The 2014 Multi-Radar/Multi-Sensor (MRMS) HWT-Hydro Testbed Experiment

Brandon R. Smith^{1,3}, J.J. Gourley², Elizabeth Argyle^{1,3}, Race Clark III^{1,3}, Zac Flamig^{1,3}, Steve Martinaitis¹, Lans Rothfusz²
¹OU Cooperative Institute for Mesoscale Meteorological Studies, ²NOAA National Severe Storms Laboratory, ³University of Oklahoma

Experiment Activities

- July 7 August 1, 2014 in Norman, OK
- Featured 17 NWS forecasters from across the U.S.
 - Issued experimental probabilistic flash flood watches and warnings with impact characterization
- Utilized over 30+ experimental MRMS-Flooded Locations
 & Simulated Hydrographs (FLASH) tools (J.J. Gourley)
- Coordinated daily with WPC's FFaIR Testbed

Main Goals of HWT-Hydro

- Issue experimental FF watches between 0 6
 hours before event & experimental FF
 warnings just prior to and during an event
- 2. Operate a near-real-time multi-source FF observation database
- 3. Subjective evaluation of all experimental observations, tools, and forecast products
- 4. Prepare FLASH tools for transition to NWS operations

Experiment Datasets

Forecast Tools

- Hydrologic models
- Precipitable water
- QPE/QPF
- Flash flood guidance (FFG)
- Precipitation return periods
- Radar

Maximum Return Period Integrated From -30Min to +6ftr Return Period Iyr] Return Period Iyr] No File Missing 0 1.0 1.2 1.4 16 18 2.0 3 4 5 6 10 20 30 40 50 75 100 200 B119W 3321N

All Flash Flooding Reports 2014 HWT-Hydro Experiment Flooding Severity Class

All Flash Flood Products 2014 HWT-Hydro Experiment Operational Warnings Experimental Warnings Cyperational Watches CWA Borders O 120 240 480 Miles

Observations

- USGS Stream Gauges
- Local Storm Reports
- Storm Data
- mPING (Kim Elmore)
- SHAVE (Travis Smith)

Products

- Operational Warnings
- Experimental Warnings
- Operational Watches
- Experimental Watches

Experiment Results

- Skill of experimental watches comparable to operational watches*
- Skill of experimental warnings less skillful than operational warnings**

- Easy learning curve of FLASH system
- Improved system
 usability after 1-week of
 use
- Will help in creating a smooth transition to NWS operations
- Suite of experimental tools increased forecaster confidence
 - Daily subjective evaluations of tools/products
 - 'Tails from the Testbed' webinars
- Forecasters liked assigning uncertainty and magnitude estimates to their watches/warnings (work needed to ensure reliability)

Brandon R. Smith, J.J.

Observations (Total: 606)

- July 7 August 1, 2014 in Norman, OK
- · USGS1Stream Gauges (9) the U.S.
 - Issued experimental probabilistic flash flood
- NWS Local Storm Reports (250)
- Utilized a suite of 30+ experimental MRMS-FLASH tools
- NCDC Storm Data (184)
- mPING reports (39)
- SHAVE reports (124 / 1,130 null)
 - 1. Prepare FLASH tools for transition to NWS operations
 - 2. Ingest, utilize a near-real-time multi-source FF observation database
 - 3. Issue experimental FF *watches* between 0 6 hours before event & experimental FF warnings just prior to and during an event
 - 4. Subjective evaluation of all experimental observations, tool, and forecast products

All Flash Flooding Reports

Flooding Severity Class

- 0 No Flooding
- River/creek overflowing; cropland/yard/basement
- 2 Street/road flooding; stranded vehicles
- 3 Homes & buildings filled w/ water
- 4 Homes, buildings, cars swept away

CWA Borders

480 Miles

Brandon R. Smith, J.J.

Experiment Activities

Products (Total: 512) ss the U.S.

- Issued experimental probabilistic flash flood
- Operational FF Warnings (236)
- Experimental FF Warnings (153)
- Operational FF Watches (79)
- Experimental FF Watches (51)
 - 1. Prepare FLASH tools for transition to NWS operations
 - 2. Ingest, utilize a near-real-time multi-source FF observation database
 - 3. Issue experimental FF *watches* between 0 6 hours before event & experimental FF warnings just prior to and during an event
 - 4. Subjective evaluation of all experimental observations, tool, and forecast products

All Flash Flood Products

2014 HWT-Hydro Experiment

Brandon R. Smith, J.J. 0

- Skill of experimental watches comparable to operational watches*
- Featured 17 NWS forecasters from across the U.S.
 - Large watch sizes might
 - Issued experimental profilestic flash flood SKEW THE FESUITS
 watches and warning with impact characterization
- Utilized a suite of 30+ experimental MRMS-FLASH tools
- Skill of experimental warnings less skillful than operational warnings**
- Not a factor of the Main Gexperimental tools
 - Combination of reports
 - 2 Ingavailability & lack of local atabase
 - 3. Isskprowieldigehes between 0 6 hours before event 8 experimental FF warnings just prior to and during an event
 - 4. Subjective evaluation of all experimental observations, tool, and forecast products

Forecast Skill

Brandon R. Smith, J.J. 0

Experiment Activities

- July 7 August 1, 2014 in Norman, OK
- Easy learning curve of FLASH system ental probabilistic flash flood watches and warning with impact characterization
- Improved system usability too after 1-week of use
- Coordinated daily with WPC's FFaIR Testbed
- Will help in creating a
 smooth transition to NWS
 Main Goals of HWT-Hydro operations
 - 1. Prepare FLASH tools for transition to NWS operations
 - 2. Ingest, utilize a near-real-time multi-source FF observation database
 - 3. Issue experimental FF *watches* between 0 6 hours before event & experimental FF *warnings* just prior to and during an event
 - 4. Subjective evaluation of all experimental observations, tool, and forecast products

