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ABSTRACT

As range-oversampling processing has become more practical for weather radars, implementation issues

have become important to ensure the best possible performance. For example, all of the linear trans-

formations that have been utilized for range-oversampling processing directly depend on the normalized

range correlation matrix. Hence, accurately measuring the correlation in range time is essential to avoid

reflectivity biases and to ensure the expected variance reduction. Although the range correlation should be

relatively stable over time, hardware changes and drift due to changing environmental conditions can have

measurable effects on the modified pulse. To reliably track changes in the range correlation, an automated

real-time method is needed that does not interfere with normal data collection. A method is proposed that

uses range-oversampled data from operational radar scans and that works with radar returns from both

weather and ground clutter. In this paper, the method is described, tested using simulations, and validated

with time series data.

1. Introduction

With the advent of modern digital receivers, range-

oversampling processing has become practical for weather

radars. By sampling the signal at a range resolution finer

than that of the transmitter pulse and applying a linear

transformation, range-oversampling processing tech-

niques can be utilized to reduce the variance of estimates

and/or reduce the required observation (dwell) times.

The whitening transformation and digital matched filter

were the first transformations that were introduced for

range-oversampled data (Torres 2001). Later, pseu-

dowhitening transformations were proposed to mitigate

the noise enhancement effects of the whitening trans-

formation (Torres et al. 2004). More recently, adaptive

pseudowhitening was implemented on the National

Weather Radar Testbed Phased-Array Radar (NWRT

PAR; Curtis and Torres 2011). This technique applies a

nearly optimal transformation at each range location to

provide excellent performance for differing conditions.

All of these transformations have one thing in common—

they directly depend on the normalized range correlation

matrix.

A mismeasurement of the normalized range correla-

tion matrix can cause biases in reflectivity estimates

and a less-than-expected variance reduction (Torres

and Curtis 2013). Thus, accurately measuring the range

correlation is an important first step for range-over-

sampling processing. To accurately measure the range

correlation, it is important to understand which param-

eters determine it and how these change over time. A

useful way to think of the range correlation is in terms of

the modified pulse. The modified pulse combines the

effects of the transmitted pulse and the impulse response

of the receiver to capture the two effects that contribute

to the range correlation. Hence, hardware changes to

the transmitter or receiver and drifts over time can affect

the modified pulse (and the range correlation). If these

variations over time are significant, then the measure-

ment should be repeated often enough tomake sure that

performance is not degraded.

One way to measure the modified pulse is to use the

returns from a strong point target (Torres and Curtis

2013). This method can give a reasonable measurement

of the range correlation, but it suffers from the following

issues: finding a perfectly isolated target with sufficiently

narrow range extent, obtaining uncorrupted returns

from the target, and automating this process for differ-

ent radar sites. Another possible method is to inject a

replica of the transmitter pulse into the receiver front
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end, but this may be infeasible on some operational ra-

dars. The goal is to find a way to easily measure the range

correlation in real time to reflect any fluctuations in the

modified pulse with minimal effects on data collection.

With these constraints, it is natural to look at possible

ways to measure the range correlation directly from the

data.

An early method for measuring the range correlation

from data relied on weather returns that had relatively

uniform reflectivity (Ivi�c et al. 2003). This method re-

quired manual selection of data with the specified

characteristics, and it was devised primarily to demon-

strate the feasibility of range-oversampling processing

for a research radar. In this paper, we propose an ex-

tension of this method that does not require a particular

type of radar return to be effective, making it more

suited for automation and operational use. The method

uses raw range-oversampled data from normal radar

scans in a separate processing chain. It operates on the

complex time series data before the ground clutter

filter and thus is independent from the typical signal

processing chain that produces meteorological data.

The method uses radar returns from weather and

ground clutter and will work with any type of scenario

as long as there are enough samples for an accurate

measurement.

The rest of the paper is organized as follows. Section 2

describes the method for range correlation measure-

ment based on a robust estimator of the correlation

coefficient. Section 3 introduces simulations to show

that the range correlation estimates are only marginally

biased and to determine the amount of data needed for

an accurate measurement. In section 4, range correla-

tion measurements from real data are examined. The

changes in range correlation over time are illustrated on

the NWRT PAR along with the effects of using an in-

accurate measurement.

2. Range correlation measurement

The range correlation at lag l is defined as

R
(R)
V (l)5E[V*(n,m)V(n1 l,m)] , (1)

whereE[.] is the expected value, the asterisk (*) denotes

the complex conjugate, and V is the range-oversampled,

complex times series data. Integer m indexes sample

time at increments given by the pulse repetition time

(Ts); n and l index the range time and range lag at in-

crements given by the time series sampling time (Tr).

The elements of the normalized range correlation ma-

trix, CV , can be obtained from (1) as

fCVgi,j 5 r
(R)
V (j2 i)5

R
(R)
V (j2 i)

R
(R)
V (0)

, 0# i, j,L , (2)

where fCVgi,j denotes the complex element in the ith

row and jth column of matrix CV , r
(R)
V is the range cor-

relation coefficient, and L is the range-oversampling

factor. Typically, LTr is chosen to match the width of

the modified pulse (Curtis and Torres 2011), but the

analysis herein is valid in general. The normalized range

correlationmatrix is Hermitian Toeplitz with ones along

its main diagonal; thus, only L 2 1 entries [r
(R)
V (l), 1#

l,L] are needed to define it.

As mentioned in the introduction, range-oversampling

processing relies on accurate measurement of CV ; thus,

an estimator of the range correlation coefficient in

Eq. (2) is needed. The traditional estimator of the cor-

relation coefficient is given by the Pearson product-

moment correlation coefficient (a.k.a. the sample

correlation coefficient; Pearson 1896), and there are

several ways it can be extended to our application. The

Pearson product-moment correlation coefficient can be

generically defined as the sum of lagged-sample prod-

ucts normalized by the powers in the pairs, which in its

most generic form can be written as

J21 �
J

j51

�
(n,m)2A

j

V*(n,m)V(n1 l,m)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

(n,m)2A
j

jV(n,m)j2 �
(n,m)2A

j

jV(n1 l,m)j2
s , (3)

where the sample set is partitioned into subsets Aj (1 #

j # J). The first stage of averaging is done over each

subset Aj, which produces J ratios that will then be av-

eraged in a second stage. Different results can be ob-

tained depending on how these subsets are defined (i.e.,

subsets may contain only one sample, a group of sam-

ples, all samples in one pulse, or all samples in a radial or

dwell), leading to different variations on the same estima-

tor. We thoroughly evaluated these variations and found

that the one with the overall best performance is the one

doing the first stage of averaging at the radial level; that is,

�
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m50
�

N2l21

n50

V*(n,m)V(n1 l,m)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

M21

m50
�

N2l21

n50

jV(n,m)j2 �
M21

m50
�

N2l21

n50

jV(n1 l,m)j2
s , (4)

whereN andM are the total number of samples in range

and sample time in a radial, respectively.

Because the goal is to measure the range correlation

from radar data, Eq. (4) cannot be used directly, as it is
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known to be highly affected by outliers (Huber and

Ronchetti 2009). Several techniques have been pro-

posed to construct robust estimators of the correlation

coefficient that significantly reduce the effects of outliers

(Shevlyakov and Smirnov 2011). However, we are only

concerned with the effects of noiselike and saturated

samples, so we give preference to simpler variants of

the traditional estimator in Eq. (4). Once again, several

simple mechanisms to reduce the effects of outliers can

be devised, and a few were evaluated. Of these, the one

that exhibited the best performance handling saturated

and noiselike samples is described next.

A robust version of the estimator in Eq. (4) can be

constructed by using only ‘‘valid’’ sample pairs that meet

instantaneous signal-to-noise ratio (SNR) and voltage-

saturation conditions; that is, a minimum SNR threshold

(denoted by SNRmin and expressed in decibels) is set

to exclude noiselike samples, and a system-dependent

maximum voltage threshold (Vmax) is set to exclude

potentially saturated samples (e.g., returns from ground

targets located very close to the radar). Mathematically,

a sample is classified as ‘‘invalid’’ for the correlation

coefficient estimator if

jV(n,m)j2 ,Nlin(10
SNR

min
=10 1 1) or

jRe[V(n,m)]j$Vmax or jIm[V(n,m)]j$Vmax ,

(5)

where Re and Im stand for real and imaginary parts of

a complex number, respectively, and Nlin is the receiver

noise power in linear units. Because samples are corre-

lated in range, additional samples in a range–time radius

of influenceK from invalid samples must be excluded as

well (Fig. 1). The radius of influence should be chosen as

small as possible to exclude the least number of samples,

but large enough so that the effect of invalid samples on

valid ones is insignificant. Thus, a good choice for K is

L 2 1; that is, K is the largest lag before the range

correlation becomes negligible. With this, a robust

version of Eq. (4) that only uses valid sample pairs is

given by

�
M21

m50
�

n2X(l,m)

V*(n,m)V(n1 l,m)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

M21

m50
�

n2X(l,m)

jV(n,m)j2 �
M21

m50
�

n2X(l,m)

jV(n1 l,m)j2
vuut

,

(6)

where X(l, m) is the set of indexes to the first sample of

pairs that are considered valid for the estimation of the

range correlation at lag l. It is important to note that

the total number of sample pairs used by this estimator

is given by h(l)5�M21
m50 jX(l,m)j, where j.j denotes the

cardinality of a set, and this number may be different for

different correlation lags.

Because it is not known a priori whether there will be

enough valid sample pairs to reliably estimate the range

correlation matrix, the estimator is extended to work

across radial (or dwell) boundaries. To fit typical mul-

tiprocessor signal processing architectures where radials

may be processed independently by different processors,

Eq. (6) is applied on individual radials, and the results are

combined in a weighted average. Among all the weights

we considered (i.e., uniform, based on the total power of

valid pairs, based on the total number of valid pairs), the

ones given by the normalized number of valid sample

pairs used in each estimate worked the best; that is, for

a set of R radials, the range correlation coefficient is fi-

nally estimated as

r̂
(R)
V (l)5 �

R21

r50

0
B@

h(l, r)

�
R21

r050

h(l, r0)

1
CA

�
M21

m50
�

n2X(l,m,r)

V*(n,m, r)V(n1 l,m, r)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

M21

m50
�

n2X(l,m,r)

jV(n,m, r)j2 �
M21

m50
�

n2X(l,m,r)

jV(n1 l,m, r)j2
vuut

, (7)

FIG. 1. Example of valid and invalid sample pairs for the pro-

posed correlation coefficient estimator. A valid sample pair is de-

fined as two samples spaced by lag l, both outside the radius of

influence of any invalid sample. Invalid samples are those below

SNRmin or reaching Vmax. In this figure, solid lines indicate a valid

sample pair for l 5 1, dashed lines indicate invalid samples, and

dotted lines indicate samples in their radius of K.
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where index r is added to indicate radial number. This

weighting prevents less reliable estimates obtained from

radials with fewer valid sample pairs from significantly

influencing the final result.

It is well known that if there are no outliers and the

data are normally distributed, then the sample correla-

tion coefficient in Eq. (4) is asymptotically unbiased and

efficient (e.g., Bachman 2004). However, it is important

to determine whether the asymptotically unbiased prop-

erty carries over to the proposed estimator inEq. (7), and,

from a practical standpoint, to establish the total number

of valid sample pairs that are required to reliablymeasure

the range correlation. These questions will be answered

by evaluating the statistical performance of the proposed

estimator using simulations.

3. Simulations

In this section, simulations are used to evaluate the

statistical performance of the proposed range correla-

tionmeasurement technique. It will be shown that, when

applied to realistic radar data, the proposed estimator is

slightly biased but consistent (i.e., the standard de-

viation of estimates decreases with increasing amounts

of data).

Synthetic and real range profiles of SNR, Doppler

velocity, and spectrum width are used to simulate time

series data with known range correlation (Torres and

Zrni�c 2003). Simulation parameters are designed to

match operational conditions of theNWRTPAR located

in Norman, Oklahoma (Zrni�c et al. 2007). Scattering

centers are placed in range at 60-m intervals for a range-

oversampling factor of L 5 4 (the NWRT PAR’s pulse

width is ;240m), and time series data for each scatter-

ing center are simulated using the procedure by Zrni�c

(1975) with M 5 16 samples, a pulse repetition time of

Ts 5 3ms, and a Nyquist velocity of 8.3m s21, which are

typical acquisition parameters at the lowest antenna

elevation angles. This process creates a two-dimensional

array of complex samples with the desired sample-time

correlation. Finally, a known range correlation is im-

posed on the data by convolving (along range time) with

the measured NWRT PAR modified pulse (Torres and

Curtis 2013). To compute statistics, 1000 realizations

of 100 radials with 1000 range gates each are simulated

and grouped into increasingly larger radial sets (i.e., the

first set contains one radial, the second set contains

two radials, etc.). The proposed estimator with K 5 3,

Vmax 5 25 119 (arbitrarily chosen to be equivalent to

an SNR of 90 dB), and SNRmin 5 10 dB is applied

to each of these radial sets, and biases and standard

deviations are computed for each range correlation

lag (l 5 1, 2, and 3).

Three range profiles are considered: (i) a ‘‘constant

profile,’’ (ii) a ‘‘randomprofile,’’ and (iii) a ‘‘real profile’’

(Fig. 2). The SNR, Doppler velocity, and spectrum

width of scattering centers for the constant and random

profiles are independent, identically distributed, Gauss-

ian random variables; for the real profile, they are drawn

from real measurements obtained with the NWRT PAR

containing both ground clutter and weather signals. The

scattering centers in the constant profile have the fol-

lowing properties: SNRs with a mean of 40 dB and a

standard deviation of 0.01 dB (no saturation is present),

Doppler velocities with amean of 0m s21 and a standard

deviation of 1m s21, and spectrumwidths with amean of

2m s21 and a standard deviation of 1m s21. The scatter-

ing centers in the random profile have similar Doppler

velocities and spectrum widths, but the SNRs have a

mean of 40dB and a standard deviation of 23dB (;1.4%

of the samples are saturated). Finally, the scattering

centers in the real profile have SNRs, Doppler veloci-

ties, and spectrum widths with means obtained from the

real radar measurements and standard deviations of

0.01 dB, 1m s21, and 1ms21, respectively. Figure 2 shows

one realization of such range profiles.

The normalized biases and normalized standard de-

viations for estimates of the relevant entries of the

normalized range correlation matrix are shown in Fig. 3

as a function of the number of valid sample pairs used

in the estimator for each of the three simulated range

profiles. In general, it can be seen that biases are very

small and standard deviations decrease as the number

of samples used in the estimator increases. The constant

and random profiles exhibit the smallest and largest

biases, respectively; whereas the real profile, as expected,

performs in between these two extremes. In the less fa-

vorable scenario of the random profile, biases of range

correlation estimates are;0.4%,;1.4%, and;3.2% for

lags 1–3, respectively, all of which are negligible as

demonstrated later. In terms of standard deviations,

both synthetic profiles (constant and random) exhibit

almost the same performance, whereas the ‘‘real’’ pro-

file exhibits;3 times worse performance. This is caused

by the uneven distribution of powers in the real profile

and the inherent limitation of the Pearson product-

moment correlation coefficient estimator when dealing

with data frommixed distributions; that is, the estimator

in Eq. (6) weights each sample pair according to the

strength of the corresponding samples, and, for realistic

signal profiles, this effectively reduces the number of sam-

ples with a significant contribution to the estimator and

increases its standard deviation.

A more meaningful way of analyzing the statistical

performance of the proposed estimator is in terms of

the reflectivity biases induced by an inaccurate range

2888 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 30



correlation measurement. These theoretical reflectivity

biases can be computed using Eq. (22) in Torres and

Curtis (2013) as

Bias( ~Z)’ 10 log10[L
21tr(W*CVW

T)] (dB), (8)

where CV is the true range correlation matrix and W is

a linear transformation matrix derived from the mea-

sured correlation matrix. Figure 4 shows the mean and

maximum of the theoretical reflectivity biases as a

function of the number of valid sample pairs used in the

range correlation estimator for each of the three simulated

range profiles. Theoretical reflectivity biases are ob-

tained for two linear transformations: a matched filter

(WMFB) and a whitening transformation (WWTB), both

derived from the range correlation measured using the

proposed estimator. These plots in conjunction with

a maximum reflectivity bias requirement can be used to

assess the amount of data required to obtain precise

measurements of CV . For example, for a maximum re-

flectivity bias (resulting from range correlation mis-

measurement) less than 0.1 dB, ;60 000 valid sample

pairs are needed to achieve acceptable performance

(real profile in Fig. 4). This amounts to ;3750 total

FIG. 2. Examples of simulated (top) SNR, (middle) Doppler velocity, and (bottom) spectrum width range profiles corresponding to the

(left) constant, (middle) random, and (right) real range profiles.
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FIG. 3. (left) Normalized biases and (right) normalized standard deviations of range correlation coefficient

estimates for lags l 5 1 (solid lines), 2 (dashed lines), and 3 (dashed–dotted lines) as a function of the number of

valid sample pairs used in the estimator for simulated (top) constant, (middle) random, and (bottom) real range

profiles.
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FIG. 4. Mean and maximum of theoretical reflectivity biases as a function of the

number of valid sample pairs used in the range correlation estimator for each of the

three simulated range profiles: (top) constant, (middle) random, and (bottom) real.

Theoretical biases of reflectivity estimates ẐMFB and ẐWTB are obtained for pro-

cessing with a matched filter and a whitening transformation, respectively.
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range gates (recall that M 5 16) or an average of just

under 11 range gates per radial in a full 3608 constant-
elevation scan. Even in a clear-air situation, it would not

be difficult to get that number of valid sample pairs

containing ground clutter at the lowest elevation an-

gles, which makes the proposed technique effective for

most operational situations and radar sites.

4. Real data

The main motivation for measuring the range corre-

lation in real time is the potential for variations caused

by hardware changes and drifts. To see this, the new

range correlation measurement method introduced in

section 2 was applied to data from several volume scans

collected with the NWRT PAR. The time series data

from the lowest elevation angle were used for all of the

calculations. At the lowest elevation angle of 0.58, there
are 109 beam positions in azimuth spread over a 908
sector with two pulse repetition times (PRT) used at

each beam position, 3 and 0.8ms. Nine pulses were

transmitted using the long PRT and 25 using the short

PRT. The estimator was used with the same parameters

as those used for the simulations (K 5 3 and SNRmin 5
10 dB), except for a slightly different maximum voltage

threshold that was set to the saturation value for the

NWRT PAR digital receiver (Vmax 5 23 028). The re-

sults from four scans are shown in Table 1.

The cases are labeled from A to D for easier identi-

fication. The second column shows the date and time in

UTC for all four scans. The next three columns contain

the normalized range correlation values r̂
(R)
V (l) at lags

l5 1, 2, and 3. The complex numbers are represented in

magnitude–phase format to better interpret the differ-

ences between them. The number of pairs used to cal-

culate the range correlation varied from a minimum

of 376 795 pairs in a scan with only ground clutter to

878 237 pairs in a scan with both weather and ground

clutter returns; this clearly meets the threshold of ap-

proximately 60 000 sample pairs mentioned in section 3.

The scan for case A was collected on 29 March 2012 and

consisted of mainly ground clutter returns (as did case

B). This collection occurred a couple of days before

the failure of a trigger amplifier in the transmitter. The

amplifier was replaced on 2 April 2012, and the scan for

case B was collected later that day. There is a clear

difference in the magnitude and phase values from these

two scans. The magnitudes are greater for case B, and

the phases are significantly altered from case A. This is

an example of a hardware change that results in a large

difference in the range correlation that needs to be ac-

curately measured to ensure effective performance of

range-oversampling processing. The scan for case C was

collected a week later and shows a smaller change in the

range correlation, illustrating the effects of drift over a

week. This scan was composed of both weather and

ground clutter returns (as was the scan from case D).

The effect on the performance would be significantly

less in this case, but measuring the range correlation in

real time ensures that the drift is accounted for and the

performance is the best possible. The scan for case D

was collected about 10min after the scan for case C. The

range correlation did not change significantly during this

period, which shows that the hardware drift is not es-

pecially abrupt and that the method for measuring the

range correlation is reasonably consistent.

Although this range correlationmeasurementmethod

was evaluated using simulations in section 3 and shown

to be only slightly biased, simulations may not always

capture all of the attributes of real radar data. To in-

dependently verify the performance of the method, a

technique was used to measure the reflectivity bias di-

rectly from real data (Torres and Curtis 2013). This

technique was applied to the scans for the cases in

Table 1. It compares the powers computed using

matched-filter-based (MFB) processing and whitening-

transformation-based (WTB) processing (e.g., Torres

2001). At each range gate, the ratio of the powers was

computed if both the numerator and denominator

powers were between 10 and 90 dB above the calculated

noise level. The mean of the ratios was then estimated,

and this ratio was converted to decibels to obtain an

estimate of the reflectivity bias.

Table 2 shows the results of these calculations for

three different power ratio comparisons. The values in

the MFB/WTB column compare the matched-filter-

based powers to the whitening-transformation-based

powers using the range correlation measurement for

TABLE 1. Normalized range correlation values (magnitude and phase) measured from four scans and collected over 3 days.

Case Date and Time (UTC)

r̂
(R)
V (1) r̂

(R)
V (2) r̂

(R)
V (3)

(r, u) (r, u) (r, u)

A 29 Mar 2012, 1945:00 (0.53, 27.08) (0.20, 46.68) (0.08, 111.38)
B 2 Apr 2012, 2128:45 (0.67, 233.88) (0.32, 261.18) (0.13, 2117.68)
C 9 Apr 2012, 2305:49 (0.68, 227.78) (0.34, 247.18) (0.13, 283.08)
D 9 Apr 2012, 2316:29 (0.68, 228.18) (0.33, 247.68) (0.13, 290.08)
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each case. Theoretically, there should be zero reflec-

tivity bias for these measurements, since both the MFB

and WTB powers should be unbiased if the range cor-

relation is accuratelymeasured. This lack of bias is shown

using zeros in the ‘‘theory’’ column for this comparison.

The measured bias is slightly positive in all four cases but

is no larger than about 0.25 dB. This could be from a small

bias in the range correlation estimator or from in-

accuracies in the bias calculation method, but, in either

case, the range correlation measurements are reason-

able and the biases are relatively small.

The last two columns of Table 2 show the results when

the range correlation measured from the previous case

are applied to the next case. This can cause a mismatch

in the range correlation that leads to possibly significant

biases. In the MFBMM/WTB scenario, the MFB powers

using the mismatched range correlation (MFBMM) are

compared to the WTB powers using the range correla-

tion measured from the scan itself. For example, when

the range correlation measurement from case A is ap-

plied to the matched filtered data from case B, the

theory predicts a 21.83-dB reflectivity bias. The bias

measured from the data was 21.60 dB. This illustrates

how a hardware change between case A and case B

can lead to a nearly 2-dB reflectivity bias. For cases C

and D, the biases are significantly smaller, which is ex-

pected since the range correlation measurements are

more similar. The final column shows theWTBMM/WTB

scenario comparingmismatchedWTBpowers (WTBMM)

to WTB powers. Again, the largest discrepancy is in case

B when using the measurement from case A. There is

a positive bias of nearly 1 dB for both the theoretical and

measured biases. The biases are much smaller for cases C

and D.

The change in the range correlation over time illus-

trates the importance of accurate real-time measure-

ments, but we also need to determine how often the

measurements need to be updated. As shown in the case

from 9April, the range correlation only changed slightly

over about 10min. A natural way to update the mea-

surement of the range correlation is at the end of a vol-

ume scan; that is, the range correlation is measured

using data from one volume scan, and the updated re-

sults are applied to the next scan. If the measurement is

made using data from the lowest elevation scan, then

there should be plenty of data to make an accurate

measurement and plenty of time to use this result on the

next scan. Figure 5 shows the results of this method for

the 10-min stretch between 2305:49 and 2316:29 UTC

9April. There are 12 scans in between cases C andD from

Table 1, resulting in a total of 14 scans. The top panel shows

the magnitude of the range correlation measurement, and

themiddle panel shows its phase. In an operational system,

each estimate would be used by the succeeding scan. To

better understand the effects of this procedure, the re-

flectivity bias was calculated using the theoretical bias

computations described in the previous section. The

measurement from a particular scan was treated as the

true value of the range correlation, and the measurement

from the previous scan was treated as the estimate. The

bottompanel in Fig. 5 shows the expected reflectivity bias

under these assumptions for both MFB and WTB pro-

cessing. Themaximum bias is less than 0.07 dB and shows

that this measurement scheme should not introduce sig-

nificant bias into the reflectivity estimation process.

5. Conclusions

We proposed an automated technique to measure

the normalized range correlation matrix based on the

Pearson moment-product correlation coefficient esti-

mator, with the caveat that invalid samples in the neigh-

borhood of noiselike and saturated returns are excluded

from the computations. Among all possible variations of

the classical correlation coefficient estimator, a weighted

average of radial-based estimateswas determined to have

the best overall performance. Simulations showed that

measurements are consistent and only slightly biased,

leading to reflectivity biases on the order of 0.1 dB. Such

biases are small compared to the accepted error of re-

flectivity estimates on most operational weather radars

[e.g., the maximum allowable bias of reflectivity esti-

mates on theWeather Surveillance Radar-1988Doppler

(WSR-88D) is 1 dB].

TABLE 2. Comparisons between the theoretical and measured reflectivity biases for four scans. MFB/WTB biases are computed based

on range correlation measurements made from each scan. Mismatched biases illustrate the bias when the range correlation from the

previous scan is then applied to the next scan (only valid for cases B–D).

Case

MFB/WTB MFBMM/WTB WTBMM/WTB

Theory (dB) Measured (dB) Theory (dB) Measured (dB) Theory (dB) Measured (dB)

A 0 0.09 — — — —

B 0 0.24 21.83 21.60 0.94 0.92

C 0 0.14 0.04 0.20 20.08 20.10

D 0 0.17 20.03 0.14 0.04 0.04
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FIG. 5. (top) Magnitude and (middle) phase of the range correlation measurements from

consecutive scans over a period of;10min. (bottom) Expected theoretical reflectivity biases if

the measurement from the previous scan is applied to the next scan for both MFB and WTB

processing. Times are in UTC, and scans were collected on 9 Apr 2012.
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Analysis on real data showed that hardware changes

and drift can affect the range correlation over time. In

the case of a hardware change, the resulting reflectivity

biases could be significant (;2 dB when using a digital

matched filter). This justifies the need for precise and

timely measurements of the range correlation matrix,

which can be done using the method presented in this

paper. Evaluation of the technique’s performance

demonstrated that measuring the range correlation in

real time is feasible on operational weather radars and

provides quantifiable benefits for range-oversampling

processing.
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