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Statement of Work (for 15t 1.5 years)

* WoF funding to CAPS: S250K/year.

— Generalization and application of CAPS’s EnKF system (based on the EnSRF
algorithm) for multi-scale observations (radar, surface and upper-air obs) and
applying this system to one of the VORTEX-2 case.

— Develop a hybrid 3DVAR-Ensemble system based on the ARPS 3DVAR and EnKF
and evaluate the performance relative to pure 3DVAR and pure EnSRF
algorithms using OSSEs. Initial emphasis on radar data.

— Develop an LETKF system and implement it within the CAPS EnKF framework
and inter-compare the performance and computational costs with EnSRF
algorithms for radar DA problem with OSSEs.

— Develop an interface of the CAPS EnKF DA system with WRF ARW model.

* Most of the tasks will leverage significantly other sources of
support at CAPS (NSF PetaApps, VORTEX-2 grants, CASA). We
expect completion of these tasks at the end of two years.



CAPS’s EnKF DA System
Development/Enhancement

Implementation of asynchronous EnKF for
assimilating high-frequency data

Scalable Parallel EnSRF Implementation suitable for
high-resolution radar data

Hybrid EnKF-Var DA system
Capability of working with two-moment microphysics

Interface with WRF ARW



Asynchronous EnKF (AEnKF)

* Motivation

— Xue et al. (2006) and Yussouf and Stensrud (2010)
demonstrated the benefit of rapid scan radar data assimilated
via EnKF

— High-frequency EnKF DA is, however, costly, given that data I/O
can cost >80% overall (reading and writing of ensembles).

— 4D extension of EnKF requires fewer cycles while still using obs
at their correct times

— Asynchronous EnKF algorithm assimilates data asynchronous
to the EnKF analysis time

— Our implementation is based on EnSRF algorithm, almost the
sole EnKF algorithm applied to radar DA problem so far.

Wang, Xue et al. (2011)



Asynchronous EnKF (AEnKF) vs. Regular EnKF

EnKF: Observation are assumed to be taken

Yor Yoo Yoz You sequential algorithms for frequent
— a2 observations.
l “ l I =3 * Recently, several 4D EnKF algorithms
t<’°” ;32 have been developed to handle

At observations distributed over time

t,: time of analysis, At: analysis time interval, (e.g., 4D-LETKF, En4DVAR).

t,: time of observation
* Asynchronous EnKF computes and

update observation priors at the times

AEnKF: Observation can be properly they are taken, which are used to
assimilated at the observation times update state variables at the analysis
time.

H(X)o1 H(X)o2 H(X)o3H(X)o4
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_|_|_|_i_|_|_|_|_|» * AEnKF methods have been successfully
t t tst

ot 02, o3 o4 , tested for large-scale DA problemes,
L teo time :
they have not been applied to storm-

scale DA.
H(x) can be calculated within the numerical model — added to ARPS.



Asynchronous EnSRF (AEnSRF) assimilation of radar data
OSSE with WRF

* Following Sakov et al (2010), an asynchronous ensemble square-root filter (AEnSRF) has been
developed in the WRF framework.

e The performance of AEnSRF and EnSRF for radar DA is tested with OSSEs

T o Radar observations are grouped into
batches with different time spans
(5 min and 10 min).

Performance evaluation
 Difference Total Energy (DTE) (Meng and Zhang 2007)

DTE =0.5w'u"+vV'vV'+w' W'+kT'T")

* HydroDTE for variables associated with water

HydroDTE=0.5(q,'q,'+q,'q,'+q4,'q,'+q,'q,")



Process Flowchart of AEnSRF and EnSRF
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process

Start assimilation
process

(b) AEnSRF
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Comparison of EnSRF and AEnSRF Analysis and Forecast Errors

Blue: EnSRF Red: AEnSRF
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The RMS errors of DTEs and HydroDTEs of AEnSRF are lower than those of EnSRF.

The advantage of using AEnSRF method is more significant when analysis interval is longer
(5 min vs. 10 min).

The error growth of AEnSRF during forecast is faster when longer analysis interval is used
while those of EnSRF is comparable.



AENSRF v.s. ENSRF for 5 min batches

Arrows indicate that the error
at upper levels is gradually
Time-height plots of analysis DTE profiles reduced in AEnSRF while the
z errors at upper (lower) levels
propagate to lower (upper)
levels in EnSRF (shown at top).
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* Analyzed reflectivity of AEnSRF
compares favorably with that
of the truth storm (shown at
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Development of a Scalable Parallel EnSRF DA
System suitable for Very-high-density
Observations (e.g., WSR-88D network)

Commonly used EnKF algorithms (e.g., EnSRF) are serial —
they process observations one at a time

Observations affecting the same grid point cannot be
assimilated simultaneously

Current parallel algorithms (e.g., Anderson and Collins JTech
2007, as used in DART) assimilate obs one after another,
updating state variables in parallel — the algorithm is not very
scalable to millions of dense obs.

We employ a domain-decomposition-based hybrid OpenMP-
MPI (SMP-DMP) approach

(Wang, Jung, Supinie and Xue (2011)



Hybrid MPl/OpenMP Algorithm for EnSRF

’ 7 ext {ded
4 / 5 / 6 / 7 ¢b(75ndary

computational domain physicéil domain
Hybrid Parallel EnKF system has been developed
based on domain decomposition strategy.

Each decomposed domain can use multiple cores on
shared memory nodes via OpenMP parallelization.

For radar data, each domain is further divided into 4

uneven-sized patches to ensure maximum parallelism.

For conventional data, state variables within the
influence radius of each observation are updated
across multiple processors.

14, 15, 18, 19: physical domains
@, @, ®, @: sub-patches

Red: physical domain boundaries
Blue: extended boundaries

R: covariance localization radius
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e.g.) Parallel algorithm for radar data




Verification of MPI Version
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Normalized RMS errors
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State variable index

The RMS errors averaged over the grid points where truth reflectivity is greater than 10 dBZ and
normalized by those of OMP_F. The state variable index represents 16 ARPS prognostic variables — u, v,
w,%p4,9,9, 9, 49, 9, N,y N, Ny, N,, and N,,. MPI, OMP_F, and OMP_B represent experiments run
in MPI mode, OMP mode, and OMP mode with observations sequence reversed. The RMS errors are
normalized by those of OMP_F.
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Performance Analysis of Pure MPI EnKF

== Per-Process Memory (MB)
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The parallel algorithm shows good scalability.
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Point to point data flow of the ARPS
EnKF system

The rate of speedup increases as the amount of memory per process increases.

Wall Clock Times decreases as the number of cores used in MPI parallel mode increases.

The point-to-point data flow between sub-domains are perfectly symmetric and show
excessive time requirements for transmission of large amount of modest-sized messages.



OpenMP vs. MPI vs. MPl/OpenMP Hybrid

Node views
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Performance comparison
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MPI/OpenMP hybrid

Performance tests on OU
supercomputer.

The OMP mode runs faster then the
MPI mode as expected.

MPI algorithm can further reduce the
wall-clock time significantly when uses
processors from more than one node.



Performance analysis of MPI and MPIl/OpenMP hybrid
EnKF algorithms

Table 3. Comparison of minimum time taken in hybrid mode with that in MP| mode using the same

amount of cores on 4 compute nodes

Number of Hybrid case Minimum MPI case Minimum Improvement
cores time time

8 HYB 01x04 01 2 | 1,471 MPI_02x04 02 1 | 2169 698

16 HYB 01x04 01 4 | 1,129 MPI_04x04 04 1 | 1327 198

24 HYB 01x04 01 6 | 831 MPI_03x08 06_1 | 880 49

40 HYB 02x10 05 2 | 635 MPI_04x10 10 1 | 637 2

48 HYB_03x08 06 2 | 604 MPI_06x08 12 1 | 606 2

Performance tests on National Institute for computational Science (NICS) supercomputer.

The hybrid mode is faster than MPI mode with optimal setting.

The hybrid and MPI wall clock time is sensitive to the domain partitioning and # of core/node

configurations.

Case-dependent and system-dependent.

The hybrid distributed-shared-memory parallel mode helps reduce explicit data communication within
a node and improve load balance across nodes.




Hybrid Variational-Ensemble DA

Combines the strengths of variational (VAR) and ensemble DA methods

Allows VAR methods to use flow-dependent background error covariance
P.

Allows the inclusion/use of equation constraints (including full model
equations in 4DVAR)

Allows model-space localization for correctly handling non-local
observations (e.g., radiance, attenuated reflectivity)

For small ensembles, combination of static B and P gives better results
then P alone.

Ease the transition from currently operational 3DVAR to eventual
ensemble-4DVAR hybrid.

Direction that NCEP, UK Met Office, Env. Canada, etc. is taking.



Hybrid 3DVAR-EnKF Data Assimilation System

Ensemble analysis and forecast update cycles
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8’(contours), Z(color shades) and V|, (vectors) at Surface
at the End of the 80 Min. DA Cycles with single radar
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Analysis RMS Errors with Radar from One Radar
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EnKF DA and Ensemble Forecasting
Results for Tornadic Cases



Y (km)

Y (km)

EnKF analysis using a 2-moment bulk microphysics scheme (BMP)
for May 29, 2004 tornadic thunderstorm
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T : - ithi
— [ I * Microphysical processes within clouds

mb L T we fnAlsis b strongly influence the evolution of
- | « convective systems.

192

* Studies have suggested that a 2-moment
scheme may simulate storms more
realistically than a 1-moment scheme.

128

e The performance of EnKF analysis is
investigated for a supercell using a 2-

e moment scheme of Milbrandt and Yau
| (2005)

e Case: 29 May 2004 tornadic thunderstorm
(shown at upper left)
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0 e Storm lasted ~ 12 hours and traveled ~ 300
. miles with 18 tornadoes report.
. * The analyzed radial velocity (V,) and
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intensity of these fields

0

0 32 28 160 0

64 96
X (km)

-35 -30 -25 -20 -15 -10 -5 0.0 § 10 15 20 25 3010 20 30 4[0 SIO 60 70 (Jung, Xue and Tong 201 1)




160
-2
4
-6
-8

8

L
>

- ! ! ! . . . .
3 1 - . 1 i 3
N SR ! I
N b - I
| [l
,
= - - TTTTTITTITTITITIT TITITTRTITTIT AT [T IT AT T IT I T AT T TTIToIraTraTT
. , R T T D I

ot 4 G i f e e e 2 e

50

2‘\\\\\\\\\.1\\ \9\4.\4‘5 \\\\\\\\\\ vAm
1\\‘.‘3‘\\\\1.\\1\4\ SRttt e A
e pars L_ PP A llln\u\\\\\\\b\_—m
A A .\ 7 M\,\Auffd“li\\\\\\\m

I e H

a A a AN
- o s i i o >:
-~

96

X (km)
40

ey ”~

112

e bt e

64
30

4
\

N
Ay

\

}

\
YN
A
N

}

[}
i

{

i
oY
1

A

{

\

\

\

\

\

1

?__?%_,A____.
Y N

20

wwwwwwwwwww

b)Zu (Obs)

| —— —
\ .
sef T
(¥
E
W
]
5\
‘
(4]

0 Zi (DM)-- -

......... a2

0

~ s S
> Y [f { o< s
z,

Vf o s ar a i

20 25 30 10

10 15 2

160

||||||||

W e ]

- KVNX pBS
Wind + O' (shade)

I
128

4

Mih v s~

N 3

Y ) DI RN =
n A

|||||||||||||||||||| PR —

96
T

X (km)
20 -15 -10 -5 0.0 5

128

(km)

80§

||||||||||

3
=25

a) Vi (Obs):

o) VeE(DM)L-
15.0

35 -30
<
wn
-

¥l I3 O P
(uny) X (wny) X
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low-level features,

are found to be consistent with KVNX
including the cold pool, gust front,

observations (shown at top right).
observations are too weak and broad
in the analyzed V, viewed by KVNX.
and forward flank divergence (shown

at lower right).
south behind the gust front are

circulations found in KVNX V,
realistic.

Verification of EnKF analyses
Z, and

observations that are not assimilated

* The surface winds advecting cold air

* However, two small-scale cyclonic

* The analyzed
* Analysis shows



Analyzed polarimetric KOUN OBS 1-moment BMP 2-moment BMP
variables vs. observations o

* Polarimetric radar measurements can
help evaluate the quality of the
analysis by providing independent
information.

* Simulated polarimetric signatures
obtained by applying a realistic
polarimetric radar simulator (Jung et
al. 2010) to EnKF analyses using a 2-
moment scheme agree reasonably well
with polarimetric signatures observed
by KOUN in terms of the general
structure, location, and intensity of the
signatures.

80
X (km) X (km)

* 2-moment experiment was able to retrieve the Z,, arc in the southern edge of forward flank, the high
K,p region collocated with the region of high Z,, and a p,, reduction around the periphery of the updraft
due to hail.

* However, simulated polarimetric radar parameters generated from analyses using an 1-moment scheme
contain grossly inaccurate polarimetric signatures.



Tornadoes of 8-9 May 2007 %—— El Reno tornado
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EnKF analysis and ensemble forecasts for May 8-9 2007
tornadic mesoscale convective system (MCS)

Assimilation period

1 hr. spin-up period Deterministic forecast

| | | | | | | | | | |
0:00Z 0:30Z 1:00Z 1:30Z 2:00Z 2:30Z 3:00Z 3:30Z 4:00Z 4:30Z 5:00Z

« Case: May 8-9 2007 mesoscale convective system (MCS) and line end vortex (LEV) .

+ Experiment contained 40 Ensemble members. Reflectivity and radial velocity observations
from 5 WSR-88D radars as well as the 4 CASA radars were assimilated every 5 minutes
over a 1 hour window.

» Analysis and probabilistic ensemble forecasts were generated for three experiments to test
effect of assimilated CASA data and use of a mixed-microphysics ensemble using three
single moment ice microphysics schemes.

« 2-moment (DM) of Milbrandt and Yau (2005) were used in both simulation and analysis and
compared with the results using a 1-moment (mixed NEM, Lin, and WSM-6).The final
analyses were used to initialize 1-moment and 2-moment 2 hour forecasts, respectively.
This work is an extension of previous work by Snook et al. (2011) and Jung et al. (2010)

(Snook, Jung and Xue 2011a,b. Putnam et al. Mostly CASA supported)

v



Effects of assimilated CASA data and mixed-microphysics ensemble

Results of EnKF Analysis
Fma/ analys:s (0200 UTC) Reflect/wty

* Analyzed reflectivity fields using
CASA and WSR-88D radar data
(top left) compare well with
radar observations (top right);
reflectivity structure of the main
convective line is well-captured.

* Inclusion of CASA data improves
representation of a low-level
mesoscale vortex and gust front

observed by CASA and WSR-88D.

RE MDES=SS0 =20

- 10RO 510 15.0 250

KCYR Vr — 0141 UTC
KEYIE. p—

CASA +
"WSR-88D
/EnKF- 29
“Composite: - i &
Radar
“Reflectivity s
“Analysis

* | WSR-88D
. | Observed :
| Composite T@”" -
*. |"Radar |
|| Reflectivity

WSR-88D Only




Effects of assimilated CASA data and mixed-microphysics ensemble

Ensemble-based Probabilistic Convective-scale Forecasts
1, 2, and 3-Hour Probabilistic Forecasts for P[Z > 25 dBZ]

* Probabilistic ensemble T = R, T=C e
C ST = CNTL. AR ol | O ST
forecasts were generated 7'V T (< (T A <
from the final analysis state at ) [ AR | ;;\
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* For probabilstic prediction of |
radar reflectivity, areas of
highest probability match |
well in placement and motion
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Single- and Dual-Moment Microphysical State Estimation With EnKF

Direct Comparison with Radar Reflectivity

The analyzed reflectivity fields
in both 1-moment and 2-
moment experiments
compare well with radar
observations (shown at top).

However, 2-moment forecast
show significant improvement
over the 1-moment
experiment (shown at
bottom).

The structure and evolution
of the forecast MCS, LEV and
leading and trailing
convective lines is remarkably
better with a 2-moment
scheme throughout the
forecast period than with a 1-
moment scheme.

Final analysis (0200 UTC ) Reflectivity

R
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Single- and Dual-Moment Microphysical State Estimation With EnKF

Direct Comparison with Polarimetric Variables
(Putnam,

Polarimetric variables on .5 tilt as seen
by KOUN using polarimetric radar data
simulator (Jung et al. 2010)

The polarimetric signatures are more
realistic in the 2-moment results in
general.

Specifically, there is evidence of size
sorting of hydrometeors on the
leading edge of the system indicated
by increased Z,;. The reduction of Z,,
in the center of the line in 2-moment
experiment is due to hail while
observations show no sign of hail.

K,p is unrealistically high in the 1-
moment scheme (maximum ~ 11 deg/
km), suggesting an excess of rain
drops. As with Z , the 2-moment
scheme values are also higher than
observed, but the results are in a
closer agreement with observations.

KOUN OBS

et al.)

Two hour Forecast (0400 UTC)

2-moment

1-moment

Same
pattern :
asZ -
0 uniqgl
info

r~
<
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Still Under Development

 LETKF — codes for the core algorithm
developed, need to plug into the general EnKF
framework and test for radar DA problem.

* Interface with WRF ARW — work started,
expect to complete within ~3 months. Will
directly update WRF variables on its native
grid, allowing easy cycling. Will support all
features in ARPS EnKF.



Statement of Work (for 15t 1.5 years)

* WoF funding to CAPS: S250K/year.

— Generalization and application of CAPS’s EnKF system (based on the EnSRF
algorithm) for multi-scale observations (radar, surface and upper-air obs) and
applying this system to one of the VORTEX-2 case. (Good progress — Parallel
EnKF, AEnSRF, other data, test cases. VORTEX case to start soon)

— Develop a hybrid 3DVAR-Ensemble system based on the ARPS 3DVAR and EnKF
and evaluate the performance relative to pure 3DVAR and pure EnSRF
algorithms using OSSEs. Initial emphasis on radar data. (prelimineary results)

— Develop an LETKF system and implement it within the CAPS EnKF framework
and inter-compare the performance and computational costs with EnSRF
algorithms for radar DA problem with OSSEs (initial development)

— Develop an interface of the CAPS EnKF DA system with WRF ARW model
(under way, completion in a few months).



Ambition for the next few years

* Work with the group in implementing and
testing
— Central Great Plain domain ~4 km EnKF cycles including
radar data

— CONUS-domain ~4 km EnKF cycles including all data
currently used in Rapid Refresh GSI plus all radar data

— Sub-km resolution cycled EnKF with 88D and CASA-type
high-res radars.

— Use them to initialize convection-resolving-resolution
ensemble forecasts



Our FAA-supported EnKF work for RR

@IKF Test Domain \

207x207 grid points
~40 km, 51 levels

The 13 km RR-like
forecast Domain
532x532 grid points
~13 km, 51 levels

Current RUC Domain
as indicated

Started working on
@l-based hybrid




Flowchart of EnKF/GSI

Irir 1 ir

GSI/EnKF GSI/EnKF GSI/EnKF GSI/EnKF

+ . +* .
OBS OBS OBS OBS  wwm s

0 3 6 9 E

Initialized from GFS Forecast length
at 0000UTC May 8, 2010 May 16 2010

Ended at 2100 UTC

/Both EnKF and GSI were run with 3-hourly
assimilation cycles for a one-week-long test
feriod starting at 00 UTC, May 8 2010.

~




Observation Distribution Valid at 2010051412
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3-hour Forecast Innovation---horizontal
(preliminary results)
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EnKF analyses of TH and T slightly better than GSI, of wind slightly worse.
More tuning is still needed.



3-hour Forecast Innovations - Vertical Profiles
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EnKF is producing slightly better analysis at the lower levels,
slightly worse at the upper levels

Again, the EnKF is not well tuned yet.



