.14 as a function of the input velocity. This is possible because
the original signal is known for the simulation. In the staggered PRT processing algorithm, the
estimated velocity is used in place of input velocity (Input velocity is available only for
simulation!) to select the constant. The two constants for x=2/3 are £,=1.1056 and £,=1.789 for
regions v,/5<|v|< 3v,/5 and |v|> 3v,/5, respectively. In the region around zero velocity, (-v,/5 to
v,/5), the residual component is nearly zero, and hence, the ratio is very large. In and around
the transition regions at [v|= v/5 and 3v/5 (10 and 30 m s™), there is a rapid change in the
constants, but this is of no concern because at these locations, the bias is already zero. (The
residual spectral coefficients are symmetrically placed with respect to the mean velocity.) These
fuzzy regions widen with increased spectrum width. These £ values are independent of the
number of samples, M, and also the selection of unambiguous velocity, v,, for a given x. The

three regions of +v, are indicated in Fig. 3.14. For a different x value, the number of regions

20



as well as the & values for each region are different. (§ values are given later in the report for
other k)

The bias removal procedure is to reconstruct the original signal column vector whenever
clutter is removed from a column vector of V.. To do this, first we calculate the mean velocity
estimate from the spectrum E; and determine the velocity region, (1), (2), or (3), to choose the
multiplication coefficient, £. To explain the bias removal procedure, let us rearrange E into a
(n,+n,)xM/2 matrix (5x32 for the present example), Eg, in which the first g and the last g-1
columns vectors, from which the clutter is filtered, will have same element values (different
values for each column). Set all the elements of these columns to zero except one row. This
row is determined by selecting elements in the N/(n+n,) spectral coefficients centered on the
mean velocity estimate. Whichever row falls within this interval, the elements of that row of
columns 1 to ¢ are not set to zero but are multiplied by the constant §. Similarly, whichever
row falls within this interval for the last (g-1) columns, the elements of that row of the last (¢-
1) columns are not set to zero but are multiplied by the constant &. This procedure is applied
only if the estimated velocity is in regions (2) and (3), with multiplier &, selected appropriately
for the region (see Fig. 3.14 for regions). For region (1), the elements of this particular row,
selected as in the previous case, are replaced by the (¢q+1)" element value for columns 1 to g,
and the (M/2-g+1)" value for columns (M/2-g+2) to M/2. This, of course, is an approximation
for want of an accurate € value. For this region, the clutter and signal vectors are the same, and
hence, the signal is completely removed while removing the clutter. Therefore, we take the
signal amplitude from the adjacent coefficient from which clutter is not filtered (e.g., (g+1)"
column) and insert this value as an approximate signal amplitude. This, of course, is not the
best choice but is taken as the simplest option. The bias removal is not exact for region (1) but
is reasonably good for most applications. This corrected E,, is again rearranged into a single
column vector, and R(T,) and velocity are re-estimated from this column vector. This velocity
is without any bias in the +v, interval. Thus, the additional computation to remove the bias error
involves some matrix element manipulation and computation of autocorrelation and velocity a
second time. The procedure is also applicable to other stagger ratios, x.

This whole process of bias correction can be put in mathematical form using matrix
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operations. We need to program two different procedures, one for the region (1), and the other
for the regions (2) and (3). These two procedures are combined into a single matrix equation.
The following paragraph explains the different matrices used in the equation.

Let E, be a (NxN) diagonal matrix whose diagonal is given by diag{E,}= E,, the
elements of the column matrix obtained from Eq. 3.14 after magnitude deconvolution. When
a matrix is called a diagonal matrix, it is understood that the off diagonal elements of the matrix
are all zeros. We modify E, into another diagonal matrix E," (the superscript ‘m’ stands for
modified) in which first g diagonal elements are replaced by (g+1)" diagonal element, and the
last (g-1) diagonal elements are replaced by the (N-¢g+1)" diagonal element. This modification
is made for taking care of the region (1) correction. The corrected spectrum is extracted from
the diagonal of the corrected matrix E,© which is given by the equation,

Ef=EL+E"LI Z, (3.16)
where the matrices I, I,, I,, and Z are all (VxN) diagonal matrices defined by
diag{l,} = [(diag{l;} + diag{I,}),... repeat (n,+n,) times], 3.17)
diag{l,} = complement of diag{lL,}, (interchange Os and 1s), (3.18)
diag{1,} = [000... 001111...1110000...], (3.19)
(N elements with 2N/(n+n,) 1s placed such that the ls are centered on the mean velocity
coefficient, the rest are all zeros), and
diag{Z} = [1111...,5,.8,.8,....55,83.E5,-.  E5.60:8,., 1117 . (3.20)
The construction of diag{Z} needs some explanation. The parameters, &,&;, etc. are the
correction coefficients for the velocity regions (2), (3), etc. The region (1) correction coefficient
is set to unity (actually &, -) because it is not used in the correction scheme. The velocity
scale corresponding to the spectral coefficients 1 to N is from O to -v, and +v, to 0; therefore,
the first N/2(n,+n,) and the last N/2(n,+n,) coefficients are 1s representing the region (1). The
next N/(n+n,) coefficients correspond to region (2) and so on up to the center, and then, the
same coefficients repeat in the reverse order up to the end. The diagonal is symmetric about the
center.
It may be noted that all the matrices used in Eq. 3.16 are diagonal matrices. The

matrices were defined that way so that the entire operation can be put in the conventional
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matrix operations but it is not necessary to form these (NxN) matrices while programming
because it is actually element by element multiplication, the off diagonal elements being zero
for all the matrices. Thus, we can define an element by element product of two column matrices
as a dot product (like the MATLAB -* operator), and use diagonals as column vectors in Eq.
3.16, and multiplication replaced by dot operator.

With the bias correction scheme implemented, Figs. 3.8 and 3.9 are regenerated to show
the performance of the bias correction scheme. Fig. 3.15 shows the velocity recovery for x=2/3
and v, = £50 m s™', and Fig. 3.16 is the plot of bias error and standard deviation of the velocity
estimate. It can be observed that while the standard error has not changed, the bias error is
nearly zero for the entire +v, interval (compare these figures with Figs. 3.8 and 3.9). The large
error at the extremities is because of the velocity aliasing. The procedure also removes the bias
error in the width estimate as shown in Fig. 3.17 (compare this with Fig. 3.13 for the same
parameters without the bias correction applied).

It was mentioned earlier that the clutter filtering procedure can suppress clutter better
than 40 dB, but to obtain this performance, we need to select the clutter filter width judiciously.
Larger than required filter width introduces perturbations in the signal spectrum which produces
residual bias in velocity estimate. To remove this residual bias, the bias removal part has to be
implemented in the algorithm at the cost of some additional computations. If the clutter filter
width is made just sufficient to obtain the desired clutter rejection, we get the best performance.
If the clutter filter width is further reduced, the clutter suppression may be inadequate, and the
residual clutter in the unfiltered columns of V, causes a bias error that cannot be removed by
the bias removal scheme. Fig. 3.11 shows the clutter suppression ratio, «, as a function of
normalized clutter filter width, { = w; /w,, (normalized with respect to the clutter spectrum
width, w, is the clutter filter width, and w, is the clutter spectrum width, both in m s for a
Gaussian shaped spectrum. This figure can be used as an approximate guide for selecting the
optimum clutter filter width, approximate because the actual weather signal is not exactly
Gaussian. For the spectral domain clutter filtering algorithm, we need to determine the number

of coefficients to be filtered, which is obtained from the formula,
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n.= (NG 2v)w,. (3.2D)

Since n, has to be an odd integer for symmetrical positioning of the clutter filter with respect
to the zero Doppler, we truncate n, to the nearest higher odd integer. A { value of about 20 to
25 is a good choice for most cases with large clutter signal, although lower values can be used
in practice with reasonable suppression. The choice actually should depend on the clutter-to-
signal ratio CSR (see Fig. 3.11 for optimum value). Simulation results show that for CSR
>40dB, which requires wide clutter filter, the bias error is too large to be completely removed
over the entire velocity interval. There are more outliers generated in some regions, especially
the regions where the clutter and signal overlap. In these regions, the bias correction also fails
because the algorithm uses the estimated velocity (with the bias) to determine the matrix I, (in

Eq. 3.16).

3.4. Generalization to other k and v, values

The method of clutter filtering and bias removal is general and can be adopted to any
value of x and v, but the velocity recovery and the clutter filtering performance depend on
several factors, such as the number of zeros required to be inserted to derive a uniform PRT
sequence, in relation to the available staggered PRT samples, and the selection of T, (or r,, or
v,). The smaller the M/N ratio, the lesser will be the information available to reconstruct the
spectrum; hence, we can expect the estimate variance to increase for a given v,. The largest
ratio M/N=2/5 is obtained for x=2/3, and it is the same value as indicated by Zmic and
Mahapatra (1985) for the staggered PRT scheme from the point of variance of the velocity
estimate. The next largest M/N=2/7 is obtained for x=3/4, and the algorithm performs reasonably
well but is not as good; it has an advantage of larger r,; for a given v,. The unambiguous range
is tripled at the expense of a poorer performance with respect to the variance of the spectral
moment estimates. For comparison, performance of the algorithm for x=3/4 is given in Figs.
3.18 to 3.21, all for the same v,=50 m s and M=64. Fig. 3.18 shows the velocity recovery
for the parameters listed in the figure. The large error at extreme ends is due to the aliasing of

the velocity. Compare this figure with Fig. 3.8 for x=2/3. The sd(v) and bias error in the
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velocity estimate are larger compared to that for x=2/3 (Fig. 3.19). Figs. 3.20 and 3.21 are
similar to Figs. 3.5 and 3.6 but are for x=3/4. These figures give us a general idea of the errors
that can be expected for x=3/4. Note a significant increase in the sd(v) as a function of the
width of the signal in Fig. 3.20 (compare with Fig. 3.5), and the spectrum reconstruction
provides only a small improvement over the earlier method of velocity computation. The
velocity is not usable in practice for widths greater than about 4 m s™. This is a handicap for
k=3/4 because weather signals in severe storms have a median width of 4 m s (Doviak and
Zmic, 1993). Fig. 3.21 shows the error performance of the algorithm with respect to the
spectrum width estimation for x=3/4.

As mentioned earlier, the bias correction scheme can be applied by redefining regions
and multiplication factors for each region. Because the code sequence corresponding to x=3/4
has a periodicity of 7, the velocity interval +v, is divided into four regions, each of which has
a corresponding £ value. The four regions are |v|<v/7, v/T<|v|<3v,/7, 3v/7<|v|<5v/7, and
5v/5<|v|<v,, and the corresponding , values are «, 1.052, 2.364, and 1.312 for k=1, 2, 3, and
4, respectively (calculated from Eq.3.15). Similarly, for x=4/5, there are five regions and five
different values for £. The calculated values are §,= for region |v|<v,/9, &,=1.031 for region
v /9<v|<3v,/9, &,=2.97 for region 3v/9<|v|<5v,/9, E,=1.173 for region 5v,/9<[v|<7v/9, and
£.=1.58 for region 7v,/9<|v|<v,. In the first region where E=, the bias correction procedure does
not use the § value as explained earlier, and hence, is set to unity in all cases.

The results presented so far indicate that the algorithm can effectively estimate the
spectral moments in the presence of the ground clutter for a particular selection of parameters
(x=2/3 and 3/4; T,=0.5ms; A=10cm; etc.). Nonetheless, while applying this method to other
situations, one has to bear in mind that there are restrictions in the selection of these parameters.
One important criteria that determines the usefulness of a procedure is the standard error in the
velocity estimate, sd(v), and the bias error, which has to be within a specified tolerance. The
restrictions on the selection of parameters are arrived at based on this usefulness criteria. From
an examination of Fig. 3.5, it is observed that the sd(v) starts increasing at about w=6 m s
For any other selection of T, (hence v,), the sd(v) starts increasing at about the same normalized

value, w/2v, (i.e., about 6 percent of 2v,). The sd(v) also increases with larger values of x, as
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shown in Fig. 3.20 where the cutoff point for x=3/4 is at w/2v, = 0.04 (or 4 percent). If the
spectral moments of weather signals of widths up to at least 6 m s are to be accurately
estimated, we need to restrict the parameters, x and T, to 2/3 and 0.5 ms, respectively. Another
criteria in selecting the parameters is the second trip overlay. If overlay is to be avoided and
also meet the sd(v) criteria, then the utility of the algorithm is limited to higher elevation scans

where these criteria can be met.

3.5. The algorithm

This section describes the spectral parameter estimation algorithm for the Doppler
weather radar with staggered PRT transmission scheme step by step. The algorithm is written
for any selectable stagger ratio, x, unambiguous velocity, v,, and number of samples, M (must

be even).

begin

L. The transmission of the pulses is at PRTs T, and T, alternately. The number of samples
collected using the staggered PRT scheme is M for each range gate. The PRTs are
selected such that T,=n,T,, and T,=n,T,. Let g, ; i = 1,2,..., M, be the time series

samples.

2. Compute the signal power (and reflectivity) from the original time series g,, if clutter is
not present (omit steps 7 through 10 to remove clutter filter). If clutter is present and

is to be filtered, the signal power is computed in step 17.

3. Insert zeros in the time series to derive a uniformly sampled sequence v; of length

N=(n+n,)M/2. Zeros are inserted in places of missing samples.

4. Compute the DFT of the derived time series v;,, and rearrange the spectral coefficients
into a ((n+n,) x M/2) size matrix V.. The spectral coefficients are arranged row-wise

to form the matrix.
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10.

11.

12.

Compute the DFT of the code, c,, corresponding to the k, and form the convolution

matrix C using the coefficients C; (see Eq. 3.3).

Delete all the rows and columns of C containing zero in the first column and row, to

get the (n,+n,)x(n,+n,) rearranged matrix C, (see Eq. 3.9).
Extract first column C, and last column C; of C..

Compute the clutter filter matrices C,; and C,, using (Eq. 3.12a and Eq. 3.12b).

Determine the clutter filter width, (2¢-1), in terms of the number of spectral coefficients
and form the (M/2xM/2) diagonal matrices I; and I, which select the columns that

contain clutter signal. (A clutter map can be used for determining the clutter filter

width.)
Filter the clutter by performing the matrix multiplication and subtraction indicated in
(Eq. 3.11).
Vf=Vl‘-Cf1Vl'If1 'szVrIn
Carry out the magnitude deconvolution given by  (Eq. 3.14)
E, = [ abs{C.}T" abs{V,).
Rearrange abs{E,} into a column matrix E..

Compute the autocorrelation R(7,) using (Eq. 3.6) in which E, are the elements of E..

N
R(T)=1INY_ |E,|?e/ kDN
1
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13.

14.

15.

16.

and the mean velocity using the phase of R(7,)
b = (vJ/m) arg{R(T)}; v, = M(4T).

Form a NxN diagonal matrix E, such that diag(E,) = E..

Modify E, by replacing first ¢ and last (g-1) elements of the diagonal by the elements

(g+1)™ and (N-g+1)" elements, respectively, to get E,™.

Determine the region of #, and form the column matrix diag(l,) (Eq. 3.19).

Compute the corrected spectrum, E,*, using Eq. 3.16.

E‘=E,L+E LI Z

where the matrices I, I,, and Z are pre-computed and are input to the algorithm. (See Egs.3.

17 to 3.20 for details of the matrices.)

17.

18.

19.

20.

Re-compute autocorrelation R(7,) using elements of E.° and then the bias corrected
mean velocity from the phase of R(7,). The mean signal power is also computed from
this spectrum.

Compute the extent of the residual spectrum to be deleted centered on the value of
estimated velocity, 9. The extent to be retained is 9#+2v,/(n,+n,) in the velocity scale 0--

v,~v,~0 (cyclic).

Delete the residual coefficients and estimate the spectrum width using Eq. 6.37 of
Doviak and Zrnic, 1993. Note that the R(0) and R(T,) used in the expression for width
must be calculated from the spectral coefficients after truncation, and not from the signal

power and R(T,) computed earlier in Step 17.

Output the estimated spectral parameters, signal power, mean velocity, and width.
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21. Go to the next data set (next gate).

end

Note:

(a) The matrices Iy, Iy, Cy, Cp, I, I, Z, and the magnitude deconvolution matrix, [abs{C_}]",
are to be computed only once and can be stored for use with each data set. If the clutter filter
width is changed from one data set to the next, then we need to re-compute the matrices I; and
L,.

(b) In Step 16, all the matrices are diagonal matrices; hence, it is element by element
multiplication of the diagonal elements. Therefore, in programming this step, it is simpler to
represent all matrices as columns and use an element by element multiplication operator (dot

operation).

4. Performance summary of staggered PRT algorithm.

So far, we have delineated a new spectral domain approach to processing the staggered
PRT radar returns and have demonstrated the remarkable performance of the algorithm in
effective clutter filtering with no velocity drop-out regions in the unambiguous velocity interval
and improved spectral moment estimates. The results presented are for some specific choice of
parameters. In the process of evaluating the suitability of the staggered PRT technique to WSR-
88D, the parameters required may be different, and it is necessary to evaluate the performance
of the algorithm for different choices of parameters and the limits of performance of the
algorithm. Mainly, the parameters to be considered are x, r,;, v, w, sd(v), sd(w), M, d, (dwell
time, d, =(T+T,)M/2 ), etc. An overall sd(v) performance of the algorithm for x=2/3 and 3/4
is discussed in this section.

As mentioned earlier in the Introduction, the algorithm assumes that the staggered PRT
time series samples are free from overlaid signals from second and higher order trips. The
overlaid signals from the second or higher order trips severely degrade the performance of the
algorithm. Therefore, it is important to select the PRTs, T, and T,, so as to ensure no overlay.
In the staggered PRT scheme using the pulse pair algorithm to compute the velocity, T, and T,

are constrained by the unambiguous range and the desired accuracy in estimates. For the present
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algorithm using the spectrum reconstruction procedure, an additional consideration enters; it is
important to keep the ratio of available samples to the total number of samples (including the
inserted zeros), 2/(n,+n,)=M/N, as large as possible. The error in the reconstructed spectrum
increases with decreasing M/N ratio. To keep the sd(v) small, we also have to nearly satisfy
criterion (3.5). It may be noted that all the results of the simulations for x=2/3 are calculated
using the number of staggered PRT samples, M=64; if the number of samples are different, the
estimate variances also will also differ correspondingly. Therefore, in comparing the performance
of the staggered PRT scheme with different stagger ratios, x, it is more realistic to keep the
dwell time, d,, same (to have equal angular resolution) rather than the number of samples, M.
Further, the most important restriction is that no overlay is allowed (the algorithm cannot
separate overlaid echoes), which means that the scheme can be used only when no returns are
expected from ranges beyond 7,,. The overall sd(v) performance of the staggered PRT algorithm
for the approximate WSR-88D dwell time of 42 ms, and two values of x (2/3 and 3/4) are
summarized in Figs. 4.1 and 4.2. These figures show sd(v) as a function of w and v,. Figs. 4.3
and 4.4 show the same set of data as in Figs. 4.1 and 4.2, but the sd(v) is plotted as a function
of normalized width, (n,+n,)w/2v,. This shows that the sd(v) variation is nearly the same as a
function of normalized width and can be approximated to a single curve for all x values. Note
the multiplication factor (n,+n,) included in the normalization. There is a small spread of the
curves because they are simulation results. For the same dwell times, all the curves nearly
merge into one because the equivalent independent samples in a given dwell time is about the
same. The results of simulation with constant d, are presented in the 2-D shaded plots for the
parameters of interest to WSR-88D because these are easier to read and interpret. The
unambiguous range, r,;, is also shown on the right hand side corresponding to the v, shown
on y-axis.

A large number of simulations were carried out to determine the standard error in the
velocity estimate for different values of v, (or T, ) and spectrum widths, for d=42ms. The
sd(v) values grater than 5 m s are limited to 5 m s for plotting. The actual values of sd(v)
obtained from simulations are shown in Tables 4.1 and 4.2. Each value of sd(v) is obtained

from 800 simulations (20 simulations at each of 40 different velocity values, spread uniformly
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over +0.8v,). It is seen that once criterion (3.5) is violated, the sd(v) increases sharply because
the reconstruction of the spectrum becomes inaccurate. This limit is approximately 0.225 for
{(n+nywl2v,} (see Fig. 4.3, 4.4). In all these plots, there is no clutter filtering implemented,
therefore, the sd(v) is only due to the spectrum reconstruction procedure (i.e., no ground
clutter). With the ground clutter filtering, the sd(v) is larger because there is always some
residual clutter which can be considered as noise. This degradation can be minimized by
selecting appropriate clutter filter width which optimizes the velocity recovery.

The performance with respect to the clutter filtering is presented in the next three figures
for x=2/3, 3/4, and 4/5 for a selected set of parameters. Figs. 4.5, 4.6, and 4.7 show plots of
estimated velocity versus the input velocity with dwell times and r,; same for all three schemes.
For convenience of comparison, the estimated velocities are shown on the same plot with a
vertical shift for different CSR values. Only the lowest set (CSR=30 dB) has the correct vertical
velocity scale; the rest of the plots are shifted by v /2 for each 5 dB increase in CSR. Because

r,; and dwell time is kept the same, the unambiguous velocity and number of samples are

different for the three figures. Also note that the vertical scales are different for the three
figures. The velocity recovery is good to about CSR=40 dB in the case of x=2/3 but has many
outliers for larger CSR. The same can be said for other k values, but the standard error is a
little larger. These seven figures reasonably summarize the performance of the staggered PRT
scheme with the new clutter filtering algorithm. Using these figures, we shall try to evaluate the
usefulness of the staggered PRT scheme to the WSR-88D.

Although larger stagger ratios provide larger unambiguous range and/or velocity (Fig.4.8),
we can only use them to increase the unambiguous velocity (at the expense of an increase in
the sd(v)) because the unambiguous range is restricted by the requirement that no overlaid signal
is allowed. Further, 2v /(n+n,) must be large enough (at least 3.5 times the spectrum width) to
be able to recover velocities of signals with spectrum widths up to about 6 m s (Eq. 3.5).

These two restrictions must be kept in mind while selecting the parameters for the staggered

PRT scheme.

5. Alternatives to the WSR-88D scan strategy.
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The WSR-88D has pre-programmed scan strategies, designated by vep-11, vep-21, etc.,
and each volume coverage pattern (vcp) has a fixed set of elevation scans with pre-set
parameters. In the lowest elevation (0.5°), there are two scans, one with a long PRT (~3 ms)
to get an unambiguous display of reflectivity to 460 km and a second (Doppler) scan with a
short PRT (selectable among five pre-set PRTs) to estimate velocity. The Doppler scan is
generally plagued with multiple trip overlay and loss of velocity information. The same
procedure is repeated for the next elevation, 1.45°. For 2.4° to 6.2° elevation scans, the long
and short PRTs are used in alternate radials and are labeled as batch mode. In Fig. 5.1 is a
range-height diagram for the WSR-88D elevation scans. It shows the ray paths in the range-
height space taking into consideration the Earth’s curvature. As per the NEXRAD volume
coverage requirement specifications, height coverage is required up to 70,000 ft (21.12 km), but
most storms do not extend to that height. If we assume that most storms extend to a height of
18 km or less, the clear range requirement for each elevation scan can be read out from the
figure. For the intermediate elevation scans (2.4° to 6.2°), the range requirement varies from
303 km to 154 km.

As a result of our three year study, two new schemes have emerged as candidates for
the resolution of range and velocity ambiguity in WSR-88D, in addition to the present WSR-
88D coding scheme (e.g., batch mode). They are the staggered PRT scheme and the SZ phase
coding scheme. All schemes have the capability to resolve ambiguities in range and velocity but
with certain limitations. Therefore, we need to make compromises in selecting the scan
parameters and the scheme. In making these compromises we shall assume that any changes
made in the scan strategy and the scheme should improve the performance without giving up
on the present WSR-88D performance. First, we examine the range requirements, scan rates,
the number of samples available, etc. and then work within these restrictions to select one or
the other scheme with possible PRTs and scan rates, taking into consideration the quality of the
spectral moment estimates, the velocity estimates in particular.

It is significant that we come across spectrum overlap in the staggered PRT scheme as
well as in the SZ phase coding scheme, but the way in which the spectrum overlap affects the

sd(v) is different in the two schemes. In the staggered PRT scheme, there are five complex
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weighted replicas of the spectrum within the +v, interval (for x=2/3), and the magnitude
deconvolution produces residuals due to the spectrum overlap which contributes to the sd(v),
if not to the bias error. Similarly, in the case of SZ(8/64) phase coding, we have eight complex

2

weighted replicas in the v, (subscript ‘p’ is used to distinguish the two unambiguous
velocities) interval (which is generally smaller than that of the staggered PRT), and after notch
filtering and cohering, the original signal and six side bands are present in the spectrum from
which velocity is computed. For the same +v, interval and the spectrum width (of the weaker
signal in the case of SZ phase coding), the spectrum overlap is much larger in the case of phase
coding than in the staggered PRT with x=2/3, but the contribution to the sd(v) is much less
because velocity is computed from the complex spectrum before the magnitude deconvolution.
The overlap appears to produce some perturbations in the spectrum (which can be treated as
noise) which contributes to the sd(v). The magnitude deconvolution in the phase coding scheme
is used only for spectrum width estimation. Further, the above mentioned sd(v) is for the weaker
signal, but the stronger signal velocity is always recovered. The weaker signal velocity is
recovered if the overlay power ratio is within about -40dB <p,/p,<40 dB. Clutter filtering is
also possible with the SZ phase coding scheme up to about CSR=50 dB with the spectral
domain filtering. This is significantly better than what we can achieve with the staggered PRT
scheme. There is a small bias in the velocity whenever the velocity is close to the zero
Doppler, just as in the case of the staggered PRT scheme. This bias can also be nearly
compensated by the same technique as described for the staggered PRT bias correction scheme.
That is, instead of simply deleting the first g and the last (¢-1) coefficients centered on the zero
Doppler, replace the coefficients with (g+1)" and (N-g+1)™ element values, respectively, which
will remove the bias to a large extent. Although the SZ coding scheme appears to perform
better in terms of the sd(v) compared to the staggered PRT, it is more complex to implement,
both in hardware and processing software. The SZ coding scheme needs a phase shifter and the
DFT computation several times in the processing, whereas the staggered PRT scheme requires
only a change in the PRT and a one time DFT computation. One additional advantage of the
SZ coding scheme is that the two overlaid signals need not necessarily be from the 1% and 2™

trips but can be any two trips whenever there are multiple trip ranges covered by the selected
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PRT. Even for three trip overlaid signal, a limited velocity recovery (of the two stronger signals
of the three) can be devised with reasonable success. The present staggered PRT algorithm does
not allow overlaid signal; hence, T, must be chosen corresponding to the maximum
unambiguous range. With these comparative remarks, let us try to compare the three schemes
for each elevation scan of the WSR-88D.

Table 5.1a gives the vep-11 scan parameters of the WSR-88D, and the PRT values are
listed in Table 5.1b. From the number of samples and the PRT, the dwell time per radial can
be computed, and it varies between 53 ms and 42 ms for different elevations. The exact dwell
times for each elevation are listed in Table.5.1c along with the standard errors in the reflectivity,
velocity, and the spectrum width estimates obtained from simulation using the default PRT
values. This gives us the number of staggered PRT or the SZ phase coded samples available
for processing signals from each range gate, keeping the dwell time same as that of the WSR-
88D. Thus, M=64 used in most of the computations seems reasonably close to that available in
practice if the PRT is about 1 ms for lower elevation scans. The possible staggered PRT
parameters for each elevation scan of WSR-88D is presented in Table 5.2. In generating this
table, it is assumed that there is only one staggered PRT scan at each elevation, keeping the
total scan time for each elevation the same. The number of samples M is calculated for the
WSR-88D dwell time and is rounded off to the nearest even number. In practice, we can get
about 30 percent more samples using the sample overlap scheme explained in Part-2 of this
report (Sachidananda et. al., 1998). The last column is the approximate value of signal spectrum
width for which sd(v) is within a limit of about 2 m s”'. The values are approximate and arc
arrived at based on the simulation results with M=64. Therefore, for lower elevations, the limit
of width is less than given in the last column, and for elevations higher than 6.2°, it is larger
than the value given in the last column. An examination of Table 5.2 indicates that staggered
PRT is good for elevations 5.25° and above. For lower elevations, the unambiguous velocity
is not sufficiently large to enable recovery of the velocity accurately for widths up to at least
5ms’. |

Now, compare the performance of the SZ(8/64) coding scheme to that of the staggered
PRT scheme for elevation 5.25°. With a PRT of 0.59 ms for the SZ coding scheme, we get
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2r,=177km, with the first trip interval being 88.5km. The stronger trip signal parameters are
completely recovered, and the weaker trip signal parameters are recovered for overlaid power
ratios less than 40 dB and for widths up to about 6 m s”'. The unambiguous velocity is also
42.37 m s”, the same as that for the staggered PRT. Therefore, the performance is certainly
better than that of the staggered PRT scheme, but with more complex signal processing. The
SZ coding can work well with v,=33 m s for 3.35° elevation, giving a range coverage up to
224 km with only a 2 trip overlay. For 2.4° elevation, one can still select a PRT of 0.92 ms
with a full range of 276 km and get a reasonable recovery of the weaker trip signal. There may
be some loss of the velocity information of the weaker signal whenever the stronger trip signal
is wide (> about 4 m s™).

For the lowest two elevations, there is no escape from multiple trip overlay. Therefore,
the long PRT scan becomes imperative if we were to retain the clear reflectivity over the full
range for these two scans. The Doppler scans can be SZ phase coded and at least recover
velocity in some of the regions which otherwise would be lost in the present WSR-88D coding
schemes. The stronger trip signal velocity is mostly recovered, but the weaker signal velocity
recovery is dependent on its strength and the number of echoes overlaid.

Table 5.3 is a possible modification to the WSR-88D scan strategy. For the first two
elevations, the long PRT scan is retained for the reflectivity. The Doppler scan is replaced by
the SZ phase coded transmission. For the intermediate elevations from 2.4° to 4.3°, the batch
mode is replaced by SZ coded transmission. The possible PRT selections for each elevation are
indicated in the table. For the elevations 5.25° and above, the staggered PRT with appropriate
selection of the T, and T, is advantageous because it allows much larger unambiguous velocity
for the required unambiguous range which can eliminate the need for dealiasing the velocity

fields.

6. Suggestions for identifying high variance data estimates.
The base data collected by the radar must be reasonably accurate before it can be used
for meteorological interpretations. There are always bad data or high variance data which do not

represent the actual spectral moments because of several limitations of the radar. For example,
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one of the most common reasons for bad velocity data is the 2" and higher order trip overlay.
In the WSR-88D, these estimates are identified as unusable. With the introduction of the SZ
phase coding and/or staggered PRT techniques for the mitigation of the range and velocity
ambiguity problem, we can recover major regions of the velocity data, but these techniques, too,
have their limitations. The accuracy of the spectral moment estimates is affected by the
spectrum width, clutter-to-signal ratio (CSR), overlaid power, signal-to-noise ratio (SNR), etc.
In the absence of a way to recover spectral moments in these special situations, it becomes
necessary to at least identify these data as unusable so that wrong conclusions/interpretations of
the meteorological phenomenon are avoided. In this section, we shall examine the ways of
censoring the high variance/erroneous base data for SZ phase coding and the staggered PRT
schemes.

There are two approaches that can be considered: (1) rejection criterion based on one or
combination of several parameters estimated for each range gate, and 2) censoring criteria based
on the spatial continuity/variance of the data. The first approach can be implemented in almost
real time because the criterion uses a single set of samples for each gate, and the rejection
criterion can be built into the spectral moment estimation algorithm. The second approach is
best implemented off line after the data is collected. It can also be implemented in almost quasi-
real time if we confine our spatial variance computations to a single radial of data or data from
a few radials in azimuth direction. The second approach is based on the high degree of spatial
and temporal continuity of the weather data.

We require different criteria for the staggered PRT and the SZ phase coding schemes,
and these are discussed separately in the paragraphs that follow. The discussion here is mainly
based on the extensive simulations carried out for the range and velocity ambiguity resolution

in WSR-88D using these two schemes.

6.1. The data censoring for the staggered PRT scheme.
In order to arrive at proper criteria for data censoring, we shall first examine the
limitations of the staggered PRT scheme and the conditions under which the scheme fails to

recover the spectral moments accurately. First of all, the present staggered PRT scheme does
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not have the capability to resolve the overlaid signal, and therefore, it can be used only if no
echoes are expected beyond the time T, after the transmission of the pulse. But in practice, this
cannot be ensured 100 percent of the time, and the present WSR-88D processing techniques
cannot give this guarantee. Furthermore, it would not be an optimum choice of PRTs if we try
to ensure it. For example, we can choose a maximum unambiguous range for a given elevation
scan by assuming that most storms (but not all) do not extend beyond a height of about 18 to
20 km above ground. One could even reduce this height and allow some weaker signal overlay
to gain on the unambiguous velocity interval. This is possible because an overlaid signal 10
dB below the 1st trip signal strength does not produce appreciable error in the velocity estimate;
hence, it can be tolerated. But there must be a way of determining the overlaid signal power
ratio so that if the overlaid signal is more than a predetermined threshold value, one can
discard the velocity estimate.

The second limitation is the maximum clutter power that can be effectively filtered; the
effectiveness is being gauged mainly by the accuracy of the velocity estimate. (One can also
include the accuracy criteria on other spectral moments.) Here, the relative clutter power level
or the CSR is of importance and not the absolute clutter power. There is an upper limit for the
CSR beyond which the velocity estimate is inaccurate. The limit is a strong function of the
clutter spectrum width and the clutter filter width used in the processing and a weaker function
of the signal spectrum width. For example, for T, = 0.5 ms, k¥ = 2/3, w,= 0.35 m s}, and wy
=8 m s, the velocity estimate is good up to CSR = 40 dB, for larger CSR outliers begin to
appear, especially in the region where clutter and signal spectra overlap (i.e., around + 20 and
+ 40 m s™). The variance of the velocity estimate also increases around these velocities with
increased spectrum width of the signal. This limit was observed in a simulation study with the
input parameters mentioned above. For other selection of parameters, we need to determine
appropriate limits for the CSR and spectrum width beyond which the data can be censored. The
SNR also affects the variance of the estimates. Thus, the parameters to be watched are the CSR,
SNR, overlay power ratio, spectrum width of the signal, spectrum width of the clutter, and the
clutter filter width.

Having identified the parameters and their limits to censor the data, we must have some
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means of determining whether these limits have been crossed. Generally, the receiver noise floor
is known, and therefore, SNR can be determined from the received signal power. For accurate
spectral moments, the SNR required is more than 10 dB. Similarly, the distribution of the
ground clutter in range, azimuth, and elevation, as well as its statistics in terms of the power
level and spectrum width can be determined from a clear weather scan data. This information
can be stored in a data base and can be used by the decoding algorithm to estimate CSR and
derive appropriate limits for data censoring. Note that this information is also needed for
deciding the clutter filter width to be used in the algorithm.

It is observed that a large signal spectrum width also can lead to a high variance velocity
estimate, but it is difficult to decide definitely on a upper limit for the spectrum width estimate.
The simulation study indicated that the large spectrum width does not necessarily indicate a bad
velocity estimate always, and visa versa. This is because the spectrum width estimate itself is
generally very noisy. Therefore, making a decision on the accuracy of the velocity estimate
based on the width estimate is highly undesirable.

The only parameter that cannot be estimated easily in the present staggered PRT scheme
is the overlay power ratio. If the long PRT (7)) is large enough to include all the echoes but
not the short PRT (7)), then we can devise ways to estimate the overlay power ratio. But if the
overlay is from two range gates, i.e., there are returns with delay time greater than T, then
estimating overlay power ratio is difficult. For the second case with two gate overlay, there is
no way of estimating the overlay power unless we employ a long PRT scan, as in the lowest
two elevation scans of the WSR-88D, although an overlay power of -10 dB with respect to the

signal can be tolerated.

6.2. Data censoring for the SZ coding scheme.

The SZ phase coding scheme is basically a method to resolve two overlaid echoes and
estimate their spectral moments, thus doubling the unambiguous range for a given PRT or
doubling the unambiguous velocity for the same unambiguous range by halving the PRT. In
both cases, it is important to make sure that only two signals are overlaid. It is also possible

to decode multiple trip overlay but with greatly reduced capabilities. The method works best for
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two trip overlay. There is, of course, a limit on the ratio of overlaid powers, SNR of the weaker
signal, maximum allowable random phase error in the phase shifter and the radar system
transmit-receive path, spectrum width of the stronger of the two overlaid signals, number of
samples available for each range gate, etc. These parameters determine the standard error in
the spectral moment estimates. In general, velocity estimate is affected the most, and the other
two parameters, signal power and spectrum width estimates, are affected to a lesser extent.
Therefore, the allowable limits on the above listed parameters is best derived considering an
upper allowable limit on the sd(v). A standard error of 1 m s is generally accepted in the
velocity and the spectrum width estimates, and a standard error of about 2 dB (1.2dB for the
lowest two elevation scans) is tolerated in the reflectivity estimate in the present WSR-88D.
This is for the uniform PRT transmission and no higher order trip overlay. But for the SZ
phase coding scheme, the lowest achievable sd(v) is slightly larger for the weaker signal, for
the same set of signal parameters, because the stronger signal is not completely filtered out in
the notch and cohere process. A small part of the stronger signal remains in the spectrum and
is equivalent to noise, thus degrading the equivalent SNR. The residual stronger trip signal after
notch and cohere is due to two reasons, 1) the random phase error in the phase shifter and the
radar system does not allow 100 per cent cohering of the stronger signal, and 2) the notch filter
does not remove all the overlaid signal power which is cohered. Because of these reasons, for
w, =4 ms!and w, =4 m s' (spectrum widths of the two overlaid signals), the lowest
achievable sd(v) is about 1.5 m s ! for the practical random phase error of 0.2° in the radar
system. The upper limit ratio of the overlaid powers is about 40 dB. For larger p,/p, ratios, the
velocity estimate can be censored. Fortunately, many of the parameters required for data
censoring can be estimated or measured. For example, the phase shifter random error can be
evaluated a priori from measurements. The noise floor of the receiver is also known so that
from the received signal power, the SNR can be determined. The SNR of the weaker signal,
which is the deciding criterion, can be calculated after the weaker signal power is estimated.
The p,/p, ratio also can be accurately estimated up to about 50dB for median spectrum widths.
The censoring limits for the p,/p, ratio is a function of the spectrum width of the stronger of

the two overlaid signals, which can also be accurately estimated. The limit can be obtained from
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Fig. 5.6 of Sachidananda et. al, 1998. The velocity estimate is censored for p,/p,>40dB; w,<4
m s, For larger widths the p,/p, limit has to be set lower depending on the estimated value
of w, . These censoring criteria can be incorporated in the decoding algorithm to automatically

eliminate the high variance data.

6.3. Censoring data field based on spatial high variance.

It is well known that the spectral moment fields exhibit a high degree of spatial and
temporal continuity. This fact can be effectively used for data censoring. This data censoring
procedure is independent of the transmission scheme used and can be implemented in real time,
quasi-real time, or off-line. For real time implementation, it would be best to base the decision
on the spatial variance of the data along one radial at a time. In the off-line or quasi-real time
implementation, one can use the 2-dimensional spatial variance.

One simple scheme could be to compute the gradient field by taking the difference
between the successive gate parameters (reflectivity, velocity, and width). The outliers would
produce sudden discontinuities (positive and negative spike pairs in the gradient). If there is a
single isolated spike pair in the data field, it may also be possible to discard that particular data
point and insert an interpolated value for that point. If there is a region with a noisy gradient
field, then it is an indicator of low SNR or high CSR, and these regions can be censored. In
the velocity field, if there is a discontinuity due to velocity folding, this would appear as a
positive spike or a negative spike. The velocity discontinuity information is used at present in
the velocity unfolding algorithm.

Generally, the velocity estimate gets corrupted by the noise, the overlay, or the clutter
before the reflectivity is affected. The width estimate is inherently noisy and is not a good
parameter to base the censoring decision on. Therefore, the velocity field is perhaps the best to
work on, and if the velocity estimate for a gate or group of gates is found to be erroneous, the
reflectivity and the spectrum width fields also can be censored for the same gates. All that is
needed is a criterion or a limit on the maximum gradient above which the data is censored. It
may be necessary to normalize the gradient with respect to the local mean value of the

parameter being considered because of the large dynamic range of the parameters. The limits
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for data censoring are best derived using the actual data; however, in the absence of actual radar
data, we can use simulations to arrive at these limits.
6.4. Conclusions.

This brief discussion on censoring the high variance data is based mostly on the
extensive simulation study carried out for the resolution of range and velocity ambiguity in
WSR-88D using the staggered PRT and the SZ phase coding scheme. Each of these schemes
have complex decoding algorithms which may fail under certain conditions of excessive clutter
power, excessive overlaid power, large spectrum width, etc. We have identified the limitations
under simulated conditions, but for actual implementation, one needs to try the methods on
actual radar data and establish the validity of the results obtained from simulation study.
Whereas the data censoring methods indicated for the staggered PRT and the SZ coding
scheme should be implemented, one should also examine the use of spatial variance of the data
field. This would allow us to recover velocities of the occasional outliers between good data by

interpolation, and which can be incorporated as a part of the velocity unfolding algorithm.
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(b) Equivalent uniform PRT sampling, k =2/3.

Fig. 2.1. The staggered PRT scheme. a) Transmit pulses and received echoes from a storm; 7 is the
range delay. b) The code and its relation to the staggered sequence.
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Fig. 3.1. An illustration of the magnitude deconvolution to reconstruct the signal spectrum from the
staggered PRT samples.
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Fig. 3.2. Input velocity versus the estimated velocity using the magnitude deconvolution for k=2/3.
The clutter and window were not included in these simulations.
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Fig. 3.3. Bias in the width estimate as a function of input width, without the window. The continuous

curve is the mean value, and the dots are simulation points. The input velocities for simulation are
spread uniformly over +v, .
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Fig. 3.4. Bias in the width estimate as a function of input width, with the von Hann window. The
continuous curve is the mean value, and the dots are simulation points. The input velocities for
simulation are spread uniformly over +v, .
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Fig. 3.5. Standard deviation of the error in the velocity estimate as a function of spectrum width of
the signal (a) using complete time series samples, (b) using the reconstructed spectrum, and (c) using

the ratio of R(T,)/R(T)).
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Fig. 3.6. Standard deviation of the error in the spectrum width estimate as a function of spectrum
width of the signal (a) using complete time series samples, (b) using the reconstructed spectrum, and

(c) using the staggered PRT samples.
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Fig. 3.7. An illustration of the clutter filtering procedure in the proposed algorithm.
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Fig. 3.8. Input velocity versus the estimated velocity using the proposed clutter filtering and spectral
moment estimation algorithm. The parameters used in this simulation are indicated in the figure.
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Staggered PRT transmission, A=10cm : : :
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Fig. 3.9. Bias error in the velocity and the standard error in the velocity estimates using the proposed
algorithm ( x=2/3). The simulation data is the same as that in Fig. 3.8.
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Fig. 3.10. The maximum normalized bias error in the velocity estimate as a function of normalized
clutter filter width. The normalization is with respect to the unambiguous velocity interval, 2v,.
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Fig. 3.11. The clutter-to-signal ratio (CSR) that can be filtered effectively versus the clutter filter
width normalized to the clutter spectrum width.
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Fig. 3.12. The clutter suppression ratio as a function of the clutter filter width normalized with respect
to the clutter spectrum width for Guassian spectra. The continuous curve is the theoretical for
Gaussian spectra, and the dots are simulation points with the von Hann window.
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Fig. 3.13. The estimated spectrum width and the standard error in the width estimate as a function
of the input velocity (input to the simulation program). Each realization is shown as a point and mean

value with a continuous line.
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Fig. 3.14. The ratio of the actual signal amplitude to the residual amplitude after magnitude
deconvolution for the spectral coefficients from which the clutter is filtered, &, as a function of the
input velocity. Three different regions for k=2/3 are indicated in the figure.
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Fig. 3.15. Input velocity versus the estimated velocity using the proposed clutter filtering and bias
correction algorithm. The parameters are the same as in Fig. 3.8, but with bias correction
implemented in the algorithm.
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Fig. 3.16. Bias error in the velocity and the standard error in the velocity estimates using the proposed
algorithm ( k=2/3) with bias correction implemented. The simulation data is the same as that in Fig.
3.15.
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Fig. 3.17. The estimated spectrum width and the standard error in the width estimate as a function
of the input velocity. This figure is similar to Fig. 3.13 with bias correction part implemented in the

algorithm.
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Fig. 3.18. Input velocity versus the mean of the estimated velocities using the proposed algorithm
for «=3/4. The parameters are same as that in Fig. 3.15 except for k=3/4 and r,,=225km. Both von
Hann window and bias correction are included.
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Fig. 3.19. Bias error in the velocity and the standard error in the velocity estimates using the proposed
algorithm for x=3/4 and r,;=225km. The simulation data is same as that in Fig. 3.18.
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Fig. 3.20. Standard deviation of the error in the velocity estimate as a function of spectrum width of
the signal for k=3/4 (a)using complete time series samples, (b) using the reconstructed spectrum, and

(c) using the ratio of R(T,)/R(T,).
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Fig. 3.21. Standard deviation of the error in the spectrum width estimate as a function of spectrum
width of the signal for k=3/4 (a) using complete time series samples, (b) using the reconstructed

spectrum, and (c) using the staggered PRT samples.

62



staggered PRT,A=10cm, dt=42ms, k=2/3, von Hann window ra1(km)
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Fig. 4.1. The standard error in the velocity estimate, sd(v), as a function of spectrum width of the
signal, w, and the unambiguous velocity, v , for dwell time d,=42ms and x=2/3. Each value is obtained
from 800 simulations (20 at each of the 40 velocity bins spread uniformly across £0.8v ). sd(v) > 5
m/s is limited to 5m/s and quantized for plotting purposes.
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staggered PRT,A=10cm, dt=42ms, k=3/4, von Hann window ra1(km)
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Fig. 4.2. The standard error in the velocity estimate, sd(v), as a function of spectrum width of the
signal, w, and the unambiguous velocity, v,, for dwell time d=42ms and x=3/4. Each value is obtained
from 800 simulations (20 at each of the 40 velocity bins spread uniformly across +0.8v,). sd(v) > 5
m/s is limited to 5m/s and quantized for plotting purposes.
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staggered PRT,A=10cm, dw=42ms, k=2/3
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Fig. 4.3. Standard deviation of velocity estimate as a function of normalized spectrum width for the
staggered PRT scheme, dwell time d, =42 ms, and x=2/3.
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Fig. 4.4. Standard deviation of velocity estimate as a function of normalized spectrum width for the
staggered PRT scheme, dwell time d, =42 ms, and x=3/4.
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Staggered PRTA=10cm, k=2/3, M=64, va=50mls, w=4m/s, wc=0.35mls
150 ¢ !
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———— mean:
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iwith vori1Hann v;vindow,iclutter filter & t%ias rem;oval i

50 -40 -30 -20 -10 0 10 20 30 40 50
input v(m s“1)

Fig. 4.5. Estimated velocity versus the input velocity with CSR value as a parameter for M=64 and
k=2/3. Note that the vertical scale is shifted for each CSR value by multiples of v /2, except for the

lowest plot. The dots are simulation points, and the continuous curve is the mean for each input
velocity.
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Staggered PRT\=10cm, k=3/4, =68, va=75mls, w=4m/s, wc=0.35m/s
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soll.o - 2o U C........i...sYVoetc simulation .
- with vonHann window, clutter filter & bias removal -
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Fig. 4.6. Estimated velocity versus the input velocity with CSR value as a parameter for M=68 and
k=3/4. Note that the vertical scale is shifted for each CSR value by multiples of v,/2, except for the

lowest plot. The dots are simulation points, and the continuous curve is the mean for each input
velocity.
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Staggered PRTA=10cm, k=4/5, M=72, va=1 00m/s, w=4m/s, wc=0.35mls
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Fig. 4.7. Estimated velocity versus the input velocity with CSR value as a parameter for M=72 and
k=4/5. Note that the vertical scale is shifted for each CSR value by multiples of v,/2, except for the
lowest plot. The dots are simulation points, and the continuous curve is the mean for each input
velocity.
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Fig. 4.8. Diagram showing the unambiguous range versus velocity for the staggered PRT scheme with
the PRT ratio x as a parameter. Curve for the uniform PRT is also shown for comparison.
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Fig. 5.1. The range-height diagram for the WSR-88D elevation scans in the VCP-11.
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Table. 4.1. sd(v) as a function of w and v, for d=42ms, k=2/3 staggered PRT transmission. Each
value is obtained from 800 simulations (20 simulations at each of the 40 velocity bins spread
uniformly across +0.8v,.) Units are m s”. (Data for Fig.4.1).

30 0.39 0.57 0.74 0.86 1.08 2.25 3.93 7.68
34 0.40 0.61 0.73 0.87 1.01 1.32 1.89 3.51
38 0.40 0.59 0.72 0.87 1.02 1.15 1.41 1.79
42 0.41 0.60 0.73 0.89 0.98 1.15 1.26 1.48
46 0.40 0.58 0.75 0.84 0.96 1.12 1.17 1.38
50 0.40 0.61 0.75 0.92 0.97 1.11 1.20 1.37
54 0.41 0.58 0.74 0.85 0.98 1.06 1.22 1.30
58 0.39 0.59 0.73 0.85 0.99 1.13 1.19 1.28
62 0.41 0.60 0.74 0.87 0.97 1.12 1.16 1.39

30 10.23 12.76 14.14 15.33 15.88 17.11 17.44 16.95
34 6.72 10.04 12.60 15.24 17.01 18.66 19.43 19.02
38 3.72 5.92 9.82 13.03 15.42 17.42 19.19 20.31
42 2.67 5.33 6.08 9.80 13.54 15.57 18.40 19.52
46 1.56 3.38 4.13 .45 9.37 12.33 .15.43 17.61
50 1.54 2.80 2.64 4.09 5.21 9.71 12.43 15.20
54 1.40 1.61 1.79 2.23 4.22 5.40 9.02 11.38
58 1.43 1.61 1.76 2.15 2.81 4.70 6.28 6.79
62 1.40 1.58 1.64 1.89 2.009 3.29 3.73 5.72
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Table. 4.2. sd(v) as a function of w and v, for d=42 ms, x=3/4 staggered PRT transmission. Each
value is obtained from 800 simulations (20 simulations at each of the 40 velocity bins spread
uniformly across +0.8v,.) Units are m s'. (Data for Fig.4.2).

40 0.36 0.54 0.66 0.81 1.24 2.38 5.70 8.97
44 0.35 0.52 0.70 0.76 0.95 1.67 3.39 6.65
48 0.36 0.51 0.67 0.80 0.92 1.30 2.36 4.77
52 0.35 0.52 0.64 0.77 0.90 1.08 1.46 2.67
56 0.36 0.52 0.64 0.76 0.92 0.97 1.27 1.97
60 0.36 0.53 0.64 0.81 0.88 1.00 1.21 1.57
64 0.35 0.53 0.66 0.74 0.89 0.95 1.07 1.39
68 0.35 0.51 0.61 0.76 0.87 0.97 1.10 1.26
72 0.34 0.51 0.66 0.77 0.84 0.97 1.09 1.17

48 8.25 11.95 15.03 18.92 20.33 23.33 24.82 25.51
52 4.91 8.44 11.86 16.40 20.06 22.87 25.66 26.24
56 3.76 5.78 9.62 14.40 17.06 20.67 22.85 25.90
60 2.49 3.69 7.27 10.63 15.10 18.83 21.51 25.60
64 2.07 2.90 5.16 8.34 11.31 14.82 19.49 23.19
68 1.65 2.38 3.77 5.84 8.04 13.25 16.19 20.53
72 1.48 1.89 2.63 3.91 7.14 9.80 13.93 17.36

73



Table. 5.1a. The WSR-88D volume coverage pattern, vep-11.

volume coverage pattern-11

scan strategy - 1

Specification Number DV1208262D
Code Identification 56232

12 September 1994
short pulse

scan surveillance Doppler PRF #.
4 5 6 7 8

Elevation | AZ rate Period | WF PRF | No.of | No.of [ No.of | No.of | No.of | No.of
(deg) (deg/sec) | (sec) Type | # pulses | pulses | pulses | pulses pulses | pulses
0.5 18.7 1938 | CS 1 17 - - - - -
0.5 19.2 18.83 | CD - - 44 52 56 61 66
1.45 19.8 18.24 | CS 1 16 - - - - -
145 19.2 1883 | CD - - 44 52 56 61 66
2.4 16.1 2246 (B 1 6 35 ' 4‘1 i 43 46 50
3.35 17.9 2023 | B 2 6 35 41 43 46 50
43 17.9 2023 | B 2 6 35 41 43 46 50
5.25 17.5 2073 | B 3 10 35 41 ' 43 46 50
6.2 17.5 2073 | B 3 10 35 41 43 46 50
7.5 25.2 1438 | CD - - 34 41 43
8.7 254 1425 | CD - - 33 41 43
10.0 254 1424 1 CD - - 33 41 43
12.0 25.5 1422 | CD - - 33 41 43
14.0 255 14.19 | CD - - 33 41 43
16.7 25.6 1414 | CD - - 33 41 43
19.5 25.7 14.09 | CD - - 33 41 43

Default Doppler PRF numbers are shaded.

Abbreviations:

CS - contiguous surveillance.
CD - contiguous Doppler.
B - batch mode.
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Table. 5.1b. The WSR-88D transmitter power and timing parameters.

Transmitter peak power Transmitter loss Antenna peak power
750 kW 1.6t02.0dB 520 to 475 kW
PRF # PRF (Hz) PRT (us.) v, (ms™) Duty cycle x(10%)
T=1.57 ps. T=4.5ps.
1 321.89 3106.7 8.05 0.5 1.45
2 446.43 2240.0 11.24 0.7 2.01
3 643.78 1553.3 16.09 1.01
4 857.14 1166.7 21.43 1.35
5 1013.51 986.7 25.34 1.59
6 1094.89 913.3 27.37 1.72
7 1181.10 846.7 29.52 1.85
8 1282.05 780.0 32.05 2.01

Note: The WSR-88D has 5 PRF deltas. Delta C is the mid value, with A and E extremes varying by + 1.7 %. Pulse
widths are nominal with variation of about + 4 %. Engineering parameter variation could combine to produce a variation
in the above duty cycle of about + 5 %.
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Table. 5.1c. The WSR-88D volume coverage pattern, vcp-11
(Standard errors and dwell times for default PRTs.)
Specification Number DV1208262D
Code Identification 56232

12 September 1994
volume coverage pattern-11 scan strategy - 1 short pulse
scan CS,CD scans | dwell time @ Standard errors
(ms)

Elev. | AZrate | Period | WF PRF | No.of | CS CD |v, @sd(p) | sd(v) sd(w)
(deg) | (°/sec) | (sec) Type | “# | pulses |scan [scan | (ms™) | (dB) msh | (msh
0.5 18.7 19.38 CS 1 17 53 - 8.05 1.12 - -
0.5 19.2 18.83 CD 5 52 - 51.3 | 25.34 - 0.72 0.62
1.45 19.8 18.24 CS 1 16 50 - 8.05 1.2 - -
1.45 19.2 18.83 CD 5 52 - 51.3 | 25.34 - 0.72 0.62

24 16.1 22.46 B 1,5 6,41 | 184 |404 | 2534 (20,13 |09 0.66
3.35 17.9 20.23 B 2,5 6,41 | 134 404 |2534 |22,13 (09 0.66
4.3 17.9 20.23 B 2.5 6,41 | 134 [404 |2534 22,13 |09 0.66
5.25 17.5 20.73 B 3,5 | 10,41 | 153 |404 | 2434 |21,13 |09 0.66
6.2 17.5 20.73 B 3,5 | 10,41 [ 153 |[404 |2534 |21,13 |09 0.66
7.5 25.2 14.38 CD 6 43 - 424 | 27.37 1.2 0.87 0.64
8.7 25.4 14.25 CD 7 46 - 42 2952 |13 0.85 0.62
100 | 254 14.24 CD 7 46 - 42 29.52 |13 0.85 0.62
120 [ 255 14.22 CDh 7 46 - 42 2952 113 0.85 0.62
140 | 255 14.19 CD 7 46 - 42 2952 |13 0.85 0.62
16.7 |256 14.14 CD 7 46 - 42 2952 |13 0.85 0.62
19.5 | 257 14.09 CDh 7 46 - 42 29.52 |13 0.85 0.62
Notes:

(1) The default Doppler PRF numbers are used.
(2) The sd(p) pair is for the long and short PRT; sd(v) and sd(w) are for the short PRT.
(3) The standard errors are computed for spectrum width, w=4ms™.
Abbreviations: CS - contiguous surveillance.
CD - contiguous Doppler.
B - batch mode.
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Table.5.2. Scan parameters for staggered PRT scheme(x=2/3).

elv dwell | AZrate |range |7, T, M Vv, 2v /5 w(max)
(deg) | (ms) (°/sec) | (km)® | (ms) | (ms) (ms) | (ms") | (ms"H®
050 | 1043 | 042 |aeo 307|153 | 1630 [em 186
1.45 | 379 252 126 |32 |91 |79 226
| 101 |24 |2475 |990 |28
26 |3036 |1214 347
430 32 |3623 | 1449 |44
5.25 55.9 17.37 177 118|059 |38 [4237 |1694 |484
6.20 55.9 17.37 154 102|051 |44 |4870 |1948 |5.56
750 | 424 25.03 131 086 |043 |38 |5725 [2290 | 654
870 | 42.0 25.26 115 076 |038 |44 |6521 [2600 |7.45
1000 | 420 25.28 100 066 |033 |50 |7500 [3000 |8.57
1200 | 420 2532 85 056 |028 |60 |s8823 [3520 | 1008
1400 [420 | 2537 73 048 |024 |68 |10274 |4100 |1174
16.7 4.0 25.46 62 040 |020 |80 |12097 |48390 |13
19.5 420 2237 54 036|018 |92 |13880 |[5555 | 1587
Note:

(1) The maximum range is calculated based on a maximum height of 18km for all elevations except
0.5°, for which it is 16km.
(2) The values of w(max) are calculated for M=64.
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Table. 5.3. A proposed volume coverage pattern for the WSR-88D.

Proposed alternative to volume coverage pattern-11

Elev. | AZrate | Period | WFType |M | T,” | v, r, standard errors®”
(deg) | (°/sec) (sec) (ms) | (m/s) | (km)

sd(p) sd(v) sd(w)
(ms™) (ms™)

0.5 19.2 18.83 | SZ(8/64) |52 |0.78 | 32.05 | 234 1.53,1.87 | 1.02,1.29 | 0.68,1.37

1.45 19.2 1883 | SZ(8/64) |52 | 0.78 | 32.05 | 234 1.53,1.87 | 1.02,1.29 | 0.68,1.37

24 16.1 2246 | SZ(8/64) |52 |0.78 | 32.05 | 234 1.53,1.87 | 1.02,1.29 | 0.68, 1.37

335 17.9 2023 | SZ(8/64) |72 | 075 | 3333 | 225 1.31,1.88 | 0.85,1.27 | 0.66, 1.18

43 17.9 20.23 | SZ(@8/64) | 84 | 0.62 | 40.32 | 186 132,152 | 09,1.15 0.59, 1.41

s2s |175  |2073 |stem |38 |os0 |4237 [177 125 |oos 058
6.2 177.5 2073 | sty |44 |ost [4902 | 153 2 Io.9o 054
75 252 | 1438 |sTep) ‘ 0.44 | 5682 | 132 | 146 102|063
87 |254 |142s |sres) |4a Joss |es7o |14 [1s7 fos  |oeo

sT@3) |52 |033 [7576 |99 | 141 1.01 057

12.0 ST(2/3) 89.29 |- 84 1.53 1.02 l-0.61

89.291 T

140 | STE/3)
pEEm e B
195 [257  |1409 |stom | 8929 |84 |153 1oz
Notes:

(1) For the SZ(8/64) scheme, the standard errors are computed for w,=4 m s and w,=4 ms™. The standard errors pairs
are for the stronger and the weaker signals; p,/p,=20dB. For the ST(2/3) scheme, w=4 m s is used. The sample overlap
scheme (see Rep.-2) is used to increase M by 30% in computing standard errors in both schemes.

(2) The short PRT for the ST(2/3) mode is 27, . The Klystron duty cycle may limit the shortest PRT that can be used
at higher elevation scans.

Abbreviations: CS - contiguous surveillance (same as the original WSR-88D scheme).

SZ(n/M) - SZ phase coded contiguous Doppler.
ST(x) - Staggered PRT.
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