Science & Warning Advancements with Phased Array Radar

Presented by Katie Bowden, PhD Student

Produced by Dr. Pam Heinselman
Radar Research and Development Division
Team Leader and Affiliate Assoc. Professor
Relevance

NSSL’s Mission: “To understand the causes of severe weather and explore new ways to use weather information to assist National Weather Service forecasters and federal, university and private sector partners.”
Science: Does Temporal Sampling Matter?

Phased Array Radar Innovative Sensing Experiment

2010 PARISE

2012 PARISE

2013 PARISE

PARISE 2012

Goal: Assess impacts of 1-min updates on forecasters’ performance and warning decision process when working potentially weak tornadic events in displaced real time

1) View weather briefing and work the event using AWIPS 2

2) Produce detailed timeline of decision process (Hoffman 2005)

Sweep 1
Stimulated retrospective recall

Sweep 2
Review timeline
Revise as needed

Sweep 3
Deepen the timeline with probing questions
Performance
2 tornadic (EF0/EF1) and 2 non-tornadic events

Median Tornado-Warning Lead Time

Probability of False Alarm

Participating Warning Forecast Offices
Central & Southern NWS Regions

Years of Experience
Minutes
Warn on precursor detection

- **Tightening rotation in midlevels**: Warn on first signals of descent
- **Tightening rotation below midlevels**: Warn after further indications of descent
- **Rotation in lowest 4**: Warn when close to tornadogenesis

Warn on rotation detection

- **Low-level rotation**: Warn with certainty in low-levels

Severe Weather Event Occurs (Tornado)

At lowest elevation scan
Summary

1-min radar updates have:
• Improved scientific understanding of storm processes
• Aided the warning decision process

Path Forward

• PARISE 2015: Increase sample size
• Analyze rapid-scan dual-polarization data
 • Understanding of severe weather processes
 • Accuracy and timeliness of warnings