Innovative Techniques to Improve Weather Observations

Sebastián Torres Weather Radar Research

The What Weather Radar Signal Processing

Contraction of the second seco

Large amounts of data
Unintelligible

Separation and classification of echoes Mitigation of sampling artifacts

2

The Why, Who, and How The Big Picture and The Players

NOAA Strategic Goals

- * "Increase lead-time and accuracy for weather and water warnings and forecasts"
- * "Improve predictability of the onset, duration, and impact of hazardous and severe weather and water events"
- * "Increase development, application, and transition of advanced science and technology to operations and services"

All weather-radar-centric endeavors benefit

Research charters, partners, and customers

NCAR

- NEXRAD Product Improvement ()
- 🔨 Data Quality 🤇

7 MPAR

🏵 VAISALA

Baron 🙉

Relevance Why are we *really* doing this?

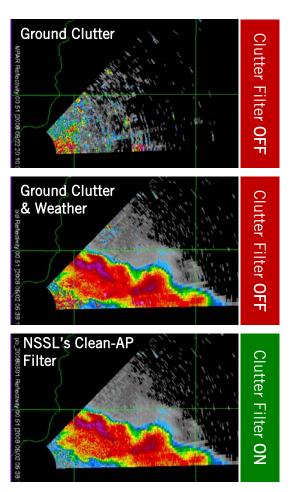
Four basic needs to improve weather observations

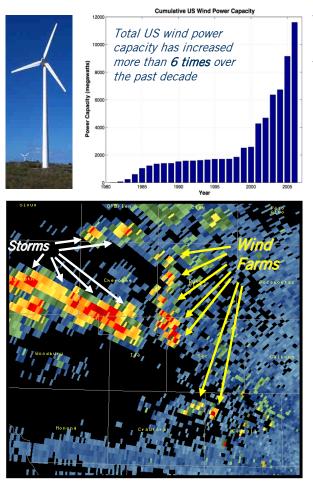
- **TEFFECTIVE** quality control
- Faster updates
- Better accuracy
- Greater coverage

Improvements at the source

Senefits carry over downstream

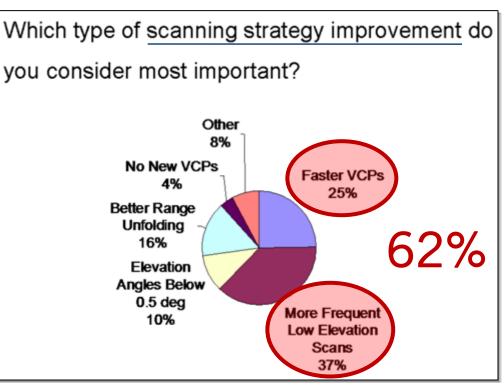
Enabled by technology


Feasible real-time implementation



Effective Quality Control Motivation

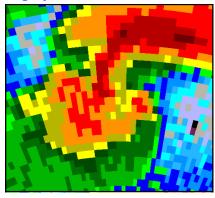
Radar data is messy!
Users and algorithms need clean data

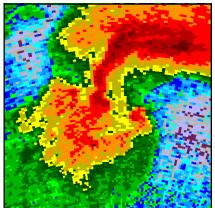


Faster update times are needed to provide forecasters a greater opportunity to see **first signs** of potentially severe weather from **quickly evolving phenomena**

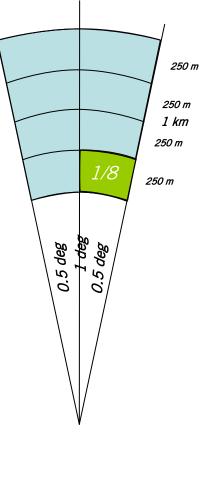
	2006 National Weather Service Flett Survey - Part 1	
	2008	
	National Weather Service	
	Field Survey	
	Part 1: Volume Coverage Pattern Usage	
	DRAFT Version 1.1 5 June 2008	
	n (NDAA)	
TON		

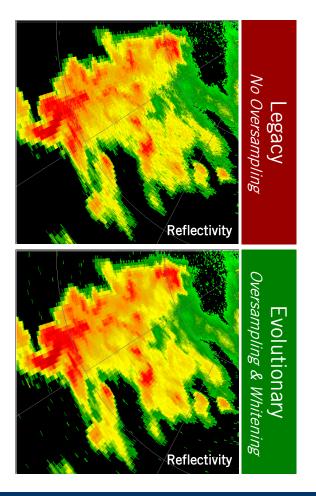
Courtesy of Randy Steadham (ROC)


6


Better Accuracy Motivation

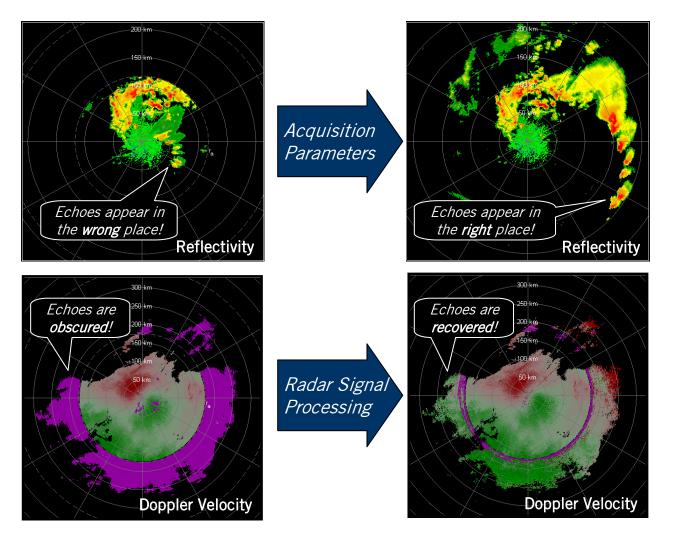
Super-Resolution


Legacy Resolution


Super-Resolution

Tornado outbreak in Oklahoma City, 9 May 2003 from Curtis et al (2003)

Range Oversampling



7

Greater Coverage Motivation

Where is the storm?

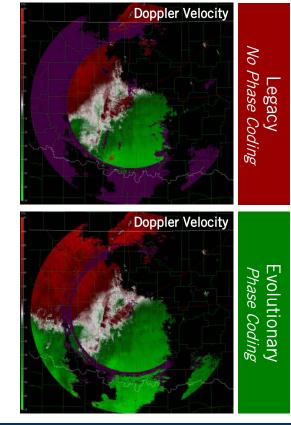
Surprised by strong winds?

Phase Coding Mitigation of Range and Velocity Ambiguities

Initial research

- Sponsored by NWS's Radar Operations Center
- Collaboration with NCAR
- Proof of concept
 - Supported by KOUN upgrades
- Technology transfer
 - Integrated SZ-2 into signal processing pipeline

Support

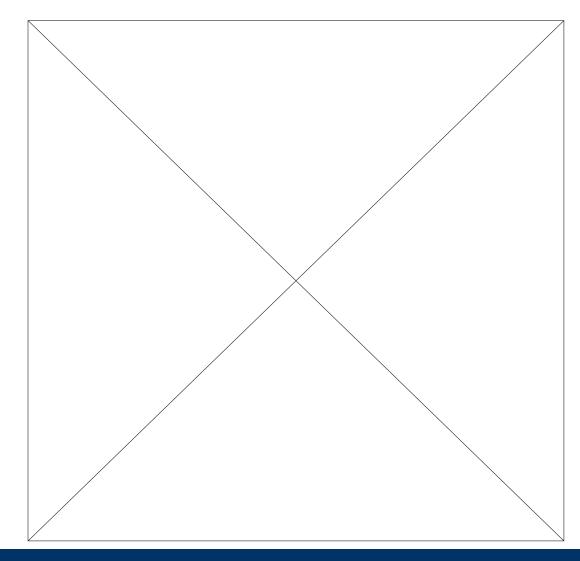

- Operational issues
- Refinements

Evolution

- Other phase codes
- Other techniques

NSSL Laboratory Review February 17-19, 2009

Purple denotes unrecoverable data


P

FU

UR

Phase Coding Performance An Operational Example

KTLX radar in Oklahoma City 30 Mar 2007, 0.5 deg elevation

Notice switch of scanning strategies: from VCP 12 (phase coding OFF) to VCP 212 (phase coding ON)

Courtesy of Jami Boettcher (WDTB)

Quality and Performance Are we doing things right?

Performance

- Technology transfer
 - Phase Coding, Super Resolution, Staggered PRT, Dual Polarization, etc.
- Teaching and advising

Quality

- Publications
 - **V** OAR Outstanding Scientific Paper Award
- Technical reports
- Theses and dissertations
- US Patent
- **T** NEXRAD Technical Advisory Committee endorsement
- Awards
 - V NOAA's Bronze Medal Award
- Vser satisfaction

OU students are exposed to the latest technology

Present and Future Trends Our strategy for success

The path ahead

- Technology transfer (NEXRAD)
- Fvolutionary techniques (NWRT)
- Future radar technologies (MPAR)

Synergistic connections

- NEXRAD Data Quality team
- Collaboration with the Construct Reder Research Center

Challenges

Hiring and retaining EE's

Conclusions

Developing techniques to improve weather observations

- Improvements at the source
 - $\ensuremath{\,^{\bigtriangledown}}$ Driven by four basic needs
- Senefits carry over to all radar-centric applications

Demonstrated successful technology transfer

- Synergistic collaborations
- User satisfaction

Performing cutting-edge research

- Fvolutionary techniques
- Future technologies

