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al
V,, -
vil, v2 -
vml, vm2, etc. -

k™ spectral coefficient

speed of light

cross correlation of 1st and 2nd trip signals

complex modulation code [ C,=exp(j9,) ]

complex time series of Ist and 2nd trips

complex time series with 1st trip coherent and 2nd trip coded
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(_1)1/2
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SIGNAL DESIGN AND PROCESSING TECHNIQUES
FOR WSR-88D AMBIGUITY RESOLUTION

PART - 1

1. INTRODUCTION

The Operational Support Facility (OSF) of the National Weather Service (NWS) has
funded the National Severe Storms Laboratory (NSSL), the National Center for Atmospheric
Research (NCAR), and the Forecast Systems Laboratory (FSL) to address the mitigation of range
and velocity ambiguities in the WSR-88D system. This is the first part of the report on the
ambiguity resolution in WSR-88D. It documents the work done at the NSSL in the first year of
the project. Selected techniques that rely on spectral processing to sort out overlaid echoes are
investigated, and the best candidate is selected for further scrutiny.

1.1. Range and velocity ambiguity

The range to scatterers is found by measuring the time delay between a transmitted pulse
and its echo. If a transmitted pulse is part of an equi-spaced pulse train, the measured range is
ambiguous because the echo signal could be due to any one of the pulses transmitted earlier
(Doviak and Zrnic 1993). Therefore, the measured range, r, for a delay time, T, is given by

r=(n-1)cT/2+ct/2; 0<t<T

=(n-)r, +r,, (1.1)

where T is the pulse repetition time, ¢ is the speed of light, », is the unambiguous range, and
n is an integer or the trip number. Range ambiguity resolution is the determination of the trip
number, n. Equation (1.1) implies that the echo measured at delay time T could be due to any
one of the pulses transmitted earlier, or in other words, the echo is due to scatterers located at
any of the range cells corresponding to the time delay, [(#n-1)T+t]. One simple method of
determining the correct range is to choose T large enough to make r,=cT/2 encompass ranges
beyond which radar beam is about 16 km above ground so that no storms are intercepted, and
n=1 can be assumed safely. However, this is not an acceptable solution because it severely
curtails the velocity measurement capability of the radar.

The radial velocity of scatterers is obtained from the measurement of Doppler frequency,



J; The radial velocity of the scatterer is related to the Doppler frequency by

v, =- M)/2, (1.2)

where A is the free-space wavelength. By convention, scatterers moving away from the radar
have a positive velocity which produce negative Doppler shift. Because the echoes are discrete
samples taken at intervals, T, the maximum Doppler frequency that can be unambiguously
extracted from the sample sequence is given by

f.=1/(2T), (1.3)

which is known as the Nyquist frequency. A fully coherent radar can recover Doppler
frequencies within the interval £f,. Any frequency outside this interval is seen by the processor
as a measured Doppler frequency, f,, within the aliasing interval such that

Ji-fu =2 mf. (1.4)

Here, f,, is the actual Doppler frequency. The integer, m, is the aliasing interval number.
Therefore, the actual Doppler frequency is known only within an unknown integer, *m.
Corresponding to the unambiguous frequency interval, + f,, the unambiguous velocity interval
is tv,, where v,= M4T. Since both v, and r, are functions of pulse repetition time, 7, we can
combine them to get

r,v,=cA/8. (1.5)

Thus, if r, is increased by increasing T, v, decreases correspondingly. This is a fundamental
limitation of a pulsed Doppler radar transmitting uniformly spaced pulses. However, the problem
is overcome if means are found to determine the trip number, n, and the aliasing interval number,
im.

Discussions so far assume that the scatterers are located at only one of the several
ambiguous locations corresponding to the delay, [(n-1)T+1], and are moving with a certain radial
velocity. In a pulsed Doppler weather radar, the situation is somewhat more complicated because
the scatterers are precipitation particles that can be distributed quasi-continuously over a large
area (> 10* km?), and the dynamic range of the echo strength can be as large as 80 dB.
Therefore, the echo sample can consist of echoes from more than one ambiguous range cell. If
this is the case, the signals are said to be overlaid. Typical radial velocities encountered in
storms can span a +50 m s’ interval (Doviak and Zrnic 1993, p. 165, Fig. 7.4). The
unambiguous range requirement for a 10 cm wavelength weather radar, such as WSR-88D, is
about 460 km. Because of the curvature of the earth, the antenna beam would top most of the
storms at about this range. If T is chosen to obtain r,=460 km, the unambiguous velocity interval
is too small to effectively de-alias velocities using data processing techniques. On the other
hand, if 7 is chosen small enough to give at least £22 m s unambiguous velocity, the echo
signals from different range cells, corresponding to different trip numbers, n, may be overlaid.
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In this case, one needs to separate the signals and then estimate their spectral parameters.
Therefore, in the case of weather radar, ambiguity resolution must also include signal separation,
in addition to the determination of trip number n and aliasing interval number, m.

In general, it may not be necessary to determine both m and »n because if there is a
technique to determine the trip number, n, one can choose a T short enough to make v,
encompass all the expected values of velocities so that m can be safely taken to be zero.
Similarly, if there is a technique to find the aliasing interval, then T could be increased to yield
a larger r,. But echoes from subsequent pulses become less correlated as T increases, and
therefore, spectral moment estimates deteriorate (Doviak and Zrnic 1993). At a 10 cm
wavelength and a spectrum width of weather signals of 4 m s (the median in severe storms),
the decorrelation time (lag at which the correlation is ¢/%) is about 2 ms, and the corresponding
r, =300 km. Therefore, overlaid echoes are inevitable, and some kind of pulse to pulse coding
(in time, frequency, phase, amplitude, polarization, etc.) or some a-priori information about the
echoes, must be used to sort them.

Several methods which seek to ameliorate the problem of range and velocity ambiguity
have been reported in the literature. Notable among them are (a) staggered PRT scheme (Zrnic
and Mahapatra 1985) which can be considered as time coding, (b) random phase coding (Zrnic
and Mahapatra 1985), (c) systematic phase coding (Sachidananda and Zrnic 1986), and (d)
polarization coding (Doviak and Sirmans 1973). A radar that alternately transmits horizontally
and vertically polarized waves can increase the unambiguous range by a factor of 2 (Zahrai and
Zrnic 1993).

All these methods fall under the category of signal design and processing. There are other
techniques developed to obtain aliasing interval information based on the continuity of velocity
fields and/or knowledge of environmental winds. These techniques are implemented after fields
of velocity are collected and can be classified as data field processing techniques.

The WSR-88D transmits pulses at two PRTs on sequential azimuthal scans or adjacent
radials. The long PRT mode is for estimating the reflectivities over a large range, and the short
PRT is for velocities over a smaller unambiguous range interval. In this scheme, unambiguous
reflectivity information obtained in the long PRT scan is used to assign appropriate trip numbers,
n, to signals in the short PRT scan. But in the case of overlaid echoes, only the stronger one is
recovered in the WSR-88D signal processor. Further spectral processing could often recover the
weaker echo as well. For example, the signal in the short PRT scan can be analyzed to locate
peaks in the spectral domain and assign appropriate ranges to the corresponding velocities using
the reflectivity information available from the long PRT scan. Such techniques fall in the
category of spectral peak sorting, or simply peak sorting.

This report deals with signal design and processing techniques and examines methods that
utilize a uniform PRT sequence with a sufficient number of samples for meaningful Fourier
analysis (typically 64). Specifically, the following three are studied: (a) peak sorting, (b) random
phase coding, and (c) systematic discrete phase coding. An in-depth simulation study has been
carried out to evaluate their potential for possible implementation on the WSR-88D radar.

Except for peak sorting, the other two methods fall under the category of pulse to pulse
coding or modulation. The main idea behind coding is to imprint some signature on the return
signals corresponding to different transmitted pulses. These signatures are used to decode or
separate the signals belonging to different trips. The methods (b) and (c) are different to the



extent that the code sequence is chosen differently, and an appropriate decoding scheme is
evolved based on the properties of the modulated spectrum.

The report is organized in the following manner. In section 2, weather signal simulation
procedure is discussed, along with the methodology for evaluating the algorithms developed for
range and velocity ambiguity resolution in the presence of overlaid echoes. Then, in the
subsequent three sections, several algorithms are discussed including the simulation results on
the performance of the algorithms. In simulating the weather signal time series and in
comparison of the methods of ambiguity resolution, the following assumptions are made:

a) the ground clutter is absent

b) the noise is absent

¢) the window effect is absent

d) the spectra have a Gaussian shape

e) only the Ist and 2nd trip signals are present in the time series.

The decoding algorithms presented in this report are also developed with these
assumptions. In practice, several of these effects, such as the window effect, the ground clutter,
the noise, etc., are present and have to be accounted for in the algorithms. However, these are
common to all, and would affect all the methods in some way or other in limiting their
performance; hence they were neglected in evaluating the relative performance of the methods
in order to identify the best one. These assumptions help bring out the basic capability of the
methods which otherwise would be masked by some of these effects. The effect of the signal-to-
noise ratio, the window effect, the ground clutter, and many more practical aspects of
implementation of the algorithm on the WSR-88D are analyzed in Part 2 of this report where the
selected method is scrutinized in much greater detail.

The WSR-88D in the present configuration can be operated in two different volume
coverage patterns (vep-11 and vep-21), and in both, several preset PRT values are used which
can be grouped as long PRT and short PRT. The long PRT is about 3 ms, and the short PRT is
selected from a pre-defined set of values between 0.7 and 1 ms. The long PRT scan is called the
surveillance scan (CS) and the short PRT scan is called the Doppler scan (CD). The volume
coverage includes an azimuth scan of 360° at discrete elevation angles from 0.5° to 19.5°
degrees. At the lowest two elevations (0.5° and 1.45° ), two scans each (CS and CD) provide
reflectivity to about 460 km and velocity to about 115 km, if there are no overlaid echoes. The
number of samples available for spectral parameter estimation is about 16 to 17 samples in the
long PRT scan and 44 to 66 samples in the short PRT scan, in the vep-11 mode. In the vep-21
mode, the number of samples is 28 for the CS scan and 75 to 111 for the CD scan.

In the scans at elevations 2° to 6.5°, the long and short PRT are used in alternate
radials in each scan, called batch mode (B). The number of samples available for spectral
parameter estimation is 6 to 10 with the long PRT, and 35 to 50 with the short PRT, in vcp-11.
The corresponding numbers are 8 to 12 and 59 to 88 for vcp-21. Above 6.5° elevation, only the
short PRT Doppler scan is used.

In the lower elevation scans (< 6.5°), the velocity recovery is hampered by overlaid
echoes. The aim of this study is to evolve a solution to this problem. From the assumption (e)
given above, it is obvious that the ambiguity resolution methods considered can, at best, extend



the range to only two trips. And if the unambiguous velocity is to be near 35 m s, this
extended range would be about 230 km. In the two lowest elevation scans, the unambiguous
range requirement is about 460 km for the reflectivity; therefore, the long PRT scan must be
retained. This leads us to the possibility of using the information from the long PRT scan data
in ambiguity resolution algorithms applied to short PRT data. However, in the intermediate
elevation scans (2° to 6.5°), the antenna beam tops a typical storm within the first two trips
(about 230 km). Hence, there may be a possibility of replacing the batch scan with the
Doppler scan, if the algorithm is able to extract all three spectral parameters of both the 1st and
the 2nd trip echoes, with the required accuracy. Therefore, the methods of ambiguity resolution
presented in this report are developed as stand-alone methods (not using long PRT data),
whenever possible. But some methods are based on the availability of the long PRT data and
cannot operate in a stand-alone mode. This is indicated in each algorithm.



2. SIMULATION STUDY.
2.1. Weather radar signal simuiation.

In order to test the effectiveness of techniques for mitigating the range and Doppler
ambiguities, it is desirable to make tests on overlaid radar signals. Comprehensive tests are
necessary but are practical only on simulated radar signals because only with simulation can the
actual individual signal parameters (i.e., the mean power, mean velocity, and spectrum width)
be accurately known. The recovered parameters can be compared with the specified input
parameters to determine the error in the estimates. However, the inferences drawn by this study
can be meaningful only if the simulated weather spectra truly represent the radar signals from
storms. Zrnic (1975) gives a procedure to simulate the weather signal on a digital computer
using a random number generator available in most computers. The complex sample, E, in a
time series can be expressed as a discrete Fourier series;

M1
E =1/M % PMexp(j6,) exp(2nki/M). (2.1)
H

Here, P, is the exponentially distributed instantaneous power of the signal plus noise in
the k™ spectral coefficient. The signal part is frequency dependent, and the noise part is white;
6, is a uniformly distributed phase; and P, and 0, are statistically independent. With S, as the
signal power and N, as the noise power, in the k™ coefficient P,, the probability density of P,
can be written as

PP} = 1/(Se+Ny) expl-P/(Sp+N))]. (2.2)

This is the basic equation used in the simulation of weather spectra. The steps include the
generation of a Gaussian shaped S, and adding a noise to get the desired signal-to-noise ratio
(SNR). These coefficients are multiplied by the logarithm of a uniformly distributed random
number (0 to 1) to get P,. The phases, 6,, are generated from the same uniform number generator
but are independent.

This procedure was followed to generate weather signal spectra, and the inverse discrete
Fourier transform (IDFT) was used to obtain the time series. To simulate the window effect, a
very long time series is generated, and a short part, of length M, is taken and multiplied with
appropriate weights. The window effect is not very critical in the evaluation of algorithms
because it increases the spectrum width by a small amount. Simulating the window effect takes
more computer time because long time series need to be generated. Therefore, for initial
evaluations, the window effect was not included. The velocity aliasing is simulated by generating
a time series without aliasing and then selecting alternate samples to simulate one-time aliases.
Multiple aliasing is simulated by dropping n samples after each selected sample.

The program developed for time series simulation, "TSR1.M", has mean power, velocity,
spectrum width, and number of samples, M, as the inputs. The output is a time series of complex
samples (i.e., in-phase samples, /, and quadrature samples, Q) of length M. Three other



parameters, SNR, transmitter frequency, and PRT, are also included as inputs but are normally
kept constant for most of the simulation. Although noise level is included in the time series
simulation program, it is set to zero ( SNR = infinity ) in all the simulation studies presented in
this report. Fig. 2.1 shows typical simulated in-phase and quadrature components of the time
series and the spectrum. The parameters used for generating the signal are given in the figure.

The program, "TSR2.M", combines two time series, the 1st and the 2nd trip signals, into
a single overlaid time series. The inputs to this program are the 1st and the 2nd trip parameters
and the time series length, M. The program is made general so that any coding scheme can be
implemented. The output time series has a coherent 1st trip, and the 2nd trip signal is coded.
The options provided for the second trip coding are: (a) no coding, (b) ©/4 and n/2 phase coding
(Sachidananda and Zrnic 1986), (c) coding with a fixed predesigned random code, (d) phase
code derived from ¢,=(nmk’/M) with n as input (Chu 1972), and (e) internally generated random
phase code every time it is called. In case (d), M is the time series length, and »n is chosen as
nearly prime to M (i.e., M is not divisible by n). This gives a phase code sequence, ¢,, which
has cyclic autocorrelation zero for all lags except O. If n is chosen such that M is an integer
multiple of #n, the code has a special property that its autocorrelation is non-zero and equal only
for some discrete values of lags, and is zero for the rest. The w/4 code (Sachidananda and Zrnic
1986) is one such code which can be derived from this expression (i.e., n/M=1/2). The outputs
of the program (TSR2.M) are a time series and the code sequence (except for option "a") which
is required for processing. Thus, two overlaid signals of known spectral parameters can be
obtained from this program. A sample spectrum of overlaid signal is shown in Fig. 2.2, as
obtained from the simulation program.

In order to see how good our simulated signal is, we selected a nearly Gaussian-looking
weather data from WSR-88D and generated a time series using the simulation program with the
same spectral parameters. The two spectra are compared in Fig. 2.3, which shows a fairly good
match.

2.2. The autocovariance algorithm,

When the echo signal is from a single range cell (i.e., no overlaid signal), the mean
velocity is commonly estimated using the phase of the autocorrelation, R(1), for one PRT lag.
The autocorrelation R(1) is estimated from the complex samples, E; = I, + jO,, using the formula,

A M-1
R(1) = (1/M) )y Ei* Ei+1 » (2.3)

=0

and the mean velocity estimate is obtained from

¥ = - OJART) arg{ R(1) } . (2.4)



simulated weather signal
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Fig. 2.1. A typical simulated weather signal; time series and frequency spectra. (a) the in-phase
component, I, (b) the quadrature component, Q, (c) the magnitude spectrum, sl=N(P+0?), (the square root
of the power spectrum on linear scale), (d) the power spectrum (dB scale).



simulated overlaid weather signal spectra
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Fig. 2.2. A typical frequency spectra for simulated overlaid signals. (a) the 1st trip signal, (b) the 2nd
trip signal, (c) the spectra of 1st and 2nd frip signals overlaid.
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Fig. 2.3. A comparison of simulated weather spectrum with the spectrum of the data gathered from WSR-
88D (WSR-88D data, courtesy: Frank Pratte, NOAA, FSL).

10



Here, the argument is in radians, and the velocity is in m s™. The symbol * represents a complex
conjugate, and the symbol A denotes an estimate. This is commonly called autocovariance
processing. The other two spectral parameters (i.e., mean power, p, and spectrum width, w) are
estimated using the expressions given below. (see Doviak and Zrnic 1993 for details.)

A M-1

p=0MXIEF, 2.5
and

W= OV20TV2) L (p / IR(1) ) 2 sl In ( p / IR(DD] . 2.6)

In this study the computation of these three parameters is carried out in one program and is
referred to as an autocovariance processor (program "pp.m").

When spectral coefficients are available and not the time series, the autocorrelation R(1)
can be computed from the spectral coefficients directly, without a transformation to the time
domain, using the relation,

R(1) = (/M) 18 exp(2milM) . @2.7)

i=0

In some of the algorithms discussed, there are situations where spectral coefficients are used for
computing the autocorrelation (as well as the three spectral parameters) using the program
"pps.m." This also is referred to as an autocovariance processor in this report, and no distinction
is made between the two because both yield the same results.

2.3. Procedure for evaluation of algorithms.

The reflectivity, velocity, and the spectrum width are the three spectral parameters that
need to be recovered for both the 1st and the 2nd trip echoes when they are overlaid. Of these
three, velocity of the weaker signal is the most difficult to extract, and this is often the most
important parameter of interest. Reflectivity, however, can be obtained from long PRT scan
data, as is done in the WSR-88D radar. Spectrum width information is not used as often as the
other two parameters. Thus, the recovery of velocity of the weaker signal decides the limit of
usefulness of the algorithm. It is also observed during the course of the simulation study that the
reflectivity of the weaker signal can be recovered over a larger dynamic range of overlaid signal
power ratios than the velocity. Therefore, the error in the recovered velocity of the weaker signal
is the parameter that is extracted in all the simulation runs. The errors in all other parameters
(i.e., mean powers and widths) also are recorded over a large number of simulation runs. The
commonly accepted error limits in the estimates are 1 dB for reflectivity, and 1 m s™ for velocity
and spectrum width. These limits are used in deciding the usefulness of the algorithms and in
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comparing the different algorithms. It may be noted here that the reflectivity and the mean
sample power are directly related but are not same. In all the simulations, the mean power is used
and not the reflectivity, because the 1 dB accuracy required for the reflectivity estimate applies
to the mean power estimate as well.

The error in the estimated velocity, as well as in the other parameters, depends on several
factors, such as the spectrum width, noise level, window effect, number of samples in the time
series, and the ability of the algorithm to recover the parameters. To separate these effects, and
to evaluate the performance of the algorithm alone, first the number of samples, M, is taken to
be large (M = 256) in simulation, and the noise level is set to zero. The window effect is also
not included in the simulated time series. The variance of the velocity estimate, due to the
spectrum width, cannot be removed because it is intrinsic to the signal, but for large M, it is
within the specified limits. The signal parameters varied in the simulation study are the overlaid
signal power ratio, pl/p2, the velocity difference, (v/-v2), and the spectrum widths of the two
signals. For each set of parameters, several signal realizations were used to generate scattergrams
of the error in the recovered velocity, v2, as a function of the variables of simulation. From these
plots, limits of the algorithm were extracted. Later, to determine the practical limits of the
algorithm, similar sets of simulations were run with M=64, which is about the maximum number
of samples available in WSR-88D radar in the present working mode (vcp-11). In all
simulations, the frequency is 3 GHz, and the PRT is 0.7812 ms. This choice gives an
unambiguous range of 117.2 km and a Nyquist velocity of 32 m s, In the presented data, the
spectrum width can easily be normalized, with respect to the Nyquist velocity, to make
inferences for a different Nyquist velocity.

Based on the results obtained on the performance of the algorithms (using M=64), a
comparison was made to select a most promising method to recover the velocity of the weaker
signal.

2.4. Programs.

The software, MATLAB, has been used for all the simulation work. The software was
selected for its compact programs and matrix manipulation capabilities. Several signal processing
functions are also available in the package which is very convenient for simulation work.
Efficient 2-D as well as 3-D plot routines are also handy in graphical presentation of the results.

The programs developed for the simulation study of the algorithms are listed below with
a brief explanation. Only important ones are listed; a large number of programs for generating
the data and graphics are not included.

Simulation and decoding programs.
1. tsrl.m Generates a simulated time series with the specified
parameters, mean power, mean velocity, spectrum width,

frequency, PRT, number of samples, and SNR.

2. tsr2.m Generates overlaid signal time series. 1st and 2nd
trip parameters and the coding to be specified.

12



10.

11.

12.

13.

14.

15.

16.

17.

pps.m

mfltr.m

spc.m
rmdm.m
piby2.m
piby4.m

msdz.m

testspc.m
testrndm.m
testms2.m
testmsdz.m
testms4.m
coder.m

Pps2.m

Autocovariance algorithm. Outputs power, velocity,
and spectrum width, with time series as input.

Equivalent of autocovariance algorithm with spectra
as input.

Smoothing or running average filter. Filters an input
sequence with a specified filter length.

Peak sorting algorithm.

Decoding algorithm for random phase coded signal.
Decoding algorithm for ©/2 phase coded signal.
Decoding algorithm for ©/4 phase coded signal.

Decoding algorithm for a systematic code
based on exp(jnmk’/M).

Program to test the peak sorting algorithm.

Program to test the random phase code algorithm.
Program to test the /2 phase code algorithm.

Test program for msdz.m

Test program for the /4 phase code algorithm.
Program used for optimizing the random code sequence.

Autocorrelation processor for lag 2 computed in the
spectral domain.
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3. PEAK SORTING METHOD
3.1. Introduction.

This method requires a processor "capable of the necessary computations in real time.
Since no coding is employed at the transmitting stage, one has to depend on the available
information about the signals to determine the mean velocities of the overlaid signals. The
WSR-88D radar in the present configuration has a long PRT scan and a short PRT scan. The
long PRT scan gives unambiguous reflectivity data over a 460 km range. This information can
be used to assign the correct ranges to the estimated velocities of signals overlaid in the short
PRT scan. That is, a comparison of powers associated with distinct spectral peaks, observed in
the short PRT scan, with the powers from the long PRT scan, at ranges corresponding to T and
(t+7) of the short PRT, is made to assign the velocity to proper ranges.

An assumption made in developing this algorithm is that the spectra have a Gaussian
shape, which is an approximation for weather spectra. To recover spectral peaks with reasonable
accuracy from a signal spectrum having considerable variance in each of its spectral coefficients,
it is necessary to smooth the spectrum. However, smoothing the spectrum also smoothes the
peaks and increases the width. The smoothing filter parameters have to be optimally chosen such
that true peaks are not lost in the process of filtering and false peaks are kept to a minimum. The
developed algorithm essentially locates and sorts the peaks in the spectral domain and assigns
appropriate ranges to these velocities based on the data available from the long PRT scan. We
assume that only 1st and 2nd trip signals are present in the spectra in developing the algorithm,
It can easily be extended to a three or four trip signal overlay within certain restrictions.

3.2. Conceptual development.

The basic idea behind the development of this algorithm is that if two weather signals
having Gaussian shaped spectra are present in a time series, these two peaks can often be
identified in the spectral domain by a human observer, provided they are distinct. When the two
spectra overlap, peaks may not be distinguishable. But based on the a-priori information
available from the long PRT scan (i.e., aliased velocities can be computed from long PRT data),
a decision can be made to assign the same velocity to both signals. Of course, there is an
amount of error in this assignment when the velocities are close but not the same. How close the
velocities can be before they merge into a single spectrum depends on the relative power levels
of the two signals.

The first task, in developing the algorithm, is to locate the peaks of the spectrum. While
a human observer can often locate the peaks by observing the shape of the spectrum, automatic
recognition needs a computational procedure to locate the peaks. To avoid the computer selecting
a local peak (associated with statistical fluctuations) rather than the global peak (associated with
peaks of assumed unimodal spectra), it is necessary to first smooth the spectrum so that random
fluctuations are reduced. Based upon extensive experimentation, a weighted running average filter
applied to the magnitude of spectral coefficients is chosen as the smoothing filter, Note that the
smoothing process preserves the power in the spectrum only approximately, and hence, the
spectrum may not give a correct mean power estimate after smoothing. However, this is not a
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problem since the reflectivity data is obtained from the long PRT scan, and it is sufficient to have
approximate power estimates to identify the ranges. More important criteria would be the
selection of the smoothing filter width and the weights. The performance of the algorithm is
dependent on these parameters to a large extent. An ideal choice would have matched Gaussian
shaped weights for the filter. Although spectrum width is estimated in the long PRT scan and can
be used to obtain matched filter coefficients, here we have adopted an approach which does not
make use of the width information. The main reason is that signals with different widths are
involved. For practical implementation, it is convenient to have a fixed width and weights for
the filter, although it may not be the best in all cases. Another advantage of a fixed filter width
is that its effect on the power and spectrum shape can be evaluated and compensated, if required.
A near optimum filter of fixed width and shape can be obtained by an experiment on simulated
weather signals with a median width of 4 m s, The optimum filter parameters (i.e., number of
coefficients and weights) are functions of the time series length, M, and the unambiguous
velocity or the PRT. The requirement of smoothing is such that it should remove random
perturbations while retaining the shape and distinct global peaks in the spectrum.

After smoothing, first the largest peak of the spectrum is located and several coefficients
on both sides of the peak are selected such that the magnitude of the coefficients at the ends is
approximately 0.8 times the peak value. Then a Gaussian shape is fitted (i.e., least squares fit)
to these coefficients. Thus, the peak of the fitted Gaussian curve gives the mean velocity of the
strongest of the signals. To find the next peak, the Gaussian fitted spectrum is subtracted from
the original spectrum before the second peak is located. The subtraction significantly enhances
the probability of locating the peak of the second signal. This process is repeated further to locate
third and fourth peaks. If the long PRT scan indicates significant power returns from more than
two trips, the velocities of these also might be recovered. But the reason for locating more than
two peaks is for more reliable recovery of the velocity data of the first two trips and not for
recovering third and fourth trip velocities. Also the largest powers are not necessarily associated
with 1st and 2nd trip echoes. One or both could be from 3rd and 4th trip. The long PRT data is
used for assigning the correct trip numbers. Of the three or four peaks recovered, only two with
the largest powers associated with them are selected. Note that when the peaks are sorted in
decreasing order, the associated powers are not necessarily in the decreasing order because power
takes into account the width, but the peak does not. If the peak is spurious with large amplitude
and narrow width, the power associated with it will be small and hence, will be eliminated by
the algorithm.

A measure of the spectrum width is also obtained from the fitted Gaussian shape. It
should be noted that the width parameter does not directly correspond to the spectrum width of
the original signal because of smoothing. Alternatively, spectrum width can be computed from
the long PRT data, and this procedure is adopted in the algorithm.

A point to note here is that the magnitude spectrum is used for processing, and the curve
fitting is done with a Gaussian shape function, [exp(-lv-v,,*/2w?)]"*. However, the spectral shape
of the signal may not match the Gaussian shape because of the smoothing filter which changes
the shape of the spectra to some extent. Therefore, this is another reason for mismatch in the
shape in addition to the variability of the shape of weather spectra. The choice of processing in
the magnitude domain was based on the results obtained (not given here) with three different
options: power spectra, magnitude spectra, and square root of magnitude spectra. For a mean
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width of 4 m s}, processing in the magnitude domain performed the best. In the power domain,
the ratio of two distinct peaks is the largest, and in the square root of magnitude domain it is
the smallest. However, the width of the signal spectra is largest in the square root of magnitude
domain and smallest in the power domain. For best performance, both ratio and width should be
small, which is a conflicting requirement. Simulation studies showed that a compromise choice
of magnitude domain performs the best for practical parameters.

The spectral processing steps are shown pictorially in Fig. 3.1, Fig. 3.2, and Fig. 3.3, in
which a series of spectra are given at different stages of processing. In Fig. 3.1, two signals are
taken with a power ratio of 10 dB, and the velocities are widely separated. The two spectra, with
distinct peaks, can be seen clearly in Fig. 3.1(a). The smoothed spectrum is shown in Fig. 3.1(b),
along with the Gaussian shaped fitted curve to the largest peak in the spectrum. The fitted curve
is drawn with dashed lines. The spectrum in Fig. 3.1(c) is obtained after subtracting the fitted
coefficients from the spectrum shown in Fig. 3.1(b). The dashed curve in Fig. 3.1(c) is a fitted
curve to the second largest peak. Similarly, the steps are repeated in Fig. 3.1(d) and (e) to locate
the 3rd and 4th peaks. The next two cases, Fig. 3.2 and Fig. 3.3, are for the same power ratio
but for a different velocity separation (see figure for parameters). If the velocity separation is
8 m s, the second peak is still recoverable. However, for a separation of 4 m s, the two spectra
merge into a single one and the algorithm is not able to recover the second peak correctly. There
are also cases (not shown) where the perturbation in the Gaussian shape is large enough to
generate a large false peak, which the algorithm will misclassify as the correct second signal.

The last task is to assign the velocities to the proper ranges. Here, several strategies can
be adopted based on how much information is available from the long PRT scan. The present
data acquisition procedure of WSR-88D collects about 16 to 17 samples per gate in the long PRT
scan, and only reflectivity or the mean power is computed from these samples. If additional
processing were done to recover the spectrum widths and aliased mean velocities, then the task
of the peak sorting algorithm in the short PRT scan would be much easier. If not, we have to rely
on only the mean power estimates to assign appropriate ranges to the recovered velocities. The
probability of error can be significantly reduced if the additional processing is implemented. This
is very important because locating the peak can fail if the spectrum shape does not conform to
a Gaussian shape. For example, a perturbation in the spectral shape of a strong signal can contain
more power than a weak signal that we are trying to recover, and the algorithm would select this
perturbation as a signal rather than the weaker one. Such spurious peaks can be minimized
if aliased velocity information is available from the long PRT scan. Another situation where the
velocity information from long PRT data is useful is when the 1st and 2nd trip velocities are very
close. The overlapped spectra will merge to produce a single peak, and these cases can be
identified using the velocity data from the long PRT scan.

Since the scan rate of the antenna is the same for long or short PRT transmissions, the
ratio of the number of samples for estimation equals the inverse ratio of the PRTs. Thus, the
variance of the spectral parameters estimated using the long PRT scan data has a larger value
than the variance of the data obtained with the short PRT. However, before deciding which data
to use for spectral parameter estimation, it is important to look at the practical values. The typical
number of samples available in the present WSR-88D scan is about 64 with the short PRT and
about 16 in the long PRT scan. The standard error of the velocity estimate using 16 samples is
about 1.6 m s, for large SNR. (Doviak and Zrnic 1993, Fig.6.5, p. 134.) For this calculation,
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Fig. 3.1. Steps in the peak sorting algorithm; velocity separation is 28 m s?, and v;=32 m 5. (a)
magnitude spectrum of overlaid signal, (b) smoothed spectrum after Gaussian weighted running average
filter (continuous line) and the curve fitted Gaussian shaped spectrum for the largest peak (dashed lines),
(c) spectrum after subtracting the strongest signal spectrum (continuous line) and the Gaussian shaped
spectrum fitted to the second peak, (d) & (e) the same steps repeated for the 3rd and 4th peaks in the
spectrum. Magnitude (y-scale) is the square root of the power.
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Fig. 3.2. Steps in the peak sorting algorithm. The steps are similar to those given in Fig. 3.1. The
velocity separation is 8 m s,
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Fig. 3.3. Steps in the peak sorting algorithm. The steps are similar to those given in Fig. 3.1. The velocity
separation is 4 m s,
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we have assumed PRT =3 ms and a spectrum width of 4 m s'. This is quite adequate to
determine aliasing interval alone, and correct the velocity data. The reflectivity and the spectrum
width can be estimated from the long PRT scan.

3.3. The peak sorting algorithm.

The peak sorting algorithm is given below, step by step. It is assumed that the ground
clutter, window effect, and noise are absent from the signal, and the time series consists of 1st
and 2nd trip signals alone. The variables are the spectral parameters of the two signals. [ This
algorithm uses the long PRT data. It is also assumed that all three spectral moments are
estimated from the long PRT data.]

O START of the algorithm

1. Input time series E; ; i=1,2,3,... M.

2. Compute magnitude of the spectral coefficients, | s, | = | DFT{ E; } |.

3. Running average filter with Gaussian weights, SI,=GWF{ | s, 1} .

4. Locate the largest coefficient, S,, and select K coefficients around this peak.
5. Fit a curve S, {exp(-lv-v,/2w*}* to these K coefficients.

6. Compute the mean power and mean velocity from this fitted curve.

7. Generate complete set of coefficients G, , from the fitted curve and subtract
from the smoothed spectrum S/,. S2,= S, - G,.

8. Repeat steps 4 to 7 three more times with residual spectrum S2, as the input
or until no peaks are found. Rearrange powers in decreasing order and associate
the corresponding velocities.
powers . pml, pm2, pm3, pm4 (decreasing order)
velocities : vml, ym2, vm3, vind

9. Compute power and the probable velocities of 1st and 2nd trip signals from the long PRT data.
vpl()=[vl, vi+2v,, vI-2v,, vi+dv,, vi-4v,], pwl - 1st trip.
vp2()=[v2, v2+2v,, v2-2v,, v2+dv,, v2-4v ], pw2 - 2nd trip.
[note: This computation is actually done during the long PRT scan, and only the final data is
passed on to the algorithm. The long to short PRT ratio is about 3 to 4 in WSR-88D, hence +4v,,
is used as the maximum velocity interval.]

10. Match the power and the velocities with the recovered parameters to pick the
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correct velocities for both the trips.

a) if pwl > pw2,
assign vpl(i) closest to vimnl, to 1st trip.
check for overlapped spectrum:
if vi-v2l < 1 m s, assign vp2(i) closest to vml to 2nd trip
else
assign vp2(7) closest to vm2 to 2nd trip.

b) if pw2 > pwl,
assign vp2(i) closest to vml to 2nd trip.
Check for overlapped velocities:
if vI-v2l < 1 m s assign vpI(i) closest to vml to 1st trip
else
assign vpl(i) closest to vm2 to 1st trip.

11. Assign reflectivities and widths to 1st and 2nd trips from long PRT data.

<<< ---- END of algorithm

The major CPU time in this algorithm is for the DFT, smoothing filter, and curve fitting.
Step 9 uses autocovariance processing on two time series.

3.4. Simulation study and results.

The algorithm given in the previous section was programmed in MATLAB code, and
extensive simulation runs were carried out to establish its usefulness. The test program generates
two long PRT time series with a length of 16 samples, and estimates the spectral parameters of
both using the autocovariance processor. Then, with the same input parameters, a short PRT
time series with 64 samples is generated in which the two signals are overlaid. This time series
is processed by the peak sorting algorithm to recover the mean velocities of the two signals. The
nature of the algorithm is such that it either recovers the velocity correctly, or a wrong value is
assigned. Therefore, it would be appropriate to assign a success rate rather than to evaluate the
performance of the algorithm by the standard error in the recovered velocities. It was shown
earlier (section 3.2) that the success of the algorithm depends on the velocity difference and also
on the power ratios. It is a weaker function of spectrum widths. Therefore, p//p2 and (vI-v2) are
taken as two variables, and the widths are kept constant in simulation. A typical width of 4 m
s is assigned to both signals, and for each set of parameters the simulation program was run 100
times. A successful recovery of velocity is assigned a value, 1, and 0 is assigned for failure. The
ratio of the total number of ones to the number of trials, multiplied by 100, is taken as the
percentage of success.

The rate of success in recovering the of velocity of the stronger signal is nearly 100
percent; hence it is not shown. The success rate for the weaker signal is shown in Fig. 3.4. The
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Fig. 3.4. Rate of success in the recovery of v2 as a function of (vI-v2) and pI/p2 for wl = 4 m s™ and
w2 =4 m s, The peak sorting algorithm was used to recover the velocity, v2, from a simulated overlaid
time series. Each rectangle is the percentage success obtained in 100 simulation runs with input
parameters given along the axes. The gray shade scale at the right indicates the quantized value.
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Fig. 3.5. Rate of success in the recovery of v2 as a function of (vI-v2) and p1/p2 for wl = 2 m s and
w2 =2 m s, (similar to Fig. 3.4. for narrower spectrum width).
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rate of success is quantized, and a gray shade is assigned to each cell. The gray scale at the right
shows the values. A similar set of data generated for both signals with 2 m s width is shown
in Fig. 3.5, where the success rate is considerably higher. However, Fig. 3.4 is more
representative of the results that can be expected in actual storms because 4 m s' is
approximately the median width observed in severe storms (Doviak and Zrnic 1993, chapter 10).
From Fig. 3.4, it can be concluded that approximately 50 percent success can be obtained if the
power ratio is below 20 dB. This is not a significant improvement, nevertheless the velocity of
at least the stronger signal is nearly always recovered. This accounts for at least 50 percent
improvement in removing the purple haze in the first two-trip range interval. There is always
an uncertainty in the recovered velocity of the weaker signal.

3.5. Conclusions.

The peak sorting technique presented in this section does not use coding. The radar is
operated in the dual PRT mode, a long PRT scan followed by a short PRT scan, as done in the
WSR-88D. The peak sorting algorithm uses the mean velocity and spectrum width estimates from
the long PRT scan data, in addition to the reflectivity (or mean power) estimates. The long PRT
scan data is used in assigning correct ranges to the recovered velocities based on the spectral
power estimates. The algorithm is able to recover the velocity of the stronger of the 1st and 2nd
trip signals nearly 100 percent of the time, and the weaker one if the velocity difference is large
and the power ratio is less than 20 dB. There is an uncertainty in the recovered velocity of the
weaker signal which cannot be removed easily. Therefore, we cannot use the weaker signal
velocity confidently all the time.

Since the stronger signal velocity is always recovered correctly, the peak sorting
algorithm can remove 50 percent of the purple haze from the 1st and 2nd unambiguous range
intervals.
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4. RANDOM PHASE CODING
4.1. Introduction.

The random phase method was first conceived for reducing the ground -clutter
contamination of the second-time-around weather echoes (Zrnic 1979; Laird 1981). Later, it was
proposed as a method for separating the overlaid echoes (Siggia 1983). A detailed investigation
was carried out by Zrnic and Mahapatra (1985), who also made a comparative study of the
staggered PRT technique and the random phase technique.

In the random phase technique, the transmitted pulses are phase coded in a random
sequence. The phase sequence is digitally stored and is used for recohering the return signals by
appropriately correcting for the phase shifts incorporated during the transmission. The main idea
behind the scheme is that when a sample sequence is phase shifted randomly, the resulting
spectrum would be like a white noise spectrum. Thus, when a sample sequence is cohered for
the 1st trip signal, the overlaid second and higher order trip signals would appear as white noise
and would not bias the velocity estimate. However, the signal-to-noise ratio (SNR) would be
degraded due to the overlaid power appearing as noise (In this case, effective SNR would be the
ratio of the coherent signal power to the whitened signal power plus noise). Further, the mean
signal power and the spectrum width estimates would be biased. The estimated power will be the
sum of the power from both trips, and the width would be larger because of the larger noise
level. The time series can be cohered for any of the overlaid signals, and its spectral parameters
can be recovered, provided the SNR is sufficiently high for that trip signal. Obviously, in any
given situation, mean velocity of only the strongest of the signals can be recovered if no further
processing is done. Zrnic and Mahapatra (1985) have given a procedure for adaptively filtering
the stronger signal to improve the effective SNR of the weaker signal.

In the adaptive filtering procedure, the coherent stronger signal is filtered out using a
variable width notch rejection filter, and then the remaining part is cohered for the weaker signal.
This effectively improves the SNR for the weaker signal, and if it is sufficiently high, the mean
velocity of the weaker signal can be estimated accurately.

The method outlined in this section is similar to that reported in Zrnic and Mahapatra
(1985), but with some modifications and additional steps, to further improve the SNR of the
weaker signal. The algorithm requires significantly more computations than the present
autocovariance processor.

The additional hardware required at the radio frequency (RF) stage is a phase shifter in
the transmit path (at low power level), to control the phase of the transmitted pulse. The WSR-
88D radar has a built in 8-bit PIN diode phase shifter, which is used for calibration purposes.
Thus, the additional changes required are some circuits for synchronizing the code, so that the
received samples can be cohered correctly.

A random number generator can be used to select any one of the phase shifts for each
pulse, or a well designed fixed random code sequence can be used repeatedly. The second option
is preferable because of its simplicity in implementation, although statistically speaking, the first
one performs marginally better than the second.

The WSR-88D uses a long PRT scan and a short PRT scan (360° in azimuth at low
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elevation angles and alternate radials for 2°<6,<6.5°). The long PRT scan data processing can
include spectrum width computation as well, and the short PRT scan data can be used for
velocity recovery alone. This reduces the computation required in the random phase algorithm.
However, in this section, the random phase algorithm is developed as a stand alone method
(without using the long PRT data) to recover the parameters of echoes from both 1st and 2nd
trips.

4.2. Random phase coding and spectral parameter estimation.

In a random phase coded radar, the whitened spectra does not bias the velocity estimate,
but it does contribute to the variance of the velocity estimate in the same way as noise affects
the estimate. Further, from the short PRT data, it is also required to estimate the mean power
and spectrum width of the signals involved. In our discussions, we assume that two signals are
overlaid, and we wish to recover the parameters of echoes from both trips. It is not necessary to
assume the 1st and 2nd trip signals alone, but echoes could be associated with any two trip
signals. If more than two trip signals are overlaid, decoding becomes more complex. The
algorithm developed is for two overlaid signals. We have included a small section on the possible
extension of the method to multiple trips later in this report, but no algorithm is given. The often
encountered situation is the 1st and the 2nd trip overlay, and if this situation can be solved, the
effective range would be doubled without sacrifice of the unambiguous velocity.

There are several ways to obtain spectral parameters from the sample time series. In order
to select the best way which can work over a wide range of signal parameters, we first examine
the properties of the random phase modulated spectrum and its effect on the estimated
parameters. Weather signal strengths can span a dynamic range of 80 dB. Therefore, to ideally
double the range of the radar, we should be able to recover parameters of both signals even when
their power ratio is as large as 80 dB. Assuming that the noise level of the receiver is well below
the weakest of the weather signals, we essentially have a situation where one of the signals is
coherent, and the other is noise-like because of random phase modulation. Therefore, the theory
of recovery of spectral parameters in the presence of noise will give us the limits of performance
if no further processing is done. If we assume that the 1st trip signal power is p/ and the 2nd
trip signal power is p2, the ratio pI/p2 gives the SNR for the 1st trip and p2/pl for the 2nd trip,
when they are cohered. Obviously, in any given situation, if the minimum SNR required is 3 dB,
parameters of only one of the signals can be recovered, or none if pl/p2 is within £3 dB.

Generally, the mean power or reflectivity, the mean velocity, and the spectrum width are
the three parameters estimated from the time series using autocovariance processing. Of these,
the mean velocity is the limiting factor and is the most difficult to recover when the signals are
overlaid. For the meteorological community, the reflectivity and velocity information are more
important than the spectrum width. Therefore, we first discuss the recovery of velocity and then
go on to the other two parameters.

The velocity is generally estimated from the phase of the autocorrelation of the signal for
one pulse lag denoted by R(1). In the autocovariance processor, R(1) is estimated from the time
series samples. It can also be estimated from the power spectral coefficients. If s, are the
spectral coefficients obtained by DFT operation, the autocorrelation is expressed as
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If the spectral coefficient envelope is flat (i.e., | 5,| is a constant), then R(1) would be zero. The
random phase technique achieves this by whitening the spectrum. Therefore, the effectiveness of
the random phase technique in removing the bias error in velocity estimate (i.e., in the argument
of R(1)) is determined mainly by the flatness of the spectrum that can be achieved. The bias error
will depend on how small the IR(1)! is with respect to the IR(1)l of the other coherent signal,
whose velocity we are trying to estimate. A measure of suppression of the overlaid signal for the
velocity estimation can be obtained by calculating the ratio of magnitudes of R(1) before and
after random phase modulation. Ideally, this ratio should be infinity. However, for finite length
pseudo-random sequences, the achievable ratio is also finite and depends on the choice of the
code sequence as well as the signal, especially its spectrum width. For a very narrow spectrum,
it depends only on the code. The intrinsic suppression ratio of a code can be defined as the ratio
of the mean power to the autocorrelation for lag one for the code itself. This is the same as the
suppression ratio when the signal spectrum has a single coefficient (the spectrum of a single
sinusoid). For a 64 length code, the best intrinsic suppression ratio that could be achieved is
about 17 to 20 dB and is the upper bound for the suppression ratio. The upper bound is finite
because we cannot achieve a perfectly flat spectrum. There are systematic codes which have
perfectly flat spectra which are discussed later in this report (see Section 5). A simulation study
shows that the suppression ratio decreases with increasing spectrum width (Fig. 4.1). In carrying
out this simulation, first a search was made to obtain a random phase code with the largest
intrinsic suppression ratio achievable practically. A random number generating program was used
to generate the code (for M=64) repeatedly, and its suppression ratio was computed. The code
with the largest intrinsic suppression ratio was stored on the disk and was used in phase coding
the weather signal and generating the scattergram shown in Fig. 4.1. With this fixed 64 sample
pseudo-noise sequence having an intrinsic suppression ratio of 17 dB, the suppression ratio
for the weather signal can lie anywhere between 4 to 25 dB, with a mean value between 8 and
10 dB. With longer code lengths, a small improvement can be obtained, as can be seen from the
results of another simulation study shown in Fig. 4.2, for a 256 sample length random code.
Therefore, autocovariance processing along with random phase coding is not sufficient to extract
velocity over a wide dynamic range of overlaid signals.

Bias error in velocity is not the only problem when overlaid signal is present. While
whitening removes the bias error, it introduces larger variance in the velocity estimate because
of the overlapped spectrum. The acceptable variance is about 1 m s, and to achieve this over
a large dynamic range of the signal strengths, it is necessary to separate the signals. Adaptive
filtering is one way of partially removing one of the signals, the stronger one, from the spectrum.
Assuming the mean velocity of the stronger signal is known, a major part of the stronger signal
can be removed by a notch rejection filter centered on the mean velocity. The remaining part,
when cohered for the weaker signal, will have an improved SNR. It was shown by Zrnic and
Mabhapatra (1985) that only a part of the weaker signal remaining in the spectrum after notching
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obtained with simulated spectra and a 64 sample fixed random phase code as a function of spectrum
width.
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becomes coherent. Thus, a self noise is generated by the notching process, and the residual of
the stronger signal also turns into white noise due to random phase modulation.

To further improve the SNR of the weaker signal, one more step of processing is
introduced. In this step, the magnitude of the spectrum, obtained after notching and cohering,
is smoothed by a running average filter of sufficient length, and then thresholding is done to
remove the noise floor. In a thresholding procedure, a constant threshold value is subtracted
from all the coefficients. This requires a determination of the threshold value for each spectrum.
Here, we adopt a new technique in which the magnitudes of two spectral coefficients, one at k
and the other at (k+M/2), are taken at a time, and the lower of the two is subtracted from both.
This process is repeated for k=1,2...M/2, thus, 50 percent of the coefficients are zero. The
resulting spectrum is a "thresholded" version of the weaker signal spectrum. From this spectrum,
R(1) can be obtained, and the velocity can be estimated. This last step is termed smoothing and
subtraction (S&S).

The S&S operation needs some explanation. The smoothing operation makes the spectrum
flat when there is only white noise, and the signal appears as a raised portion above the noise
envelope, provided the SNR is not too small. The subtraction removes the flat noise part of the
spectrum. The smoothing could be carried out on the spectral coefficients raised to any power
(ie., s, I"). While r > 1 increases the ratio of maximum to minimum coefficient, as well as the
fluctuations in the spectrum, r <1 decreases it. The best value of r is the one that reduces the
fluctuations and increases the ratio of maximum to minimum coefficients. Obviously, these two
are conflicting requirements, and we have to arrive at some compromise value of r which allows
us to recover the weaker signal most successfully. From the results of a large number of
simulation studies, the value of » was chosen to be 1.

It is instructive to examine how the white noise affects the spectral parameter estimates,
p2, v2, and w2, In the absence of the 1st trip signal, the bias in p2 is exclusively due to the white
noise power. The width estimate would be biased if eq. (2.6) is used. We could use an alternate
width estimator that depends on the R(1)/R(2) ratio, which is not biased by the white noise (see
Doviak and Zmic 1993, eq. 6.32). The autocovariance estimate of the velocity is unbiased but
the variance, var(v2), increases with decreasing SNR.

The above discussion pertains to the white noise. In the case of random phase coded radar
signal, the noise consists of the whitened 1st trip signal plus the self noise generated by the notch
filtering process (assuming that the system noise is zero), which may have "white" and "non-
white" part. The S&S process removes the smoothed "white" part and some part of the "non-
white" noise which has the same magnitude envelope in the left and right half of the spectrum
(we will refer to this part as the matched part). The part of the noise removed by the S&S
process is largely the part that does not contribute to the autocorrelation R(1), hence would not
improve the var(v2) significantly. In other words, the autocovariance method of v2 estimation
automatically removes this part of the noise. Hence, the S&S step may not be necessary, as far
as the velocity estimation is concerned. However, the width estimate would be significantly
improved by this step. It may be noted that the alternate width estimator (Doviak and Zrnic 1993,
eq. 6.32), is unbiased in the presence of white noise alone. The S&S process removes the
matched part of the "non-white" noise in addition to the "white" part, thus, improving the width
estimate. Therefore, the S&S step is included in the algorithm. This step marginally improves the
velocity recovery also (the recoverable limit of pl/p2 is about 3 to 5 dB less without the S&S
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step).

Some residual spectral power spread across the recovered spectrum that remain are
actually not part of the weaker signal spectrum. These are due to the unevenness of the whitened
spectrum, that may increase the error in the velocity estimate. To mitigate such errors, one more
step is added. This step is needed only when the p//p2 and spectrum width are large, but is
retained all the time. In this step, an approximate mean velocity is computed from R(1), and then
the spectral coefficients, over only a third of the spectrum centered on this approximate velocity,
are used to compute a more accurate velocity estimate (by recomputing R(1)). This, however,
limits the recovery of spectrum width information when the actual spectrum width is large. It is
a choice between overestimation and underestimation of spectrum width. The last step
underestimates the width when the actual width of the weaker signal is large, and without the last
step, the width is overestimated because of the residual spectral coefficients which do not belong
to it.

How large the ratio pI/p2 can be for which velocity v2 can be recovered, depends on the
SNR achieved after notch filtering. There are two parts to the noise remaining in the cohered
spectrum after notching. One is the self noise, and the other is the residual of the stronger signal.
With increasing notch width, the SNR due to the self noise decreases, whereas the SNR due the
residual from the overlaid signal increases. Optimum width is the one for which largest "overall
SNR" is achieved. This optimum point is a function of the width of the overlaid stronger signal
as well as the ratio pl/p2. Fig. 4.3(a) is generated using an equation for the overall SNR (Zrnic
and Mahapatra 1985, Eq. 30), for p//p2=30 dB. For a Gaussian shaped signal this equation can
be expressed as

overall SNR = (1-n,)*/ { n,(1-n,) + [1 - erf{vanw/(w]\IZ)}](p]/pZ) }, 4.2)

where n,, is the normalized notch width (normalized with respect to M or 2v,), and erf{} is the
error function. It shows that there is an optimum notch width for which SNR is the maximum,
for a given spectrtum width and pl/p2. Note that for a notch filter width larger than the
optimum width, the SNR follows the asymptotic curve 10log,,{(1/n,) -1} dB, which is the SNR
due to the self noise alone. The optimum notch width increases with increasing spectrum width
and increasing pl/p2 (Fig. 4.3b). However, for large spectrum widths the optimum notch width
starts to decrease.

It is clear from Fig. 4.3(a) that for n, = 0.5, the maximum SNR is 0 dB, thus is the upper
limit for the n,, assuming that SNR=0 dB is required for velocity recovery. This is about the
optimum notch width for w/=4 m s, For larger spectrum widths SNR would be less than zero.
The var(v2) for SNR=0 dB is between 1 and 2 m s™ for spectrum widths between 1 and 8 m s
(Doviak and Zrnic 1993, Eq. 6.21). Although the residual 1st trip signal power decreases faster
than the increase in the self noise power, as a function of notch width, the SNR due to the self
noise alone puts a limit on the maximum usable notch width. In the random phase algorithm a
notch width of M/2 coefficients is selected which gives var(v2) within tolerable limit (i.e.,
sd(v2)<1 m s) for M=64 and w2=4 m s

The SNR due to the residual overlaid power is a function of the spectrum width as well
as the ratio pl/p2. We define the residual power ratio, R, as the ratio of the total power, pl, to
the residual power after notching. The notch is centered on the peak of the spectrum. The R, for
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different notch widths is computed for a Gaussian shaped signal spectrum, and is shown in Fig,.
4.4.

At the limit pl/p2=R,, , the overall SNR is about -7 dB for the weaker signal with M/2
notch width (10 log,{(1-n,)¥/[1 + n,(1-n,)]}). Thus, the upper limit of pI/p2 for which v2 can
be recovered is 7 dB below the R, for n,, = 0.5. The S&S process improves the SNR by about
3 to 5 dB, which allows us to recover v2 over 3 to 5 dB larger values of p//p2 than that given
by (R,-7) dB. For a given notch width, the SNR (eq.4.2) falls sharply for pl/p2>R, which
increases the variance of the velocity v2. If the n, is small, then SNR is larger for pI//p2<R,
which gives lower variance of v2, but the upper bound of pl/p2 , up to which velocity can be
recovered is also lower. Hence an overall optimum n,, (assuming a fixed notch width) is the one
for which var(v2) is the largest tolerable value; and this maximizes the extent of pI/p2 for which
v2 can be recovered. In practice the limit p//p2=R, may not be achievable because it is actually
dictated by the "whiteness" of the randomized spectra. The simulation studies have shown that
one can achieve a limit fairly close to that expected.

By increasing the notch width, we can increase the limit of pl/p2. However, this
improvement is at the expense of an increased variance in the recovered velocity. A simulation
study, with r,=0.75, showed that the limit for p//p2 is the same as that given in Fig. 4.4 (dashed
curve), but with a var(v2) between 2 and 3 m s with M=256 samples. For a practical value of
M=64, var(v2) is too large to be useful. For M=64, the notch width of M/2 is nearly the optimum
value.

Next, we turn to reflectivity or the mean power estimation. The total power is the sum
of the powers of the two signals. Random phase modulation changes the distribution of power
across the spectrum (whitens the spectra). It may be noted that the spectrum of the weaker
signal, recovered using the steps explained in the previous paragraph, can be used for mean
power estimation. But this does not give a very accurate mean power estimate because of the
non-linear steps involved which do not preserve the power. The S&S are not operations that
preserve the power in the spectrum. The processing loss, however, can be approximately
determined and corrected. The processing loss is a function of the smoothing filter length
and the "whiteness" achieved by random phase modulation. The variability in the correction is
mainly because of the second factor.

Because of these reasons, an alternative approach is used to estimate mean power.
Assuming that the random phase modulation produces a white spectrum, any small part of the
spectrum, where the coherent signal is absent, can be used to estimate power. In this approach,
a fourth of the spectral coefficients farthest from the mean velocity of the stronger signal are used
to estimate the weaker signal power. When the stronger signal is coherent, this part has the least
amount of power from the stronger signal. Weaker signal recovery is limited by the contribution
of the stronger signal to this part of the spectrum., For a Gaussian spectrum with a width of 4
m s™, the reflectivity of the weaker signal can be recovered even when the overlaid signal is as
large as 88 dB above the weaker one. (See R, versus spectrum width curve for 3M/4 notch width
in Fig. 4.4.) This ratio degrades rapidly with the width of the spectrum. At 8 m s, it is about
26 dB. Comparing this limit to that for velocity recovery, it can be concluded that the velocity
recovery is the limiting factor.
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At the outset, it appears that the variance of the reflectivity estimate using only a fourth
of the coefficients would be larger than that obtainable with all the samples. However, this is not
the case because the random phase modulation distributes the spectral power more or less
uniformly over the spectrum, and information contained in all the spectral coefficients is
embedded in each of the coefficients via the transformation. Therefore, the variance of the
estimate is not degraded significantly by reducing the number of coefficients (degradation is not
as much as that expected for M/4 samples). For a large spectrum width of the stronger signal (w/
large), the residual power from the stronger signal adds to the estimated power, p2, thus
producing a bias error in the estimate. This can be calculated for a Gaussian signal and is shown
in Fig. 4.5. If 1 dB is the allowable bias error in the p2 estimate, the upper limit for the
overlay ratio, pl/p2, for p2 estimation, can be obtained from Fig. 4.5 at the 1 dB level. This limit
is greater than 70 dB for a width of 4 m s, and drops to about 20 dB for 8§ m s™.

The mean power, pl, of the stronger signal can be taken as the total power in the
spectrum when pl/p2 > 20 dB. If pl/p2 < 20 dB, the bias error in p/ can be removed by
subtracting the power p2. As far as the stronger signal parameters are concerned, the
autocovariance processor is sufficient to recover all three parameters because p2 is whitened.
The performance will be the same as that of a signal in the presence of noise, with a SNR =
pl/p2. When pl/p2 < 20 dB, the variance of the velocity estimate, v/, increases and there is a
bias error in width wl. The variance of v/ is tolerable for M=64 samples.

There are two ways to get accurate wl estimates with no bias error. One way is to
estimate the bias error in width wl, using the autocovariance processor, and an empirical
formula for the bias error correction can be derived and incorporated in the algorithm. Another
way is to use the R(1)/R(2) ratio to estimate the width which is known to be unbiased (Doviak
and Zrnic 1993, p. 138, eq. 6.32). However, this requires computation of R(2), and also the width
estimate has a slightly larger variance than the estimator using the pI/R(1) ratio (Doviak and
Zric 1993, Eq. 6.27). In the algorithm presented in this report, the empirical error correction
formula approach has been used because it is more accurate and needs less computation. To
obtain the empirical correction formula, a large number of simulations were run with different
widths and power ratios, and a polynomial fit to the error in the estimated w/ was obtained, as
shown in Fig. 4.6. The correction in terms of this polynomial fit is incorporated in the
algorithm. Note that the error is a weak function of spectrum width, w/, but is a strong function
of the power ratio; therefore, after removing the bias, the variance of the w/ estimate is larger
for lower pl/p2.

4.3. The choice of code.

As discussed in the previous section, the effectiveness of the random phase technique in
removing the overlaid signal depends on the "whiteness" achieved by random phase coding, and
the "whiteness" is a function of the code as well as the signal spectrum. The power removed by
the S&S process gives us an idea of the effectiveness of the random phase technique. But this
power does not contribute to the autocorrelation R(1). Since the signal is not under our control,
the best we can do is to select a code with as flat a spectrum as possible. A random number
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generating program was used to assemble a code. The resulting residual power after notch
filtering, as well as power after smoothing and subtraction, were examined for the code alone.
The ratio of powers before and after the S&S process, termed the intrinsic rejection ratio, is a
measure of the whiteness of the code for the present purpose. It must be noted that the ratio also
depends on the running average filter length; therefore, it is necessary to study the behavior of
the code with respect to the filter length. A large number of simulations were run, and the one
with lowest residual power after the S&S was selected as the best code. Further, this code was
used repeatedly to whiten simulated weather spectra, and then passed through S&S operation to
evaluate the rejection ratio for different realizations of the weather spectra..

Fig. 4.7 shows a sample spectrum of a 64 bit code before and after the S&S operation
with a smoothing filter length of 9 coefficients. The intrinsic rejection ratio for this code is 22
dB. Fig. 4.8 shows the rejection ratio achieved for simulated weather spectra as a function of
spectrum width. The scattergram shows that the mean rejection ratio is about 17 dB.

Fig. 4.9 illustrates the S&S process on a weather signal. The first spectrum is the signal
spectrum, and the second one is the spectrum after random phase modulation. Note that the
power is not uniformly distributed over all the spectral coefficients. When smoothed using a
running average filter, the envelope is nearly flat. After subtraction, most of the power is
removed as seen in the last spectrum.

4.4. Some sample spectra and illustration of processing.

To illustrate the processing in the spectral domain, simulated weather spectra have been
used. Figs. 4.10(a) through (h) show the steps involved in the processing. Figs. 4.10(a) and (b)
show the spectra of signal "a" and "b" with indicated spectral parameters. Note that the y-axis
is appropriately scaled to show the signal. Fig. 4.10(c) shows the spectrum of the overlaid signal
with random phase modulation. Signal "a" is coherent, and "b" is whitened. The processing steps
illustrate the recovery of the weaker signal "b" from this composite signal. Note that with a pl/p2
ratio of 30 dB, the second signal is barely visible on the same scale. In the spectrum in Fig.
4.10(d), M/2 coefficients centered on v/ have been deleted or notched. Here, the randomized
second signal is visible on an expanded y-scale. The spectrum in Fig. 4.10(e) is obtained after
cohering the signal "b" which shows up above the noise level. Fig. 4.10(f) shows the same
signal after smoothing with a filter length of 13 coefficients. Fig. 4.10(g) is after subtraction
of the lower of the two magnitudes from both sides as explained earlier in the S&S procedure.
Fig. 4.10(h) shows the final recovered spectrum after the unwanted part has been deleted. This
is the last step in which a third of the spectrum centered around the approximate mean velocity,
computed from the spectrum given in Fig. 4.10(g), is retained and the rest is deleted. Compare
this last spectrum to the envelope of the spectrum given in Fig. 4.10(b). Except for the loss of
some tail ends of the original spectrum, the signal has been recovered well. It can be used to
estimate the autocorrelation and thus the mean velocity and the spectrum width.
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S&S on 64 sample random code
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Fig. 4.7. The effect of smoothing and subtraction (S&S) on the spectrum of a 64 bit random code. The
residual power after S&S is 22 dB below the original power.
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S&S process on weather signal
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Fig. 4.9. The effectiveness of the S&S process on a weather signal. (a) simulated weather spectrum, (b)
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processing steps; random phase method

500 T T T T I
3 p1=40dB;v1=20m/s;w1=4m/s;va=32m/s
= signal "a"
c
(&)}
]
E
O 1 1 A 1 1 A
0 50 100 150 200 250 300
20 T 1 1 T T
3 p2=10 dB; v2=10 m/s; w2=4 m/s
=3 f ]
Z 40k signal "b |
(@)
£
O \A/V\ 1 1 | 1
0 50 100 150 200 250 300
500 T T T T T
§ a~coherent, b—-random phase
:'é‘
[@)]
1]
E
O 1 1 I 1
0 50 100 150 200 250 300
1 O I I T
()]
=
=
€ 5 .
o
[
: My
O L 1 1 ] ]
0 50 100 150 200 250 300

spectral coefficient number

Fig. 4.10.(a-d). The processing steps in the random phase algorithm, using simulated signal. (a) & (b)
strong and weak signal spectra separately, (c) spectrum of the signal from a random phase coded radar;
one signal is coherent and the other is phase coded, (d) the spectrum after M/2 coefficients centered on

vyl are notch filtered.
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processing steps: random phase method
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Fig. 4.10.(e-h). The processing steps in the random phase algorithm. (e) weaker signal is made coherent,
(®) spectrum after smoothing, (g) spectrum after subtraction, (h) recovered spectrum after retaining only
M/3 coefficients around the approximate mean velocity, v2.
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For this illustration, a spectrum width of 4 m s and a Nyquist velocity of 32 m s was
used. This is the median width encountered in severe storms. The recovery of the signal is not
as impressive if we start with a wider spectrum for both signals.

4.5. The random phase algorithm.

So far, the discussion has centered around the recovery of weaker signal parameters in
the presence of a strong signal overlay. Several other aspects have to be considered for a practical
algorithm. Assuming that we have only the 1st and 2nd trip signals present, we have to
determine which one is stronger, to start the spectral processing. There is also the ground clutter
in the 1st trip signal for low elevation scans which has to be removed. The ground clutter
filtering is fairly straight forward because of the use of uniform PRT. The 1st trip signal in the
time series is first cohered and then passed through a ground clutter filter. In the algorithm, this
part is not implemented because ground clutter is not included in the simulated time series, but
is required in a practical algorithm. After the ground clutter is filtered out, another time series
is generated by cohering the 2nd trip signal. Now to determine which of the two trip signals is
stronger, both are passed through the autocovariance processor, and the outputs of the
autocovariance processor are mean powers, p/’ and p2’, mean velocities, v/’ and v2’, and
spectrum widths, wl’ and w2’. Of these, pI’ and p2’ are the same, and equal to the total power
(p1+p2). Depending on the power ratio, at least one of the velocities, vI’ or v2’, is accurate.
The spectrum widths, however, can be highly biased. Spectrum width of a whitened signal is as
much as 0.7 to 0.8 times v,. Note that this value is larger than the actual width of the white noise
signal because it is estimated using the autocovariance algorithm which assumes Gaussian shape
for the spectrum. (The correct width of the white noise spectrum is v,/y3.) Therefore, the ratio
wl’/w2’ approaches 1.25wi/v, for large power ratio, pI/p2, and is equal to unity for pl/p2 equal
to unity. This is a convenient parameter for deciding which of the two signals is stronger. If one
of the signals is 20 dB larger than the other, its parameters are accurately obtained from the
autocovariance processor, and therefore, further processing needs to be carried out only to
recover the other signal parameters. When the power ratio is less than 20 dB, the stronger signal
parameters also get affected and need to be corrected, especially the mean power and the width.

The algorithm developed incorporates all these aspects and an appropriate logic to channel
the computations. The computational steps with explanations are listed, and these can be easily
translated into a computer program.

In simulating the time series, the assumptions stated in section 1.1 are made, and the
algorithm given below is based on those assumptions. As stated earlier, the algorithm does not
use long PRT scan data, and processing is done on the short PRT time series only. This
algorithm is developed as a stand alone algorithm. In the lowest two elevation scans of the
WSR-88D, the long PRT scan data can be utilized to compute pl, p2, wl, and w2, of the 1st and
2nd trip echoes. With this, many of the steps in the algorithm can be eliminated.
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<<< START of algorithm

1. Input time series El, ; k=1,2, .... M. (from short PRT scan)
» 1st trip is coherent; 2nd trip is phase coded by a random
phase sequence, ¢, ; k=1,2,.... M.

2. Cohere the 2nd trip signal.
> E2=EI exp {4 0)

3. Autocovariance process EI and E2 to get pl,vi,wl and p2,v2,w2.
(output parameters are estimates; A symbol is omitted for convenience)

4. Compute w1/w2 ratio.
> if wl/w2 > 1, trip=2, 2nd trip is stronger - process E2.
» if wiiw2 <1, trip=1, 1st trip is stronger - process El.

5. If wl/w2 > 1, interchange EI and E2, and all the parameters on line number 3.
» with this interchange, EI is the time series with stronger signal coherent.
» we need to recover p2,v2 and w2 of the weaker signal.
[ Note: For the two cases in step 4, the processing steps 6 through 18 are the
same with EI replaced by E2. This is accomplished by the interchange
indicated in step 5. The trip numbers are restored in step 19.]

6. Compute spectrum of E/.
» SI’=DFT[E]]

7. Notch 3M/4 coefficients centered on v/ to get S7 from S1°.

8. Compute mean power p from the remaining coefficients.
Multiply p by 4 to get mean power p2.

9. Compute power ratio pr = 10 log,,(p1/p2) dB.

10. If pr < 20 dB, correct error in p/ estimate,
» pl’=pl -p2
» compute corrected power ratio pr = 10 log(pl’/p2) (dB)

11. If pr < 20 dB, correct the error in spectrum width wi.
» err(wl) = 8.75374 - 1.02952 pr + 0.0415391 pr* - 0.000566432 pr’
This is polynomial fit to the error curve, with v, = 32 m s™.
[For other values of v, multiply all constants by (v,/32)"° ]
» corrected wl = wl - err(wl)

12. Notch M/2 coefficients centered on v/ to get SI from S1°.
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13. Cohere the weaker signal in S7.
» el =1IDFT [ S]]
» iftrip=1, €2 =el. exp{-j ¢, }
» iftrip=2, e2=el.exp{j,}
» compute magnitude spectrum, g =1 DFT [ €2 ] |

14. Apply smoothing filter to q.
» g = SFE( g; m); (choose filter length m=9 for M=64).

15. Subtract the residual stronger signal.
» a,=min { q;, Guup } 5 k=12, ... M/2.
» subtract a, from both g, and gy 5 k=12, ... M/2.

16. Compute autocorrelation for 1 PRT lag, R(1) for g, and compute
approximate mean velocity v2’,

17. Delete coefficients outside M/3 interval centered on v2’.

18. Recompute R(1) and v2, w2.

19, If trip = 2, interchange parameters (p/,vI,wl) and (p2,v2,w2)

20. Output the 1Ist and 2nd trip parameters and go to the next data set.

<< END of algorithm

4.6. Simulation and results,

To evaluate the performance of the algorithm given in Section 4.5, a test program was
written which inputs a set of parameters for the 1st and the 2nd trip signals into the simulation
program to generate an overlaid time series, and this time series is fed to the algorithm to
recover the parameters. The recovered parameters are compared to the actual parameters of the
two signals, which are computed individually by the autocovariance processor before mixing.
It should be noted that the comparison is not done with the input parameters because there can
be a difference between the input parameters and the autocovariance estimates for each
realization due to several reasons such as aliasing, estimate variance due to spectrum width, etc.
The above comparison separates these effects in evaluating the performance of the algorithm
and gives us a measure of how good the estimates are with respect to the estimates normally
obtained in the absence of overlaid signals.

A large number of simulations were conducted to determine the performance limits of the
algorithm. Some sample scatter plots of the errors in the estimated parameters are given in Fig.
4.11 to 4.16. The power ratio, pl/p2, is varied over 0 to 70 dB, and the velocity difference, (vI-
v2), is randomly chosen for each simulation to be within £28 m s, The unambiguous velocity,
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v,, is taken to be 32 m s with a PRT = 0.7812 ms. The velocities v/ and v2 are restricted to
be less than v, to avoid aliasing error appearing as estimation error. In Figs. 4.11 through 4.16,
errors in vl, v2, pl, p2, wl, and w2 are shown as a function of p//p2. The spectrum widths are
set to 4 m s for both the signals. Each point on the plots corresponds to one simulation with M
= 64 samples. Note that the errors are computed with respect to the estimates obtained using the
autocovariance algorithm on individual signals. This gives a false impression that for large p1/p2,
the variance of v/ estimate is zero (see Fig. 4.11, 4.13, 4.15). Actually, the variance is the same
as that obtained with autocovariance processing in the absence of the overlaid signal. It can be
observed that the error in the velocity, v2, (see Fig. 4.12) is the limiting factor as all other
parameters can be recovered for larger pl/p2 ratios. For 4 m s width of the stronger signal, v2
can be recovered up to about pl/p2 = 30 dB with M = 64. The standard error is between 1 and
1.5ms™

Simulations were run with different values of wl, and the mean and standard deviations
of the errors in recovered v2 were computed and plotted for two values of M = 256 and 64. The
standard error is higher for M = 64 compared to that for M = 256. Fig. 4.17 shows standard
deviation of error in v2 as a function of pl/p2 and wi, for M=256. It can be seen that the
bounding value of wl and p//p2 which limit v2 recovery is nearly that deduced from Fig. 4.4,
A similar set of simulations were run with a notch filter width of 3M/4 in place of M/2 in the
algorithm, and the results are shown in Fig. 4.18. Again comparing this with Fig. 4.4 (dashed
curve) for the limits of recovery of v2 for 3M/4 notch width, we can see that the limit is indeed
the theoretical value but with a higher standard error of about 2 m s. Since M=256 is not
practical for the WSR-88D to maintain the present data rates, simulations were also run for
M=64. The results are shown in Fig. 4.19. The standard error in v2 is higher (about 1.5 m s™)
for M=64, with a notch width of M/2. At even higher notch widths and M=64, the error is not
acceptable.

A somewhat improved algorithm would be one that adaptively sets the notch width based
on the recovered wl and pl/p2. Both these parameters are accurately estimated in the region
where v2 is recoverable as per the limits given by Fig. 4.4. This is different from the adaptive
notch width suggested in Zrnic and Mahapatra (1985), where notch width is selected based on
wl alone. This, of course, would not increase the limit of p//p2 but can improve the standard
error in the region of lower power ratios and narrower spectrum widths.
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Fig. 4.11. Error in the mean velocity estimate, v, of the stronger signal using random phase coding and
autocovariance processing. The velocity difference and pl/p2 are varied over £28 m s and O to 70 dB,

respectively, in the simulation. The errors, in this as well as in the rest of the figures that follow, are with
respect to the estimates using autocovariance processing of individual signals.
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Fig. 4.12. Error in the mean velocity estimate, v2, of the weaker signal recovered using random phase
coding and decoding algorithm. The velocity difference and pl/p2 are varied over +28 m s and 0 to 70
dB, respectively, in the simulation. The error is the difference between the recovered velocity and the
velocity estimated using the autocovariance algorithm without the overlaid signal.
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Fig. 4.13. Error in the mean power estimate, pl, of the stronger signal using random phase coding and

autocovariance processing. The velocity difference and pl1/p2 are varied over +28 m s” and 0 to 70 dB,
respectively, in the simulation.
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Fig. 4.14. Error in the mean power estimate, p2, of the weaker signal recovered using random phase
coding and the decoding algorithm. The velocity difference and pI/p2 are varied over 28 m s* and 0 to
70 dB, respectively, in the simulation.
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Fig. 4.15. Error in the spectrum width estimate, wi, of the stronger signal using random phase coding and
autocovariance processing. The velocity difference and pl/p2 are varied over 28 m s and 0 to 70 dB,

respectively, in the simulation. Bias correction is applied to the width estimate for pI/p2<20 dB.
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Fig. 4.16. Error in the spectrum width estimate, w2, of the weaker signal recovered using random phase

coding and the decoding algorithm. The velocity difference and p1/p2 are varied over £28 m s and 0 to
70 dB, respectively, in the simulation.
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std.error in v2,M=256,w2=4m/s,nw=M/2,random phase scale
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Fig. 4.17. Standard deviation of the error in recovered velocity, v2, of the weaker signal as a function
of pl/p2 and width, wl, of the stronger signal, using the random phase code method. Each rectangle
represents the standard deviation computed using 20 simulations with corresponding input parameters
shown on the axes. The velocity difference is varied over £28 m s, The quantization levels and the gray
shades assigned to each level are shown on the right. The parameters shown on the top of the figure are
kept constant for simulations.
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std.error in v2,M=256,w2=4m/s,nw=3M/4,random phase scale
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Fig. 4.18. Standard deviation of the error in recovered velocity, v2, of the weaker signal as a function
of pl/p2 and width, wi, of the stronger signal, using the random phase code method. The simulations are
carried out in the same way as for Fig. 4.17, with a 3M/4 wide notch filter in the decoding algorithm.

56



std.error in v2,M=64,w2=4m/s,nw=M/2,random phase scale
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Fig. 4.19. Standard deviation of the error in recovered velocity, v2, of the weaker signal as a function
of pl/p2 and width of the stronger signal, using the random phase code method. The simulations are
carried out in the same way as for Fig. 4.17, with M=64 samples.
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4.7. Possible extension to 3rd and 4th trips.

The algorithm presented in section 4.5 is specifically for recovering the spectral
parameters of first and 2nd trips, with the assumption that higher order trip signals are absent.
In fact, the algorithm is for any two overlaid trips. If the overlaid signal consists of 1st and 3rd
trip signals instead of 1st and 2nd, the only change needed in the algorithm is to change the
random code to that corresponding with the 3rd trip. If there is long PRT scan reflectivity data
available, as in the case of WSR-88D radar, one can easily determine which of the two trips
constitute the signal, and the code can be appropriately modified in the algorithm. Thus, the
algorithm can work for any two trips.

When there are more than two trip signals overlaid, the decoding logic becomes more
complex. It is required to cohere the time series for all the trip signals present (may be 3 or 4),
and autocovariance process all of them to get corresponding spectral parameters, p(i),v(i),w(i);
i=1,2,3,4, etc. Using the widths, w(i), and powers, p(i), a logic can be designed to determine the
relative power levels of each of the signals. Once this information is obtained, the notch filtering
and S&S process can be used to recover one signal at a time until all are separated. Although
computationally more demanding than the algorithm for a two-trip overlay, it is a workable
solution because when one of the signals is made coherent, all the other trip signals appear as
white noise; that is equivalent to the situation of two overlaid trips, except that the noise power
is from more than one trip signal. Just the S&S process without the notch filtering should be
able to recover the signal parameters over a significant part of power ratios, if not as much as
in the case of two-trip overlay. With long PRT data available, the determination of power levels
of each of the trips is eliminated, and appropriate logic can be designed into the algorithm to
recover mean velocities, one at a time, starting with the stronger signal.

4.8. Conclusions.

In this chapter, an algorithm for recovery of spectral moments of two overlaid weather
signals, from a random phase coded radar, has been presented. Various considerations that have
gone into the development of the random phase coding scheme also have been discussed.
Extensive simulation studies were carried out on the algorithm using simulated weather signals
to establish the dynamic range of the power ratios over which the algorithm is effective. The
main processing steps are the notch rejection filtering the stronger signal, recohering the weaker
signal, and smoothing and subtraction of the noise floor.
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5. SYSTEMATIC PHASE CODING.
5.1. Introduction.

Systematic phase coding is akin to the random phase coding except that the code is a
periodic phase code instead of a random phase code. The phases of the transmitted pulses are
switched in a regular sequence of discrete phase shifts to modify the spectrum of overlaid signal
in such a way that its autocorrelation for one pulse lag is zero (Sachidananda and Zrnic 1986).
Thus, the bias error in the velocity estimate due to the overlaid signal is removed. There are
some advantages and disadvantages in this method compared to the random phase coding. A
comparison is presented later in this report. In this section, we elaborate on the method and
evolve a decoding procedure for the signal from a discrete phase coded radar. An algorithm is
given which can be implemented on a radar. The only hardware change needed at the RF level
is the addition of a phase shifter in the transmitter path at the low power stage. This is similar
to the change required in the case of random phase coding, but the number of phase states
required can be much smaller,

The method described here is an extension of the work reported in Sachidananda and
Zrnic (1986). Their work mainly dealt with a switching sequence having a periodicity of 2
samples {0, =/4, 0, /4, ...}, although other switching sequences such as {0,0,7/2,%/2.....},
{0,0,0,%...}, etc. were also mentioned. In this report, these sequences will be referred to as the
/4 seq., the m/2 seq., and the & seq., respectively. Here, the same concept is used, but the ©/2
sequence, having a periodicity of 4 samples which has a better velocity recovery potential, is
also explored. In this section, algorithms are given for the n/4 and the /2 sequences. In the
algorithm for the ©/4 sequence, the availability of long PRT data is assumed, and the algorithm
for the /2 sequence is developed as a stand-alone algorithm which does not use the long PRT
data, although the long PRT data can be used to reduce the computation. Because the m/4
sequence has a periodicity of 2, there is a sign ambiguity in the recovered velocity which needs
to be resolved using some a-priori information, and this information is obtained from the long
PRT data.

The study of these two systematic codes and the random code, along with the
development of algorithms for the recovery of spectral parameters, lead to a conceptual insight
into the working of the codes and the recovery of the spectral parameters. The conceptual
understanding allowed us to narrow our search for optimum codes and select an optimum phase
code sequence which has outperformed all the other tested code sequences. This is the 3rd code
described in this section. Extensive simulation studies were conducted, and the results are
presented later in this section.

5.2. Systematic phase coding and spectrum modification.

The autocovariance processor estimates the autocorrelation for one PRT lag, R(1), of the
echo signal. The mean velocity is computed from the phase of the estimate, R(1), using the
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formula,
V= (v/m) arg{ R(1) } . .1)

Here, the symbol A represents estimate, and v, is the Nyquist velocity.

With a systematic phase code, the spectrum of one of the signals is modified such that
its autocorrelation for lag 1 is zero. By cohering each signal in turns, both the velocities can be
recovered without any bias due to the other signal. A condition under which autocorrelation is
zero can be obtained from the well known relation between correlation coefficients, R(z), and
the power spectral coefficients | s, 1. For a discrete sample sequence, this relation is,

M-1 .
Rm)=X1s, * 2", m=0,1,2,...M-1 ; 7 = &M (5.2)
k=0
For m=1, this reduces to
M/2-1 M-1
R = Xis P + Xl P
k=0 k=M/2
M/2-1 M1
=Xls P - X1 S(emi2) 2, (5.3)
k=0 k=0
Thus, if
se b =1 S ) for k=0,1,2,........ M/2-1, (5.4)

we have R(1) = 0. This is one of the ways R(1) can be made zero. The w/4 and n/2 codes have
this property of making the right and left halves of the spectrum identical, provided certain
criteria are met by the uncoded spectrum. Thus the same information is contained in both halves
of the spectral domain, and we can then filter half of the spectral coefficients containing the
unwanted overlapped spectrum without losing information contained in the original uncoded
spectrum (except v2). In the rest of this report we will refer to this (eq. 5.4) as the matching
property of the coded spectrum. It is also possible to assemble several other codes that have this
matching property. But the choice of the code also determines the method of recovering the
spectral parameters.

One important fact to note here is that a good envelope matching in the left and right
half of the spectrum, can be obtained using systematic codes, under conditions of narrow spectra
(w1/2v,<0.05). This symmetry can be used in recovering the weaker signal spectrum or in
cancelling the stronger signal.

5.3. w/4 phase coding.
5.3.1. /4 phase code and spectral moment estimation.

In the /4 coding scheme, the transmitted pulses are phase coded with a sequence, {0, /4,
0, w/4,...}, and the return samples are phase shifted by a phase sequence, {0, -n/4, 0, -&/4, ...},
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so that the 1st trip signal is coherent. Because of the periodicity of 27, the 3rd trip signal also
becomes coherent. The 2nd and 4th trip signals get modulated by a phase sequence, {®/4, -w/4,
/4, -n/4, ...}. This modulation splits the 2nd and 4th trip spectrum into two parts; half the power
in k™ spectral coefficient is shifted to a coefficient at (k+M/2), where M is the number of
samples collected for processing. This is shown in Fig. 5.1 for a Gaussian shaped spectrum. This
coding scheme has been studied extensively by Sachidananda and Zrnic (1986), and a method
for the recovery of the spectral parameters of the weaker signal also has been given in the paper.
Therefore, we will confine our discussion to the development of the decoding algorithm, in the
context of ambiguity mitigation in the WSR-88D. The algorithm is somewhat different from that
given in the paper. We assume that only the 1st and 2nd trip signals are present, and the 1st trip
signal is stronger. The stronger trip signal parameters can be estimated without much difficulty
when phase coding is employed; hence, the discussion will be centered around the recovery of
the weaker 2nd trip signal parameters.

First, we make the assumptions that (a) noise is zero and (b) each of the spectra
involved have at most M/2 non-zero coefficients. These two assumptions will be referred to as
assumptions (a) and (b) in this report. The assumption of a Gaussian shape is not necessary for
the method to work although this assumption is made in simulating the weather signal. The 1st
and the 2nd trip parameters, viz., the mean power, the mean velocity, and the spectrum width,
are designated by pl,vi,wl and p2,v2,w2, respectively. If we take the spectrum of the time series
with the 1st trip signal coherent and the 2nd trip signal phase coded, the 2nd trip signal will have
two spectra exactly separated by v,. Half the power in the spectrum of the 2nd trip will be shifted
exactly by v,, and the shape of the spectrum is preserved in both halves. Now, the 1st trip signal
in the spectrum can be completely removed by notch filtering or deleting exactly M/2
coefficients centered on vI. Here is the importance of the assumption (b). If the assumption is
not satisfied exactly, some residual power will remain in the spectrum which will affect the
recovered parameters of the 2nd trip. This notch filtering leaves a replica of the 2nd trip signal
with half the original power. Of course, depending on the velocity difference, (v/-v2), the filtered
spectrum would be the original, the one completely shifted by the Nyquist velocity, or part
original and part shifted. Nevertheless, in all three situations, we can recover the mean velocity,
v2, by an appropriate shifting operation to restore the split spectrum shape. But the recovered
velocity will be the actual v2 or vZ shifted by the Nyquist velocity v,, (i.e., v2+v, or v2-v,,
whichever is in the 0™ aliasing interval corresponding to the short PRT). This is the main
ambiguity that needs to be resolved. This ambiguity stems from the fact that the spectrum is
split into two halves, and one half is deleted. In the process, the information on which half is
the original signal is lost. Here, we make use of the long PRT scan data to resolve the
ambiguity.

The long PRT time series is autocovariance processed to recover the aliased mean velocity
of the 2nd trip signal. Now, using the Nyquist velocity of the long PRT, the possible mean
velocities are computed and compared with the recovered velocities, v2 and (v2+v,), from the
short PRT time series. Whichever is the nearest to the possible velocities is taken as the correct
velocity, v2. The m/4 decoding algorithm is developed based on these ideas and has the least
amount of computation compared to all other algorithms given in this report.
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Fig. 5.1. The spectrum modification by the w/4 phase code. Two cases are shown with narrow and wide
Gaussian shaped spectra.
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Fig. 5.2. The processing steps in the decoding algorithm for a /4 phase coded radar.
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Fig. 5.2 shows the processing steps and the corresponding spectra at different stages of
processing. The spectral parameters are shown in the figure. The spectra in Fig. 5.2(a) and (b)
are the 1st and the 2nd trip signals, and Fig. 5.2(c) is the spectrum of the overlaid signal with
the 1st trip coherent and 2nd trip phase coded. Note that the 2nd trip power is split into two
parts. The spectra in Fig. 5.2(d) is obtained after deleting M/2 coefficients centered on the v/
estimate. Note that the signal power is half the original power, and the 2nd trip signal spectrum
shape is completely recovered, except for the tv, shift.

The split shape has to be restored, and the restored spectrum has to be placed in the
correct half of the spectral domain, if the mean velocity is to be computed using the
autocorrelation, R(1), for one PRT lag. However, a simpler procedure is to compute
autocorrelation, R(2), for lag 2 and use the formula, v2=(A/8nT)arg[(R(2)], for velocity
computation. This does not require restoration of the split shape of the spectrum. The recovered
velocity will be v2 or (v2+v,). The sign ambiguity is finally removed using the long PRT data.

When assumption (b) is not satisfied exactly, the residual 1st trip power in the spectrum
after notch filtering produces a bias in the estimated mean velocity (in the random phase code
the variance is increased). The bias becomes significant for large pl/p2 ratios and large spectrum
widths of the stronger signal.

The recovered mean velocities are usable only under certain conditions. It is shown in
Sachidananda and Zrnic (1986) that the variance of the velocity estimate is highly dependent
on the ratio of powers in the two trips and the velocity difference. It is also a function of the
spectrum widths. Generally, the mean velocity of the stronger of the two signals can be
recovered accurately. The recovery of the mean velocity, v2, of the weaker 2nd trip signal in
the presence of the stronger 1st trip signal overlay determines the limit of the algorithm.

5.3.2. The 1/4 decoding algorithm,

In simulating the time series, the assumptions stated on page 4 are made. The algorithm
given below is also based on those assumptions. This algorithm makes use of the long PRT
data,

<L L mmmmm o START of algorithm

1. Input estimates pI,vI,wl and p2,v2,w2 from the long PRT scan.
2. Input time series from short PRT scan.

» 1st trip coherent; 2nd trip coded by

a phase sequence {n/4, -n/4, n/4, -n/4, ...etc.}.

Determine from long PRT data which trip is stronger.
Cohere stronger trip signal and autocovariance process to
estimate the mean velocity (assume v1’).
Compute spectrum, S.
Delete M/2 coefficients around mean velocity, vI’, of the stronger signal.
Compute R(2) and velocity of the weaker signal (assume v2’).
Compute (v2’+v,) , whichever is in the 0" aliasing interval.

» &

o,
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10. Compute probable velocities from the aliased long PRT data.
11. Determine the velocity v2’ or v2’+v, , which is closest to one

of the probable velocities.
12. Output vI’ and v2’, the recovered velocities of 1st and 2nd trips.

L L mmmmmmm oo END of algorithm

5.3.3. Simulation and results.

The algorithm, given in section 5.3.2, was programmed in MATLAB code "piby4.m." In
writing the code, it was assumed that the input is a time series from a m/4 coded radar after
ground clutter filtering. The 1st trip is coherent, and the 2nd trip is coded. The testing is done
along the same lines as that for random phase coding. A test program was written which
simulates two time series for the two trips with specified parameters and combines them to form
an overlaid signal. Two long PRT time series with a reduced number of samples (reduction factor
is made inversely proportional to the PRT’s so that the dwell times for the short and long PRTs
are nearly equal) are also generated to simulate the long PRT scan, and the estimated spectral
parameters using a conventional autocovariance processor are fed into the algorithm as the long
PRT data input. The recovered velocity of the weaker signal is compared to the correct velocity
(computed using the pulse pair algorithm) and error statistics are generated from a large number
of simulation runs with the parameters, p1/p2, (vI-v2), and spectrum widths, wl. Spectrum width,
w2, of the weaker signal is kept constant at 4 m s™. The two PRT’s are chosen to be 3 ms. and
0.7812 ms. The number of samples chosen is 64 for short PRT data and 16 for long PRT data.
These are realistic values for the WSR-88D radar.

There are two steps in the recovery of the velocity v2. First, determine the two candidate
aliases, v2’ and v2’+v, or v2’-v,, whichever falls in the -v, to +v, interval. Second, determine
which alias is correct based on the long PRT velocity data, which we refer to as the sign
ambiguity resolution. To separate the effect of these two steps on the recovered v2, first the long
PRT data was not used in the simulation, and in its place, the correct velocity, as obtained from
autocovariance processing the 2nd trip time series before combining, was supplied to the
algorithm to remove the ambiguity. This gives us the performance of the spectral processing
algorithm, assuming a perfect sign ambiguity resolution. The results from the simulation are
shown in Fig. 5.3. Note that this result reflects the performance of only a part of the algorithm,
which does not include the sign ambiguity resolution.

The region of recovery of v2 nearly corresponds to the limit given by the residual power
ratio, R, (see Fig. 4.4.) for M/2 notch width. The recovered velocity has the same variance as
that of a signal without an overlaid 1st trip signal because the spectrum shape is completely
recovered whenever condition (b) is satisfied. For larger widths, the residual power introduces
a bias in the velocity estimate. The standard error shown in Fig. 5.3 is mainly the bias error,
which is a function of the velocity difference.
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std.error in v2,M=64,w2=4m/s,pi/4 code scale
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Fig. 5.3. Standard deviation of the error in recovered velocity, v2, of the weaker signal as a function of
pl/p2 and width, wli, of the stronger signal, using the ©/4 phase code method. Each rectangle represents
the standard deviation computed using 20 simulations with corresponding input parameters shown on the
axes. The velocity difference is varied over 28 m s'. The quantization levels and the gray shades
assigned to each levels are shown on the right. The parameters shown on the top of the figure are kept
constant for all simulations. [ The long PRT data is not used in removing the sign ambiguity, instead,
input data is used to remove sign ambiguity perfectly. Therefore, this figure reflects the performance of
only a part of the algorithm which does not include the sign ambiguity resolution using long PRT data.]
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Fig. 5.4. Error in the recovered v2 using the /4 phase code method for w/=4 m s™ width. The large error
(32 m s?) for pI/p2 < 30 dB in nearly 50% of the simulations is because of the failure of the sign
ambiguity resolution using the long PRT data,
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The performance of the second step in the algorithm, which selects the correct velocity
alias based on the long PRT data, is dependent upon the ratio of PRTs. If the ratio of the long
PRT and the short PRT is large, the number of velocity aliases increases, as well as the variance
of these values, because of the reduced number of samples available for velocity estimation, and
because the signal samples are less coherent, in the long PRT scan. The larger the ratio, the
number of velocity aliases for comparison as well as the spread of the aliases will be larger. The
probability of selecting the correct velocity also reduces with a larger PRT ratio. This effect is
shown in the scatter plot (Fig. 5.4) of error in recovered velocity, v2, when the second part is
incorporated into the algorithm, with a PRT ratio of 3.84. The spectrum width of both signals
is set to 4 m s? and pl/p2, and the velocity difference, (vI-v2), are varied over 0 to 70 dB and
-28 to 28 m s, respectively, for generating the scattergram. Note that for a spectrum width of
4 m s, the velocity is recovered for pl/p2=30 dB, but removing the ambiguity using the long
PRT data is erroneous nearly 50 percent of the time for w2=4 m s™. The success rate is higher
for narrower widths and lower for higher widths. This makes the algorithm unsuitable for PRT
ratios used in the WSR-88D radar.

Two other methods of resolving the sign ambiguity examined are, (a) power comparison,
and (b) averaging R(1) estimate over four previous sample sets (Sachidananda and Zrnic 1986).
These are discussed in the following paragraphs.

(a). The power comparison method: This method is based on two assumptions. The first
one is that when two uncorrelated spectra overlap, the total power is the sum of the powers of
the two signals. This assumption is not exactly true for each realization because the spectral
coefficients can add or subtract depending on the phase. It is true only when applied to the
expected value of the power. The second assumption is that when a signal is modulated by the
w/4 code, the splitting of the spectrum yields exactly same power in the two halves of the spectral
domain. This again is exactly satisfied only if the spectra are narrow with at most M/2 non-zero
coefficients. For wider spectra the tail ends of the spectra overlap when modulated, thus making
the powers unequal in the two halves.

In this method, the spectrum of the overlaid signal with 2nd trip signal coherent is divided
into two parts (M/2 coefficients each), one centered on estimated v2, and the other, the remaining
M/2 coefficients (these are centered on vZ2+v, or v2-v, ). The power in these two halves is
compared and the one with larger power is selected as the correct half in which the original
signal resides. Since the assumptions are not exactly satisfied in practice for each realization of
the weather signal, the method works only for low pl/p2 ratios. A simulation study indicated that
the largest pl/p2 for which v2 sign ambiguity can be resolved is about 8 to 10 dB.

(b). Averaging R(1): This method is based on the observation that the var(v2) decreases
with larger number of samples, and the velocity field is continuous. If the weaker 2nd trip signal
is cohered and autocovariance processed to obtain the velocity, v2, the standard deviation of the
estimate would be within v,/4 with M=256 for pl/p2 up to 15 dB (Sachidananda and Zrnic
1986). This estimate of v2 is sufficient to remove the sign ambiguity. The required 256 samples
are obtained by storing the previous four sample sets. These samples, of course, do not
correspond to the same range cell, but are cells from previous radials at the same range. It is also
possible to use data from the adjacent range cells along the same radial for the purpose. The
assumption is that the velocities are continuous and hence will have nearly the same velocities
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for all the resolution volumes around the volume under consideration. This procedure was
proposed in Sachidananda and Zrnic (1986). Using this method sign ambiguity can be resolved
if pI1/p2 is less than about 15 dB.

All the three methods of ambiguity resolution have limitations, and are unable to resolve
the sign ambiguity fully in the region of low standard error in v2, shown in Fig. 5.3.

5.4. /2 phase coding,
5.4.1. 1/2 phase code and estimation of spectral moments.

In the m/2 phase coding, the transmitted pulses are phase shifted in a sequence {0, 0,
/2, /2, ...}, and the return samples are phase shifted in the sequence {0, 0, -7/2, -®/2, ...} so
that the 1st trip samples are coherent. The 2nd trip signal phase code sequence is shifted by one
PRT, and hence, does not cohere but gets modulated by a phase sequence {rn/2, 0, -%n/2, 0,...}.
If the 2nd trip echo is made coherent by appropriately correcting the phase shifts, the 1st trip
signal gets modulated in a similar way. _

It may be noted that because of the periodicity of 4 in the sequence, one of the first four
trip signals can be made coherent at a time, and the other three will be modulated such that their
autocorrelation at lag 1 is zero. This allows us to recover the mean velocity of at least the
strongest of the signals, even when more than two trip signals are present. However, this applies
to autocovariance processing alone. If spectral processing is carried out, the algorithm becomes
complicated. In this report, we assume the presence of 1st and 2nd trip signals alone in
developing the algorithm. The same algorithm with some changes in the decoding procedure can
be applied for any two overlaid signals, not necessarily the 1st and the 2nd. However, there must
be some mechanism to determine which two of the first 4 trip signals are present in the time
series. (e.g., a long PRT scan.) This information is also needed to identify the data where more
than two signals are present.

An examination of the spectrum of the signal modulated by a phase sequence {7/2,0, -7/2,
0,....} shows that the power in the k™ spectral coefficient gets distributed equally among the four
spectral coefficients at k, k+M/4, k+M/2, and k+3M/4. Thus, in the modulated spectrum, the n™
coefficient is a vectorial sum (with appropriate phase shifts) of the contribution from the four
coefficients separated by M/4 in the original unmodulated spectrum. This is  shown
mathematically in the following paragraphs.

Let the phase sequence be represented by ¢, = {n/2,0,-%/2,0,...}, and let E,,
i=0,1,2,3,...M-1, be the time series complex samples of a signal. The spectral coefficients, a,,
of the unmodulated signal, £, are given by

M-1 ,
a,=1MYE 7", (5.5)

=0

and E; can be written as the inverse transform of g, as
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M-1
Ei = Z /)

m=0

z", (5.6)

m

The spectral coefficients of the modulated signal can be expressed as

M-1 .
1/M I E; exp(j ¢,) z*

=0

[l
=
i

M1 M-l , '
=1/M ¥ ¥ a, 7" exp(j o) z*
= m=0

0

M-1 M/2-1 ) . M2y
= UM S an {27 (1f + % 50 ) (5.7)
m=0 =0 i=0

The first summation over index, i, has a non-zero value only for m=k+M/4 and m=k+3M/4, and
the second summation over index, i, has non-zero value only for m=k and m=k+M/2. The values
are j/2 for the first two and 1/2 and -1/2 for the second two, respectively. Therefore, we can
express the coefficients of the coded spectra in terms of the uncoded spectra using the following
relation:

by="%Aa, + jymy - Guamny + J Qs } - (5.8

This is an important equation which gives us the property of the modified spectrum.

If the unmodulated spectrum is narrow and has at most M/4 non-zero coefficients a,
(assumption (b)), it can be shown using the result (5.8) that the equation (5.4), or the matching
property, is exactly satisfied, making R(1) = 0. If the non-zero spectral coefficients span M/2, two
of the four coefficients contribute to b,, and one of the coefficients is much larger than the other,
thus making 1b,* nearly equal to 1Bb,y,,,/”. If the non-zero coefficients span more than M/4, the
condition (5.4) is not satisfied exactly, resulting in a small residual value for R(1). This residual
value is mainly due to the non-zero coefficients outside the +M/4 interval centered on mean
Doppler. Therefore, R, for a M/2 notch width is a measure of the suppression of R(1) that can
be achieved by phase coding (See Fig. 4.4.). It can be seen that R(1) is suppressed by as much
as 40 dB for spectrum width of 4 m s, and v, =32 m s™". The suppression deteriorates rapidly
for larger widths. If we assume 8 m s™ as the largest width encountered in storms, the worst case
suppression is about 15 dB, if v, is chosen to be 32 m 5.

Fig. 5.5 shows two Gaussian spectra and the corresponding modulated spectra for two
different widths. Note that the spectrum splits into four identical parts separated by one quarter
of the unambiguous interval or M/4 coefficients. For narrow widths (1 to 3 m s), the four parts
overlap but the magnitudes of the coefficients spaced by M/2 are still nearly equal. If the width
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is larger than 3.5 m s, the significant coefficients span more than M/2, and their complex
addition causes the coefficients, b, and by, , to differ in magnitude.

Implementation of this scheme is simple. The only hardware change required is the
addition of an electronic phase shifter with two phase states (0 and ©/2 radians), in the transmit
path, at the low power stage. The received time series is first phase corrected to cohere the 1st
trip signal and then passed through a clutter filter. After the clutter is filtered, the time series can
then be cohered for the 2nd trip by appropriately shifting the phases of the samples. An
autocovariance processor can be used to recover the mean velocities of the stronger signal. The
recovery of weaker signal parameters needs further processing in the spectral domain. The
development of the algorithm is discussed in the next section.

5.4.2. The algorithm development.
When the Ist and 2nd trip spectra overlap, the k™ spectral coefficient is a sum of the

individual spectral coefficients, g, and b,, of the 1st and 2nd trip signals, respectively. Thus, R(1)
can be written as (see eq. 5.3)

A M-1
R =Y la+b P2
k=0

—

=Y (laP+1b P+ 2Rel ab* }z
k=0

A A A
=R(1) + R(1) + Cu(D). (5.9)

To estimate R, (1) , R (1) is made zero by phase code modulation. The expected value of the cross
term, C,,(1), is zero because the two signals are uncorrelated. However, with a finite number of
samples for estimation, C,,(1) will be nearly zero only if the spectra do not overlap, or if there
are sufficient numbers of non-zero product terms [a(k).b(k)*] with uniformly distributed phases,
when the spectra overlap. The phases are random because the signals are uncorrelated, but the
number of terms is directly proportional to M and the spectrum overlap. When spectrum widths,
wl and w2, are the same, and the spectra perfectly overlap, the number of terms available for
averaging (i.e., an equivalent number of independent samples; see Doviak and Zrnic 1993, p.
128) is proportional to (Mw2/2v,). Thus, for narrow spectrum widths of perfectly overlapped
spectra, M has to be large to make C,(1) small (Sachidananda and Zrnic 1986). The cross terms
are the main contributors to the var(v2). Since M cannot be made arbitrarily large, the only way
to recover v2 accurately is to separate the spectra before estimating the autocorrelation. In the
following, a procedure is developed to separate the spectra.

The following assumptions are made in evolving the procedure: (a) noise is zero or SNR
is infinity and (b) the spectrum is narrow (i.e., the Nyquist velocity is chosen large enough so
that non-zero spectral coefficients span at most M/2 coefficients). The effectiveness of the method
depends on how well these assumptions are satisfied by a weather signal. It is also assumed that
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Fig. 5.5. The spectrum modification by the w/2 phase code. Two cases are shown with narrow and wide
Gaussian shaped spectra.
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velocity aliasing is absent. Note that this assumption is not necessary for the algorithm to work.
The algorithm recovers the aliased velocity if there is velocity aliasing.

In this procedure, the time series with the st trip coherent is taken, and R(1) is computed
which gives the mean velocity, vI, of the 1st trip accurately (i.e., sd(vI)<l m s), because the
weaker 2nd trip is phase modulated by the ©t/2 code. A discrete Fourier transform (DFT) of the
time series gives the spectrum. To recover the 2nd trip signal, a major part of the Ist trip
spectrum is deleted to improve the ratio of overlaid powers. M/4 coefficients centered on v/ are
deleted, and then remaining spectrum is cohered for the 2nd trip signal. Note that notching a
major part of the coherent 1st trip spectrum also removes 1/4 of the power of the 2nd trip
spectrum. When the 2nd trip signal is cohered, not all the 2nd trip signal becomes coherent
because of notching. Only half the 2nd trip signal becomes coherent; the remaining 1/4 of the
2nd trip signal and the residual 1st trip signal are phase modulated. The power is distributed in
four equal parts (as explained earlier) which do not contribute to the autocorrelation, R(1). There
is a net improvement in the ratio, pl/p2, after this operation. If this improvement is sufficient,
one could recover the mean velocity of the 2nd trip signal at this stage. However, further
improvement can be made in the pl/p2 ratio using the following steps before computing the
autocorrelation.

To remove the residual 1st trip signal power, we use the magnitude equality of the left
and right half of the modulated spectrum. At this stage, the magnitude of the spectral coefficient
alone is retained (phase is discarded). Two coefficients at k and k+M/2 are taken, and the lower
of the two is subtracted from both the coefficients. This process is continued for k=1 to M/2. The
resulting spectrum has mostly the coherent 2nd trip signal, and a small part of the unwanted 1st
trip signal which biases the velocity estimate. To remove this bias, first an approximate velocity
is estimated from the autocorrelation, R(1), and then only M/3 coefficients are taken centered on
the approximate velocity to compute the accurate velocity. This last step is useful when the
assumptions (a) and (b) mentioned earlier (in section 5.3.1) are not satisfied exactly.

These processing steps are illustrated in a series of spectra shown in Figs. 5.6(a) through
(h). Figs. 5.6, (a) and (b) show the 1st and 2nd trip signal spectra. The spectral coefficient
magnitude, obtained from DFT operation, versus the coefficient number, is plotted. The
corresponding velocity scale is 0 to -v, for the left half and +v, to 0 for the right half. A
simulated 400 sample time series is used for generating the spectra, and the parameters of the
spectra are indicated. The next two, Fig. 5.6(c) and (d), show the effect of phase coding on the
spectra. In Fig. 5.6(c), the 1st trip is coherent, and the 2nd trip signal is modulated, and in Fig.
5.6(d), it is the reverse. Since the 1st trip is stronger, the spectrum in Fig. 5.6(c) is chosen for
recovering the mean velocity of the weaker 2nd trip signal. The spectrum, after M/4 coefficients
centered on vI are deleted, is shown in Fig. 5.6(e). In the next figure, Fig. 5.6(f), the 2nd trip
signal is cohered. This spectrum has some residual, modulated 1st-trip signal. This is partially
(major part) removed by subtracting "the lower of the two" from both sides of the spectrum as
explained in the preceding paragraph. The result is the spectrum in Fig. 5.6(g). The last spectrum,
Fig. 5.6(h), is obtained by deleting the undesirable coefficients outside the M/3 coefficients
centered on the recovered approximate mean velocity, computed using the autocorrelation R(1)
of the spectrum in Fig. 5.6(g). In this example, the ratio p1/p2 is 10 dB.

A similar sequence of steps are illustrated in the next figure, but the power ratio is 50
dB and the spectrum width is 2 m s* ( v,=32 m s; wl/2v,=0.03125) which satisfies the
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assumptions made earlier in evolving the procedure. As can be seen in Fig. 5.7(a) through (h),
the recovery of the weaker signal is dramatic. Note that the weaker signal is not visible in
Fig. 5.7(c) and (d); nevertheless, it is recovered in the end. However, when the spectrum width
is large (wl1/2v, > 0.0625), having significant residual power, the recovery of the weaker signal
is not always successful. In fact, the recovery of the weaker signal depends on the residual
overlaid power.

The processing steps in Fig. 5.6(f) and (g) need some explanation. Here, the magnitude
of the spectral coefficients is used and not the power. The magnitudes of the k™ and (k+M/2)"
coefficients in Fig. 5.6(f) are identical (according to eq. 5.8) if the contribution is from the 1st
trip alone. If they are unequal, at most one of them has a contribution from the 2nd trip (because
they are separated by M/2, and the widths are narrow). Thus, if the signal is from the 1st trip
alone, the process of "subtraction of the lower of the two from both the coefficients" completely
deletes both the coefficients. When they are unequal, the larger of the two retains some power.

There is an underlying assumption made in this that the larger coefficient contains the
2nd trip signal power. This is not always true for all k because the magnitude also depends on
the relative phase of the two components constituting the coefficient. However, an examination
of the probability of the larger coefficient containing the 2nd trip signal shows that it is always
greater than 0.5. To show this, let "a" and "b" be the complex spectral coefficients of the 1st
and 2nd trip signals. We have to compute the probability of la+bl > lal . Since the two signals
can be assumed to be uncorrelated, the relative phases of @ and b can be assumed to be uniformly
distributed over O to 2xw. A simple analysis gives the probability as

P{la+bl > lal } = 1/2 + (1/m) sin™'( 1b2al ) ; 1b/2al<1 . (5.10)
The asymptotic value as lb/al =0 is 1/2, and for |b/al > 2, it is unity. Therefore, the larger the
Ib/al ratio, the better will be the recovery of the weaker signal. The notching of M/4 coefficients

helps the recovery in two ways, (a) it equalizes the magnitudes of the 1st trip signal in the right
and left half of the spectrum and (b) it improves the |b/al ratio.

5.4.3. The /2 decoding algorithm.

In simulating the time series, the assumptions stated in page 4 are made. The algorithm
given below is also based on those assumptions. This algorithm does not use long PRT data.

<LK mmmm e START of ©/2 algorithm

1. Input time series EI; ; i=1,2, .... M.
» transmitter phase switching sequence y; = { 0, 0,7/2,7/2, 0, ...etc.}
» note : the time series must start with 1st phase code 0
for correct decoding,
> 1st trip is coherent; 2nd trip is phase coded by a sequence
¢, ={ 2,0, -n/2, 0, ...etc.}
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Fig. 5.6.(a-d). The processing steps in the decoding algorithm for a ®/2 phase coded radar. pl/p2 =10 dB.
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2. Cohere the 2nd trip.
» E2=EI .exp(+ ¢)

3. Autocovariance process EI and E2 to get pI,vi,wl and p2,v2,w2.
(the output parameters are estimates; ~ is omitted for convenience.)

4. Compute wl/w2 ratio.
» if wi/w2 > 1, trip=2, 2nd trip is stronger - process E2.
» if wi/w2 <1, trip=1, 1st trip is stronger - process El.

5. If wi/w2 > 1, interchange EI and E2, and all the parameters on line number 3.
» with this interchange, E/ is the time series with stronger signal coherent.
» we need to recover p2,v2 and w2 of the weaker signal.

6. Compute spectrum of EJ.
» SI’=DFT[EI]

7. Notch 3M/4 coefficients centered on v/. Compute mean power p from the remaining
coefficients. Multiply p by 4 to get mean power p2.

8. Compute power ratio pr = 10 log,,(p1/p2) (dB.)

9. If pr < 20 dB, correct error in pl estimate.
» pl’ =pl -p2 '
» compute corrected power ratio pr = 10 log(pI’/p2) (dB)

10. If pr < 20 dB correct the error in spectrum width wi.
» err(wl) = 8.75374 - 1.02952 pr + 0.0415391 pr* - 0.000566432 pr®
This is polynomial fit to the error curve, with v, = 32 m s™.
[For other values of v, multiply all constants by (v,/32)"° ]
» corrected wl = wl - err(wl)

11. Notch M/4 coefficients centered on v/ from S7’° to get S1.

12, Cohere weaker signal in S/.
» ¢l =IDFT[ SI]
» if trip=1, €2 =el. exp(-j 9,
» if trip =2, e2 = el. exp(j ;)
» compute magnitude spectrum, g = | DFT [ €2 ] |

13. Subtract the residual of the stronger signal.

>, =min { g, Gu.mz } 5 k=12, ... M/2.
> subtract @, from both g, and Gy, ; £k=1,2, ... M/2.
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14. Compute autocorrelation for 1 PRT lag, R(1) from g, and compute
approximate mean velocity v2’.

15. Delete unwanted coefficients outside M/3 coefficients centered on v2’,
16. Recompute R(1) and v2, w2,

17. If trip = 2, interchange parameters (pl,vI,wil) and (p2,v2,w2)

18. Output Ist and 2nd trip parétmeters and go to next data set.

<L L e END of algorithm

5.4.4. Simulation and results.

To evaluate the performance of the algorithm, a simulation study was performed along
the same lines as that for random phase coding in section 4. A test program was written which
inputs a set of parameters for the 1st and 2nd trip signals into the simulation program to generate
a overlaid time series, and this time series is processed by the algorithm to recover the
parameters. These recovered parameters are compared with the parameters of the two signals,
computed individually by the autocovariance processor before adding. The window effect, the
effect of noise, and the ground clutter filtering are not included as in the random phase case, so
that the comparison among the various methods is based on the basic capability of the method
alone.

A large number of simulations were carried out to characterize the performance. Some
sample scatter plots of the errors in the estimated parameters are in Fig. 5.8, Fig. 5.9, and Fig.
5.10. The power ratio, pl/p2, is varied over 0 to 70 dB, and the velocity difference (vI-v2) is
randomly chosen for each simulation to be within #28 m s™. The unambiguous velocity, v,, is
32 m s! with a PRT = 0.7812 ms. The velocities, vI and v2, are restricted to be less than v,
to avoid aliasing error. The spectrum widths are set to 4 m s for both signals. Each point on
the plots corresponds to one simulation with M = 64 samples. It can be observed that the error
in the velocity v2 (see Fig. 5.8) is the limiting factor since the power, p2, can be recovered over
a much larger dynamic range of pl/p2 (Fig. 5.9). For 4 m s width of the stronger signal, v2
can be recovered up to a limit of about pl/p2=20 dB, with M = 64. The standard error is
somewhat larger than 1 m s at p1/p2=20 dB. Although the error in v2 appears as random in the
scatter plot (see Fig. 5.8) for large pl/p2 ratios, there is, in fact, a systematic bias error, unlike
in the case of random phase coding. This bias error is caused by the residual of the 1st trip signal
that is not removed by the subtraction procedure. The spectral processing procedure could be
employed to remove this residual power, but involves more computation. The random appearance
of error in Fig. 5.8 is because the velocity difference was varied over all possible values. If (v/-
v2) is kept constant, the scatter plot will show the bias error clearly. However, to evolve a bias
correction mechanism, a large number of simulations have to be run with different parameters,
and from these results, empirical error correction formulae can be generated. By estimating this
systematic bias, which is a function of pI/p2, wl, and (vI-v2), and correcting the error, we can
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extend the recovery limit to about pl/p2 = 35 dB for w/=4 m s and M=64. In the presented
algorithm, this bias correction has not been implemented.

Results of simulations, where in addition to pl/p2 and (vI-v2), wl is also a parameter,
are summarized in Fig. 5.11. The spectrum width of the weaker signal, w2, and the number of
samples, M, are kept constant (w2=4 m s'; M=64). The standard error in the estimated velocity
v2 is quantized for plotting, and a gray shade is assigned to each level. The scale on the right
shows the quantization levels. If 1 m s™ is the acceptable limit for the error, the recovery region
is approximately that given by the theoretical limit shown in Fig.4.4 for notch width of M/4. If
bias correction is implemented, the recovery limit can be extended nearly up to the limit
corresponding to the M/2 notch width in Fig.4.4. Note that in the region of recovery, the standard
error is very small. This is because when w/ is small, the spectrum is accurately recovered, and
when w/ is large, the assumption that the spectrum is confined to M/2 coefficients only is not
satisfied, producing a bias error.

Given the fact that the /2 coding splits the spectrum into four equal parts shifted by M/4
coefficients, and that there is a definite phase relationship among the four components, it is
possible to devise other methods of recovering the mean velocity of the weaker signal. For
example, we can select one quarter of the spectrum farthest from the mean velocity of the
stronger signal, and compute the mean velocity and mean power of the weaker signal. This part
of the spectrum has the least amount of power from the stronger signal. If v2 is the estimated
velocity of the weaker signal, the correct velocity will be one of the four values {v2, v2tv /2,
v2+v,, v2+3v,/2; select the four which are in the 0™ aliasing interval}. To select the correct value
from these four, a comparison of phase difference (taking one of them as a reference) among
the spectral coefficients at three of these four locations farthest from v/ can be used. Obviously,
the limitation will be the contamination from the stronger signal at these locations and would be
equivalent to a notch width smaller than 3M/4 used for velocity recovery. The performance of
this method is likely to be comparable to the one that is given in this section.
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Fig. 5.8. Error in the mean velocity estimate, v2, of the weaker signal recovered using the /2 phase
coding method. The velocity difference and p1/p2 are varied over £28 m s and 0 to 70 dB respectively,

in the simulation. The error is the difference between the recovered velocity and the velocity estimated
using the autocovariance algorithm without the overlaid signal.
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Fig. 5.9. Error in the mean power estimate, p2, of the weaker signal recovered using the m/2 phase code
method. The velocity difference and p1/p2 are varied over 28 m s™ and 0 to 70 dB, respectively, in the
simulation.

83



6 ! ! ! ! Tt T
pi/2 code;M=64;va=32mi/s + : LI S + ]
(v1-v2)=-28to 28 m/s : Lty i b4 + F
wi=dmsw2=am/is | 14+ 4 F i v L4 ta +$ T
4_ .............. +_|_ ........ ........ +++ 3 $i$:‘:+ $$+%_—-
iR
%

err(w2) m/s
(o]

1
\*]

== std. dev.

6 ; ; ; ; ; ;
0 10 20 30 40 50 60 70
pi/p2 dB

Fig. 5.10. Error in the spectrum width estimate, w2, of the weaker signal recovered using the /2 phase
code method. The velocity difference and pl/p2 are varied over £28 m s and 0 to 70 dB, respectively,
in the simulation.
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std.error in v2,M=64,w2=4m/s,nw=M/4,pi/2 code scale
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Fig. 5.11. Standard deviation of the error in recovered velocity, v2, of the weaker signal as a function
of p1/p2 and width, wl, of the stronger signal, using the 7/2 phase code method. Each rectangle represents
the standard deviation computed using 20 simulations with corresponding input parameters shown on the
axes. The velocity difference is varied over 28 m s, The quantization levels and the gray shades
assigned to each level are indicated on the right, and the fixed parameters are at the top of the figure.
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5.5. Optimizing the systematic code.

The three phase coding algorithms presented so far give us some insight into the working
of phase coding techniques. The phase coding seeks to modify the spectrum of one of the
overlaid signals so that the spectral parameters of the other can be recovered by appropriate
processing techniques. Conceptually, all three methods have been reported in the literature;
however, the algorithms developed and presented in this report show improved performance
because of larger notch width and some additional spectral domain processing steps introduced
in the algorithms. Specifically, the subtraction process in the 7/2 coding technique and smoothing
and subtraction (S&S) procedure in random phase technique are the important ones. The
improvement in the recovery of velocity, due to the S&S step, is equivalent to an increase of
the weaker signal by 3 to 5 dB. The noise power removed by the S&S step is roughly same as
the noise that does not contribute to R(1). Therefore, the S&S step can be eliminated from the
random phase algorithm, if the width is not required to be estimated. The effectiveness of the
autocovariance processor is limited by the "whiteness" of the noise or the "matching property"
of the modulated spectra. This leads us to the possibility of further improvement in the
performance by selecting a phase code with better "whitening" or the "matching" property. In
this, section we explore this possibility and arrive at a better phase code.

5.5.1. Conceptual development.

The performance of each method is summarized in a plot of sd(v2) as a function of
overlaid power ratio, p//p2, and spectrum width, wi, of the stronger of the two overlaid signals.
This we refer to as err(v2) plot in {pl/p2;w} space in the rest of the report. All the results of the
simulation study of the four algorithms presented so far indicate that the region of {pI/p2;w}
space, where the velocity of the weaker signal can be recovered, is demarcated by the R, for the
notch width used in the algorithm (See Figs. 4.19, 5.3, & 5.11). This suggests that the limiting
factor is the residual stronger signal power after notch filtering. Therefore, to increase the region
of recovery, it is necessary to increase the notch width.

The ©/2 and /4 schemes have fixed notch widths dictated by the code itself; therefore,
the region of recovery in the {pI/p2;w} space is also fixed. The error in the velocity is small in
the region of recovery, and as the pl/p2 increases for larger widths, the velocity has a bias error.
In the n/2 scheme, this bias can be removed to some extent by a bias error correction scheme
or further processing in the spectral domain to increase the region of recovery. Even with this
correction, the upper bound is that of the M/2 notch width. For the w/4 code, the sign ambiguity
is the main problem that limits the recovery.

In the case of the random phase technique, the error in v2 has no bias, and the standard
deviation of the error is a function of the SNR that can be achieved after notch filtering and
cohering. A larger notch width decreases the residual power and increases the region of recovery
in the {pl/p2;w} space, but at the same time reduces the SNR (due to increased self noise),
producing a larger standard error in the velocity estimate. There are two components to the
noise power; one is the residual part of the stronger signal, and the other is the part of the weaker
signal power that does not cohere (self noise) because of notch filtering.
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Now, given a notch width and spectral parameters of the weather signal, the residual of
the stronger signal power in the spectrum is fixed. Therefore, the scope for further improvement
is in maximizing the coherent part of the weaker signal, and in improving the whiteness and the
matching property of the residual noise. Since we do not have control on the weather signal the
best we can do is to select a phase code that allows us to cohere maximum amount of the power
from the original spectrum, and make the spectrum of the residual stronger signal power as white
as possible at the same time ( or make it as identical as possible in the left and right half of the
spectrum). There is an upper limit for the whiteness that can be achieved for weather signals if
the random phase coding is used (see Fig.4.8). But there is a possibility of achieving a
significantly larger rejection ratio using the systematic code, where a better match between the
left and right half of the spectrum can be obtained. The phase coding essentially redistributes the
power in the spectral domain. A well designed code allows reconstruction of the signal spectra
from the filtered and cohered spectra, with a largest possible self SNR (SNR due to self noise
alone). In this, the distribution of phase of the individual components making up the coefficient
plays an important role. The two requirements viz., restoring the spectrum, and minimizing the
residual noise via notch filtering, are conflicting which suggests that the optimum code is a
compromise.

A systematic phase code that has the property of zero cyclic autocorrelation for all lags
except zero lag is given by Chu (1972). This property is the same as that of the spectrum of the
code being perfectly flat, or all spectral coefficients having the same magnitude. The code is
given by the expression

C, = exp(jnmkM ) ; k=0,1,2,... (5.11)

where n is prime to M (i.e.,M not divisible by »). In fact, for M even, any odd number, n, will
produce a flat spectrum and zero autocorrelation, for all lags except zero. The phases progress
in a quadratic fashion with the smallest step size determined by (nm/M), but appear as random
when reduced to (0-2m). If » and M are even, only a few of the spectral coefficients are non-zero,
and they have equal magnitude. Few sample code spectra are shown in Fig. 5.12 for n=1,4,8
and 11, with M=64. Note that for odd n, the spectrum is flat, and for even n, some of the
coefficients are zero. If M is divisible by n, only M/n coefficients are non-zero. For n=1 and 11,
the spectra differ only in phase.

If a weather signal is modulated by this phase code, the resulting spectrum is the
convolution of the code spectrum and the signal spectrum. Thus, if n/M=1/8, the spectrum of
the coded signal would have 8 peaks separated by M/8 coefficients, with one of the peaks at the
same location as the original uncoded spectrum. To be able to cohere the weaker signal and
recover the velocity, we require at least two of these peaks retained in the spectrum after notch
filtering. This will put an upper limit on the maximum notch filter width that can be used for a
given n/M. The SNR due to self noise decreases as a function of increasing notch width, hence
the standard error in the velocity estimate also limits the maximum usable notch width, In a
practical situation the lower of the two is to be selected. It is important to note that the
functional dependence of the self SNR on n,, is different from that given by eq. (4.2), because
the signal is not whitened by the code, but is systematically modified. After notch filtering and
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Fig. 5.12. Amplitude and phase of the spectral coefficients of the code C, = exp(jnnk*/M), with M=64.
Four cases, n=1,4, §, & 11, are plotted.
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cohering, the weaker signal the spectrum consists of the original signal and a few symmetrically
distributed side bands with lower powers. This increases the spectrum width of the signal but
does not bias the velocity. For a given notch width, the self SNR is significantly better than that
for the random phase coding, thus, we can use a notch filter width larger than M/2 (for M=64)
and still recover v2 with a tolerable standard error. This will effectively increase the region of
v2 recovery in the {pl/p2;wl} space.

For a given notch filter width and the signal time series length, M, n=1 would yield the
best self SNR. The whitening of the residual of the stronger signal also the best for this value.
However, as noted earlier in section 4, there is an upper limit to the whitening that can be
achieved. As we increase the code parameter, n, the whitening property changes to matching
property (perfect matching occurs at n=16 for n,=0.75), which can suppress the contribution of
the residual of the stronger signal to the autocorrelation more effectively. However, for r,=0.75,
maximum value of » is 8. Thus, if we select n, = 0.75, n=8 would result in the best matching
property in the residual of the stronger signal (for n=8, max(n,)=0.75), but would produce a
lower self SNR.

To determine the best value of n for n,=0.75, a simulation study was performed with n
as a variable. The spectrum width of both signals is maintained at 4 m s*. The overlaid power
ratio, pI/p2, and velocities, v/ and v2, are varied over 0 to 70 dB and 28 m s, respectively.
The standard error in recovered v2 is shown in Fig. 5.13. It is clear from this figure that n=8 is
the optimum value for the code. The standard error in v2 progressively decreases and reaches a
lowest value at n=8, and then again starts to increase. There is a symmetry about n=32. This is
because the phase code is the same for n=x and n=M-x, when reduced to (0-2x). Note that the
selected n,, is more than the maximum usable value for 9< n <56. However, for 9 < n <14 (and
also for 50 < n < 56), partial cohering takes place, thus, we are able to recover v2, but with a
progressively increasing standard error. For codes with n between 16 and 48, the recohering
entirely fails because of the larger than maximum allowed notch filter width, although the code
spectrum is flat!

The code C, = exp(jumk’/M), with n/M=8/64, is a sequence of complex numbers with
which we have multiplied the 2nd trip signal to change its spectrum, or ¢, = (nmk’/M) is the
sequence of phase shifts required to be applied to the 2nd trip signal samples when the 1st trip
signal is coherent. Note that this is not the phase shift sequence for the transmitted pulses. To
obtain the phase switching sequence, proceed as follows: Let v, k=0,1,2,..., be the phase
switching sequence for the transmitter pulses. The return samples for the 1st trip will have the
same phase shifts, and the 2nd trip signal samples will have phase shifts W, ; (the same sequence
shifted by one pulse). Therefore, when the 1st trip signal is made coherent by multiplying the raw
time series by complex numbers C,* ( or phase shifted by -y,), the resulting phase shifts in the
2nd trip time series is the sequence (Y, - ¥,) = ¢,. Given the sequence of phases, ¢,, we can
compute Y, as

k k
\Vk = - Z(I)m = - z(nﬂ:mz/M) s k=0,1,2, oes (5'12)
m=0

m=0
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std.error in v2,w1=w2=4m/s,nw=3M/4,SZ code,M=64 scale
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Fig. 5.13. Standard deviation of the error in velocity, v2, of the weaker signal as a function of code
parameter, n, Phase code, C, = exp(jnmk*/M) with M=64. Each rectangle represents standard deviation
obtained using 20 simulations with the indicated parameters. Gray scale on the right depicts the
quantization levels.
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With M=64 and n=8, this sequence has a periodicity of 32, although ¢, has a periodicity of 8.
All the phase values are multiples of /8, and hence are easy to realize using a digital phase
shifter (a 4-bit phase shifter is sufficient). We refer to the code given by equation (5.12) as the
switching code or the SZ code in general, and specifically the SZ(8/64) code for n=8 and M=64.
The phase sequence, ¢,, will be referred to as the modulation code.

For a sample sequence length other than 64, optimum # lies somewhere between M/8
and M/10, and it is not necessary that n be an integer. The only difficulty in practice would be
that the switching code may have a periodicity much longer than the number of samples, M,
and the phase shifts needed may not be exactly realizable with a commercial m-bit digital
phase shifter which generally has the smallest phase increment of 2m/2" radians.

A more detailed discussion on the SZ code is included in the part-2 of this report.

5.5.2. The decoding algorithm for optimum systematic code.

The decoding algorithm is similar to the random phase algorithm except that the phase
code is SZ(8/64), and the notch width is different. The random phase algorithm is repeated here
with these changes for convenience of the reader. This algorithm does not use long PRT data.

R START of algorithm

1. Input time series El,; k=0,1,2, .... M-1.
» 1st trip is coherent; 2nd trip is phase coded by a sequence
o, = nwk’/M; k=0,1,2,.... M-1.

2. Cohere the 2nd trip.
» E2=EI exp {-j 0;)

3. Autocovariance process £ and E2 to get pl,viwl and p2,v2,w2.
(the outputs are estimates; the symbol # is omitted for convenience.)

4. Compute wl/w2 ratio.
» if wl/w2 > 1, trip=2, 2nd trip is stronger - process E2.
» if wi/w2 < 1, trip=1, 1st trip is stronger - process E/.

5. If wl/w2 > 1, interchange EI and E2, and all the parameters on line number 3.
» with this interchange, EI is the time series with stronger signal coherent,
» we need to recover p2,v2 and w2 of the weaker signal.
[ Note: The processing steps 6 to 17 are same for the two cases in step 4,
with EI replaced by E2. This is accomplished by the step 5 and
the trip numbers are restored in the step 18.]

6. Compute spectrum of E/.
» SI’=DFT[EI]
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7. Notch 3M/4 coefficients centered on v/ to get S/ from SI°.

8. Compute mean power p from the remaining coefficients.
Multiply p by 4 to get mean power p2.

9. Compute power ratio pr = 10 log,,(p1/p2) (dB.)

10. If pr < 20 dB, correct error in p/ estimate.
» pl’ =pl-p2
» compute corrected power ratio pr = 10 log(pl’/p2) (dB)

11. If pr < 20 dB correct the error in spectrum width wi.
» err(wl) = 8.75374 - 1.02952 pr + 0.0415391 pr* - 0.000566432 pr®
This is polynomial fit to the error curve for v, = 32 m s\,
[For other values of v, multiply all constants by (v,/32)" ]
» corrected wl = wl - err(wl)

12. Cohere the weaker signal in S1.
» el =1IDFT [ S1]
» iftrip =1, €2 =el exp{-j ¢, }
» iftrip=2, e2=el exp{jo,}
» compute magnitude spectrum, g = | DFT [ €2 1|
13. Apply smoothing filter to q.
» g = SF( qg; m); (choose filter length m=9 for M=64).

14. Subtract the residual stronger signal.
» ay=min { g, Guaz b k=1,2, ... M/2.
» subtract a, from both g, and ¢y, k=1,2, ... M/2.

15. Compute autocorrelation for 1 pulse lag, R(1) for g, and compute
approximate mean velocity v2’.

16. Delete coefficients outside M/3 interval centered on v2’,

17. Recompute R(1) and v2, w2.

18. If trip = 2, interchange parameters (pI/,vI,wl) and (p2,v2,w2).
19. Output 1st and 2nd trip parameters and go to next data set.

LKL mmmmmmm e END of algorithm
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5.5.3. Simulation results and discussion.

To evaluate the performance of the algorithm, a simulation study was performed along
the same lines as that for random phase coding in section 4. A test program inputs a set of
parameters for the 1st and the 2nd trip signals into the simulation program to generate an overlaid
time series, and this time series is processed by the algorithm to recover the parameters. These
recovered parameters are compared to the actual parameters of the two signals computed
individually by the autocovariance processor before addition.

In the simulations, the power ratio, pl/p2, and the velocity difference (v/-v2Z) were
varied over 0 to 70 dB, and +28 m s respectively. A scatter plot of the error in recovered v2
is in Fig. 5.14. The unambiguous velocity, v,, is again 32 m s with a PRT = 0.7812 ms. The
spectrum widths are set to 4 m s for both the signals. Each point on the plots corresponds to
one simulation with M = 64 samples. The mean and standard deviation of the error are also
shown in the figure. The standard error is approximately 1 m s™ over a large dynamic range of
the pl/p2 ratio. Compare this with Fig.4.12 for the random phase case, and note a significant
improvement in the velocity recovery.

A large number of simulations were run with pl/p2, wi, and (vI-v2) as parameters. The
spectrum width of weaker signal, and the number of samples, are kept constant (w2=4 m s™;
M=64). The standard error in the estimated velocity, v2, summarizes the performance of the
optimized systematic code (Fig. 5.15). Compare this with the corresponding Fig.4.19 for the
random phase coding. Even with a 3M/4 notch width, we are able to achieve a standard error of
1 m s? in the region of recovery in {pl/p2;w} space, and the region of recovery is also much
larger.

This section presents a study of the optimized systematic phase code and its
performance. A comparison of performance of this scheme with the random phase method
discussed earlier clearly shows that the optimized systematic code (SZ code) is better.

There is scope for further improvement in the algorithm because we have used a fixed
notch width of 3M/4 coefficients. As discussed in the case of random phase coding in Section
4, this notch width is an overall optimum in the sense of maximizing the region of recovery in
the {pI/p2;w} space with an upper bound on the standard error in v2. This choice of notch width
results in roughly the same SNR over all the recoverable {pl/p2;w} space, but this SNR is the
maximum achievable SNR only along the pl/p2=R, curve (i.e.,at the limit of recovery). There
may be some room for improving the standard error in the region of recovery by adaptive notch
filter width which maximizes the SNR. These aspects are discussed in the second part of this
report,
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Fig. 5.14. Error in recovered v2 as a function of pl/p2. Dots are simulation results with indicated
parameters. SZ phase code with n/M=8/64 and notch width of 3M/4 are used.
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Fig. 5.15. Standard deviation of the recovered velocity, v2, of the weaker signal in {pl/p2;w} space. SZ
phase code with n/M=_8/64 and notch width of 3M/4 are used. Each rectangle represents the standard error
obtained using 20 simulations.
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6. SUMMARY AND CONCLUSIONS.

The main aim of the study was to evaluate and compare the methods for their
effectiveness in mitigating the ambiguity problem in WSR-88D. In order to evaluate the
performance of the methods, simulated weather signals were used. First, a versatile weather signal
time series simulation program was developed as a tool to evaluate different methods of
ambiguity resolution. This program is made general so that overlaid signal time series could be
generated with any given spectral parameters and coding scheme.

Five different methods for the recovery of spectral moments of overlaid weather signals
are studied in this report. The methods discussed are (a) the peak sorting method (b) the random
phase coding (c) the w/4 phase coding, (d) the w/2 phase coding and (e) the SZ(8/64) code.
Although some of these methods are from the published literature, algorithms had to be
developed and improved upon to suit the WSR-88D environment.

In all the techniques considered, the recovery of the mean velocity of the weaker of the
two overlaid signals is the most difficult problem, as all other parameters can be recovered over
a much larger dynamic range of the overlaid power ratio (p1/p2 = pl/p2). The performance of
each method is best summarized by the standard error in the velocity estimate, v2, of the weaker
signal as a function of p//p2 and spectrum width, wi, of the stronger of the two overlaid signals.
The err(v2) plots are in figures 3.4, 4.19, 5.3, 5.11, and 5.15, for the five schemes, viz., peak
sorting, random phase coding, ©/4 phase coding, w/2 phase coding, and the SZ(8/64) code,
respectively. Simulated weather signals were used to generate these figures. The following
assumptions were made in the simulation and in generating these results.

(1) Only 1st and 2nd trip signals are present in the time series.

(2) SNR for both the signals is infinity (zero noise).

(3) Spectra have a Gaussian shape.

(4) Window effect is not included.

(5) Ground clutter is not present in the time series.

(6) Number of samples in the time series is M=64, and the spectrum width
of the weaker signal is w2=4 m s™.

Some of these effects such as the window effect, the ground clutter, etc., cannot be
neglected in practice but were not included to bring out the basic capabilities of the methods
for comparison. None of the methods can be implemented on the present system without a new
signal processor. All methods are computationally intensive. The following is a summary of
results and observations:

(a) Peak sorting algorithm:
* Does not use any coding.

* Uses spectral domain processing (DFT, filtering etc.).

* Recovers the mean velocity of the stronger signal accurately all the time.
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* Recovers the mean velocity of the weaker of the two signals approximately 50% of the time
if pI/p2 is within £20 dB. There is an uncertainty in the recovered velocity of the weaker signal;
hence it cannot be used with confidence (see Fig.3.4).

* Requires long PRT scan data for assigning the correct range to the recovered velocities.

* The scheme is compatible with the present WSR-88D scan strategy of long and short PRT
scans.

* Recovers velocities in at least 50% of the overlaid region in the present WSR-88D velocity
display over the first two unambiguous range intervals. Whenever there is overlaid signal, at
least the stronger signal velocity is recovered.

(b) Random phase coding:

x Requires the addition of a phase shifter of sufficient accuracy in the transmitter signal path
and a new processor.

* Uses spectral domain processing (DFT, filtering etc.).

* Recovers the mean velocity of both the signals over {p//p2;w} space as shown in Fig.4.19.
The limit of pl/p2 for velocity recovery is a function of wl and filter notch width (notch width
of M/2 used in Fig.4.19).

* Use of larger notch width for the filter pushes up the limit, but also increases the standard
error in the region of {pl/p2;w} space where the velocity is recovered. Thus, the maximum
notch width that can be used depends on the tolerable standard error in the recovered mean
velocity of the weaker signal. For M=64, notch width of M/2 produces a standard error of 1.5
to 2 m s in the velocity.

* Does not require long PRT scan data for recovery of velocities.

* All the velocities in the overlaid signal region in the WSR-88D velocity display (first two
trips) is completely recovered if the p//p2 is less than the value of R, shown in Fig.4.4 for M/2
notch width, and a standard error of 2 m s can be tolerated. (Note: This error will be higher
if window effect, noise, etc., are included.)

(¢) w/4 phase coding:

* Requires a 2-bit phase shifter (with O and /4 phase shifts) in the transmitter signal path and
a NEW Processor.

* Uses spectral domain processing (DFT required.)
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* Recovers the mean velocity (except for a sign ambiguity in v2) of both the signals over
{pl/p2;w} space as shown in Fig. 5.3. The limit of pI/p2 for velocity recovery is approximately
the residual power ratio, R, for notch width of M/2 used in processing.

* The notch width is fixed by the coding scheme. The method does not work with other notch
widths.

* There is a sign ambiguity due to notch filtering. To remove this ambiguity, long PRT scan
data can be used. The ratio of long to short PRT is critical for accurate removal of the sign
ambiguity. The larger variance of aliased velocity recovered using long PRT data also contributes
to erroneous alias assignment. For M=64 and a PRT ratio of 3.84, nearly 50 percent of the time
the recovered weaker signal velocity is in error (Fig. 5.4). The weakest point of the method is
the alias assignment.

* Two other methods of resolving the sign ambiguity are also considered. These two methods
do not use the long PRT data. The method reported in Sachidananda and Zrnic (1986) using the
mean of previous four R(1) estimates can recover v2 up to pI/p2 = 15 dB without sign ambiguity
in the {pl/p2;wl} space shown in Fig. 5.3. The method based on the power comparison also has
an upper limit of about p//p2=8 dB. For larger pl/p2, it starts failing and cannot be used with
confidence.

* The standard error in the region of {p//p2;w} space where the velocity v2 is recovered is
small and is mostly the bias error, which is a function of (v/-v2) and pl/p2 ratio.

*  More than 50 percent of the velocities in the overlaid echo region in the first two
unambiguous range intervals, in the WSR-88D radar velocity display can be recovered. ( The
velocity of the stronger of the two signals is always recovered and the other can be recovered
under certain conditions.)

(d) =/2 phase coding:

* Requires a 2-bit phase shifter (with 0 and w/2 phase shifts) in the transmitter signal path.

* Uses spectral domain processing (DFT required.)

* Recovers the mean velocity of both the signals over {pl/p2;w} space as shown in Fig. 5.11.
The limit of pI/p2 for velocity recovery is approximately the residual power ratio, R, for notch
width of M/4 used in processing. The velocity recovery can be pushed to the limit corresponding

to M/2 notch width if a bias error correction algorithm is used.

* The notch width, M/4, is fixed by the coding scheme. Increasing the notch width introduces
the sign ambiguity similar to that encountered in the w/4 scheme.

* Does not require long PRT scan data for recovering the velocity.
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* The standard error in the region of {p//p2;w} space where the velocity, v2, is recovered is
small and is mostly bias error, which is a function of (v/-v2) and pl/p2 ratio.

* All the velocities in the overlaid signal region in the WSR-88D velocity display (first two
trips), is completely recovered if the pI/p2 is less than the value of R, shown in Fig.4.4, for M/4
notch width. This limit can be made to approach the R, for M/2 notch width by including the
bias correction mechanism in the algorithm.

(e). Optimum systematic code [SZ(8/64) code]:
* Requires the addition of a phase shifter of sufficient accuracy in the transmitter signal path.
* Uses spectral domain processing (DFT, filtering etc.)

* Recovers the mean velocity of both the signals over {pl/p2;w} space as shown in Fig. 5.15.
The limit of pI/p2 for velocity recovery is a function of wl and filter notch width (notch width
of 3M/4 used in Fig. 5.15).

* The standard error in v2 is much lower than that in the case of random phase method
(compare Figs. 5.15 and 4.19). The region of recovery in the {pI/p2;w} space is also much larger
than the random phase method because of the larger notch width used.

* Does not require long PRT scan data for the recovery of velocities.

* All the velocities in the overlaid signal region in the WSR-88D velocity display (first two
trips) is completely recovered if the pI/p2 is less than the value of R, shown in Fig.4.4 for 3M/4
notch width, and a standard error of about 1.2 m s’ can be tolerated. (Note: This error will be
higher if the window effect, the noise, etc., are included.)

A systematic study of the first four methods lead to the last one, the optimum SZ code,
which has performed the best among the methods considered. Because several practical aspects,
common to all the methods, are not included in the study, the results are valid for relative
performance comparison. To obtain absolute measures of performance, these issues need to be
included in simulations. The window effect, the noise, and many other practical aspects of
implementation on WSR-88D, are considered for the selected method alone (SZ code) and are
discussed in the second part of this report.

99



7. REFERENCES

1. Chu, D. C., 1972: Polyphase codes with good periodic correlation properties. IEEE Trans. on
Information Theory, vol. IT-18, 531-532.

2. Doviak, R.J., and D.Sirmans, 1973: Doppler radar with polarization diversity. J. Atmos. Sci.,
30, 737-738.

3. Doviak, R.J. and D.S.Zrnic, 1993: Doppler Radar and Weather Observations. , Academic
Press, New York, 562pp.

4. Laird, B.G., 1981: On ambiguity resolution by random phase processing. 20th Conference on
Radar Meteorology., AMS, 327-331.

5. Sachidananda, M., and D.S.Zrnic, 1986: Recovery of spectral moments from overlaid echoes
in a Doppler weather radar. IEEE Trans. on Geoscience and remote sensing. vol. GE-24, No.5,
751-764.

6. Siggia, A., 1983: Processing phase coded radar signals with adaptive digital filters. 21st
Conference on Radar Meteorology., AMS, 167-172.

7. Zahrai, A and D.S.Zrnic, 1993: The 10cm Wave length polarimetric weather radar at NOAA’s
National Severe Storms Laboratory. Journal of Atmospheric and Oceanic Technology, 10, No.S5,
649-662.

8. Zrnic, D.S., 1975: Simulation of weather like Doppler spectra and signals. Journal of Applied
Meteorology., vol.14, No.4, 619-620.

9. Zrnic, D.S., 1979: Random phase radar. NSSL memorandum, April 1979,

10. Zrnic, D.S., and P.Mahapatra, 1985: Two methods of ambiguity resolution in pulsed Doppler
weather radars. IEEE Trans. on Aerospace and Electronic Systems. vol. AES-21, No.4, 470-483.

100



