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03.6.2 Polarization and Frequency Diversity
Algorithms based on polarimetry will meet the aviation needs for information about the
volumetric extent of hail, freezing rain, snow, and icing conditions, as well as non-
hydrometeor scatterers. The biggest potential payoff is enhanced data quality. For all
practical purposes, polarimetric techniques will eliminate problems associated with
sea-clutter, ground clutter, AP, and biological scatterers.

a) Current Efforts

(NSSL):

The most significant activity during Q3 was the implementation of real time dis-
play at the WFO of a "non-precipitation removed" reflectivity product. Example
before-and-after images are attached. We are estimating that about 80% of the
non-precipitating echoes are removed from display. As can be seen, some
ground clutter is still getting through, and that is being worked on.

Ron Larkin visited Norman during the week of 21 May. KOUN radar collected
clear air bird and insect returns while Ron made field observations of birds and
insects over several nights. Using these data, better estimates will be made of
the boundaries in the polarimetric signatures separating birds from insects so
that contamination of Doppler wind velocity profiles from birds can be mitigated.

Data with biological scatterers were also collected on 1 May, 4 May, 5 May, 8-9
May, and 19 May. Data with significant AP were collected on 1 May and 19 May.

Finally, collected data were on large-hail producing storms on more than a
dozen different days during April-June. One storm contained hail more than 13
cm in diameter at the surface, which provides enough data to explore forecast-
ing hail size with a polarimetric radar.

(NCAR):

TASK 03.6.2.10: Winter storm case studies

The collection of video disdrometer observations from winter storms ended.
Significant datasets were obtained from a total of 17 events.  Two events
involved snow pellets and two events had periods of freezing drizzle. The
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dataset includes measurements of hydrometeor sizes, aspect ratios, canting
angles, terminal velocities, wind speed and direction, temperature, humidity,
visibility, liquid water content.  Calibration factors for the disdrometer are being
applied.  The data were collected in an effort to improve the designation of fro-
zen hydrometeors and better quantify winter precipitation with radar.  Analysis
is underway.

TASK 03.6.2.11: Implement improved hail detection algorithm

The literature on hail detection with polarimetric radar was reviewed and exam-
ples produced in preparation of our milestine progress report.

TASK 03.6.2.12: Test NCAR freezing level algorithm

Reviews of two papers regarding freezing level detection were received and the
papers revised accordingly.  The utility of the differential propagation phase
measurement was reviewed.  Because the measurement is relatively insensi-
tive to beam blockage and clutter, it was hoped that the measurement would
provide useful information when freezing levels were near ground.  Testing with
the IMPROVE (Oregon) dataset revealed performance varied considerably,
presumedly due to measurement error and the presence of Mie scatterers.  Fig.
1 shows and example from the PRECIP98 (Florida) field experiment.  Pro-
nounced melting layer maxima for reflectivity (ZH), differential reflectivity (ZDR),
and linear depolarization ratio (LDR) are clearly evident.  In contrast, the signa-
ture for differential phase is more ambiguous.  Further, the parameter lacks the
clarity of LDR for defining the melting layer.  At times the parameter shows a
well-defined minimum at the height of reflectivity maximum with distinct flanking
maxima.  The variablity in the profiles makes it difficult to model.  Consequently,
the parameter is not used in the current algorithm.

A paper entitled "Freezing level deterinations with polarametric radar: Retrieval
model and applications (Ikeda and Brandes, authors) was prepared for presen-
tation at the 31st International Radar Conference.  A PDF file is attached.

b) Planned Efforts

Continue HCA development and testing using KOUN cases from 2003.

c) Problems/Issues 

None.

d) Interface with other Organizations 

None.
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e) Activity Schedule Changes 

None.

Figure 1. Profiles of radar reflectivity (dBZ), differential reflectivity (ZDR), differential phase
(φDP), and correlation (rHV), from the PRECIP98 experiment.
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03.6.3 Circulations
Particularly violent or long-lived storms tend to possess certain notable qualities,
including, for example, mesocyclones. The current WSR-88D algorithms have a very
high false alarm rate. Controllers find such high false alarm rates unacceptable. To
mitigate this problem, new more robust and reliable circulation detection algorithms
will be developed. Algorithms that use circulations to diagnose storm severity or esti-
mate storm longevity will be considerably improved by this work.

a) Current Efforts

Prepared and submitted a paper titled “Detection of rotation and boundaries
using two-dimensional, local, linear, least squares estimates of velocity deriva-
tives” to the 31st Radar Conference to be held in Seattle, WA. The paper, in
PDF, is attached to this report.

b) Planned Efforts 

For Q4, NSSL will apply a weighting technique to the calcuation of velocity
derivatives to reduce discontinuities in the azimuthal shear field with respect to
range.  NSSL will also apply the LLSD technique to radial velocity models of
divergence and convergence, such as might by observed along boundaries or
in microbursts.

c) Problems/Issues 

None. 

d) Interface with other Organizations 

None.

e) Activity Schedule Changes 

None.
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03.6.4 Technical Facilitation
Technical facilitation supports the NEPDT algorithm development. There is currently
no standard vehicle outside of NSSL for algorithm development support. The interface
being developed at the NSSL, the WDSS-II, provides a way to develop, validate, verify
and demonstrate the NEXRAD algorithms developed within this PDT. Additionally,
WDSS-II provides a route into the Open Radar Product Generation (ORPG) system.
WDSS-II will support and incorporate the MITRE Common Operations Development
Environment (CODE). WDSS-II is an important ingredient for the overall success of the
NEPDT because, in consonance with CODE, coding and testing standards at the appli-
cation prototype level are enforced. Transfer of single-radar algorithms to the ROC will
be straightforward, as anything within WDSS-II must also conform to CODE stan-
dards. Overall, NEPDT efforts will inevitably enhance the algorithms that have been
accepted or will be implemented by the ROC as part of the WSR 88D system. 

a) Current Efforts

(1) Display support for research tasks:

(a) Several bugs related to visualizing virtual volumes and tables were fixed.

(b) Convenient way to visualize all the tilts of a radar virtual volume, or forecasts
of gridded fields was developed.

(c) Annotation capability was added to the display to allow marking and saving
of region information.

(d) Support was added for some of the new digital products in the ORPG.

(2) A quality-control neural network was developed. It incorporates all three
radar moments and produces cleaned elevation scans. The neural network
product removes AP but leaves storms unaffected.

Figure 2. Example of GUI for examining reflectivity products.
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(3) We implemented the Radar Echo Classifier (REC, from NCAR) and com-
pared the two QC algorithms.

The closer the curve is to the top-and-left, the better the algorithm. One way to
read the graph is this: Suppose we want to retain 80% of all precipitation pixels.
With the REC, we have to live with removing only 50% of all AP/clear-air detec-
tion pixels. With the NSSL-developed QC neural network, we can remove 90%
of AP/clear-air return.

Figure 3. GUI Example for controlling displa of QC composite images. 

Figure 4. ROC diagram shwoing perfromance of various AP quality control techniques.
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(4) Several algorithms were modified to optionally use the QC'ed reflectivity
data instead of the original. This increases the skill of these other algorithms:

(a) Meso-cyclone Detection Algorithm

(b) Storm-cell Identification and Tracking Algorithm

Figure 5. MDA output prior to neural net QC.Note various false detection in clear air.

Figure 6. Same as Fig. 5, but for MDA output after neural net QC.All false detections in clear air
have been eliminated.
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Centroid estimates improve when precip is embedded inside AP.

(c) Motion Estimation and Forecast

A 30min forecast and what actually happened in 30minutes are shown. Note
that the forecast is a lot better once the AP is removed.

(d) Multi-radar merged Reflectivity with quality-control of reflectivity and internal
advection individual radar views: ktlx.gif, kinx.gif, ksrx.gif. Note the differing res-
olutions, as well as the extensive clear-air return.

          quality-controlled, merged product: multi.gif

Figure 7. Original radar data (without neural net QC) is on the left, resulting 30 min forecast is
on right.

Figure 8. Same as Fig. 7, but for data that has undergone the neural net QC process.
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The storm cells are at high resolution, in the right spot, taking the time differ-
ences, and viewing angles of each of the radars into account.

Figure 9. Individual views of non-QC radar data from three different radars: top is KTLS, center
is KINX, and bottom is KSRT.
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(4) The multi-radar merger process was modified to take terrain and beam-
blockage into account.

The following papers have been submitted and are attaced to the end of this
report:

Lakshmanan, V. 2003 Motion estimator based on hierarchical clusters.  19th
IIPS Conference, Amer. Meteo. Soc., Long Beach, CA.

Lakshmanan, V. 2003 Real-time merging of multi-source data. 19th IIPS Con-
ference, Amer. Meteo. Soc., Long Beach, CA. 

Lakshmanan, V., K. Hondl, G. Stumpf, and T. Smith: 2003  Quality control of
WSR-88D data. 31st Radar Conference, Amer. Meteo. Soc., Seattle.

Lakshmanan, V., R. Rabin, and V. DeBrunner, 2003: Multiscale storm identifica-
tion and forecast. J. Atmospheric Research, In Press.

b) Planned Efforts 

Cntinue development and evaluation of neural net QC procedures.

c) Problems/Issues 

None.

Figure 10. Resultant merger of data from three different radars after neural net QC procedure.
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d) Interface with other Organizations 

None.

e) Activity Schedule Changes 

None.
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03.6.12 Product Implementation
Product implementation is a the process by which implementation paths are explored
and defined within the aviation community systems that are best for NEPDT products.
This process includes collaboration with other PDTs to help define the nature of WSR-
88D they need. Technical facilitation also includes the low-level process of defining
technical details (formats, data set file structures, etc.) of the products developed
NEPDT. 

a) Current Efforts

Discussions held with NCEP and FSL concerning implementation of 3D gridded
radar mosaic. 

b) Planned Efforts 

Develop work plan for implementing 3D gridded radar mosaic to implement in
FY 04 (an addition to the original seven year plan).

c) Problems/Issues 

None.

d) Interface with other Organizations 

NCAR, MIT/LL, FSL.

e) Activity Schedule Changes 

None
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03.6.14 Multi-radar Composites
The area for which any arbitrary ARTCC has responsibility likely encompasses the cov-
erage area of several WSR-88D installations. Neither the ROC nor the NWS has plans
to treat the various WSR-88D installations as a single network, so there are no existing
algorithms that use data from more than one radar. This is a serious limitation, because
treating each radar separately leads to ambiguities when the radar data overlap. Cur-
rently, the users must independently mitigate these ambiguities, which requires signifi-
cant knowledge about meteorological radar data and the nature of the algorithms that
are run on these data. Aviation users generally do not possess this knowledge, so for the
WSR-88Ds to be treated as a network, algorithms and techniques aimed specifically at
multiple radar composites must be developed.

a) Current Efforts

03.6.14.1-2 Continued test and refinement of real-time 3-D mosaic for the
FAA CIWS region

The activities for this quarter include continued monitoring of the real-time 3-D
mosaic for the CIWS domain.  The system has been up for more than 97% of
the time since the installation of the 3D mosaic (August 30, 2002).  Real-time
3D mosaic data as well as single radar radial velocity data are kept online for 5-
running days (extended from 2 days, see NAPDT 2003 1st quarterly report).
Other FAA PDTs (e.g., CWPDT and WWRPDT) have been accessing these
data via ftp.

The 3D mosaic algorithm has been further refined based on real-time case
studies.  It is found that when storms are very close to radar, their intensities in
the 3D analyses could be weaker than they are in the single radar field.  Even
though the current 3D mosaic grid resolution (i.e., 1km x 1km x 500m) is much
finer than radar polar grid in majority regions of radar umbrellas, it is coarser
than the polar grid resolution at closer ranges.  This is due to the fact that radar
data has extremely non-uniform spatial resolutions.  Figures 10 and 11 show a
horizontal and a vertical cross section where Cartesian grid (indicated by white
lines) is overlaid on polar grid (color shaded radar bins).  At the range of 10 km,
there are ~6 radar bins in one grid cell (Fig.10) in horizontal and ~3 bins in ver-
tical (Fig. 11).  If a local maximum reflectivity is observed in these regions, the
intensity could be reduced in the analysis field if a weighted mean scheme is
used.  Figure 12 shows composite reflectivities from KVNX radar and from the
3D mosaic grid that covers the same region.  The high reflectivities (>60 dbZ)
as indicated by arrows in Fig.12a were not shown in the mosaic field (Fig. 12b).
In addition, the echo area of 55 dbZ and higher (red-color shaded, Fig. 12a) is
larger in the single radar field than in the mosaic grid.  This could pose prob-
lems for severe storm applications since magnitude of storm intensities is an
important parameter.  To assure the conservation of storm intensities in analy-
ses, a separate 2D analysis and mosaic scheme is used to derive composite
reflectivity on the Cartesian grid. The scheme uses a "taking maximum" instead
NEXRAD Enhancements PDT 3  Quarter Report, 7/15/03, page 13
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of "weighted mean" approach when deriving the composite reflectivity field.
The new scheme successfully retained intensities of storms (Fig. 13).

03.6.14.3-5 Provide the 3D mosaic grid data for case studies requested by
fellow PDTs.

In addition to making the real-time 3D mosaic data available to other FAA PDTs,
the NAPDT has performed reanalysis on archived radar data for the CWPDT.

Figure 11. A reflectivity PPI image shows relative size of radar bins (1°´ 1km, color shaded) and
Cartesian grid cells (1km ´ 1km, white lines).  At ranges of 10 and 15km, one grid cell can cover
~6 and ~3-4 bins, respectively.  Damping of storm intensities can occur in these regions when a
weighted mean analysis scheme is used.
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By the end of Q3, 3D mosaic reanalysis for all 8 cases have been completed
(Table 1, data sizes are calculated after compression using gzip).  The reanaly-
sis data sets have been provided to the CWPDT via ftp.

Figure 12. A reflectivity RHI image shows relative size of radar bins (color shaded) and Carte-
sian grid cells (white lines).  Note that the radar bins size is 1°´ 1km and there are gaps
between the higher tilts (VCP 11).  The Cartesian grid has a horizontal resolution of 1km and
vertical resolutions of 500m below 5km height and 1km above 5km height. At ranges of 10 and
15km, one grid cell can cover ~3 and ~2 bins, respectively.  Damping of storm intensities will
occur in these regions when a weighted mean analysis scheme is used.
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Figure 13. Composite reflectivity fields from KVNX radar (0358Z, May 27, 2002, panel a) and
from 3D mosaic grid (panel b) using distance weighted mean analysis.  Since the storms are
very close to the radar (within 25km of range), the analysis scheme damped the storm intensi-
ties (see white arrows).
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Figure 14. Composite reflectivity fields from KVNX radar (0358Z, May 27, 2002, panel a) and
from a 2D mosaic grid (panel b) using the taking maximum approach.  The new 2D mosaic
scheme successfully retained storm intensities and coverage.
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03.6.14.6-7 A 4-D dynamic data analysis and visualization system.

The formulation for the 4-D dynamic grid (4DDG) has been finalized.  The
method is defined by the following equation:

Where fg represents the analysis value on a given Cartesian grid, fon repre-
sents an observation value at a radar bin, N is the total number of radar bins in
the volume of influence of the grid cell, and wn is a 4-D weighting function given
to the nth observation (i.e., fon) in the volume of influence.  The weighting func-
tion is defined by:

Here wremap represents a spatial weighting function for remapping single radar
reflectivity field from polar coordinates to Cartesian coordinates, wmosaic and wt

Table 1.  Data statistics for the CWPDT cases. 
 

Data processed (GB*) 

Events # of hours 
# of 

radars Level-2  
Intermediate 

(QC&display) 

3D 
mosaic 

(NetCDF) 
2002-06-25 14  42 8.5 7.6 0.85 
2002-06-27 13  43 9.0 9.9 1.03 
2002-07-08 19  43 6.8 6.1 0.65 
2002-07-22 20  42 8.1 7.3 0.63 
2002-07-23 13 42 5.0 4.6 0.46 
2002-08-19 15  42 7.4 5.8 0.83 
2002-08-22 13  42 6.3 6.0 0.57 
2003-05-01 15  39 6.4 7.0 0.55 

Total: 57.5 54.3 5.57 
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represent spatial and temporal weighting functions for mosaicking multiple
radar reflectivities, respectively, and wcalib is an adjustment factor for calibration
differences among different radars.

The spatial weighting function, wremap, for remapping single radar reflectivity
field onto a Cartesian grid is the same as the 3D mosaic algorithm, that is:

where wr, wf, and wq are weighting functions in range, azimuth and elevation
directions, respectively (ref: Zhang et al., 2001: Three-dimensional gridding and
mosaic of reflectivities from multiple WSR-88D radars. Preprints, The 30th
International Radar Conference, July 19-24, Munich, Germany, 719-721).
wgapfil is a weighting function for the gap-filling scheme (see the NEPDT 2001
2nd and 2002 2nd Quarterly reports). 

The pseudo code for the 4DDG has been developed based on the formulation
described above.  Various weighting functions will be examined and optimal
ones will be used for the final 4DDG system prototype.

b) Planned Efforts 

The refined 3D mosaic algorithms will be implemented in the real-time CIWS
domain. The development of a prototype 4-D dynamic grid will continue. 

c) Problems/Issues 

Due to the case study work for the CWPDT, the NAPDT has requested some
changes to the original FY03 tasks in late March, 2003.  This quarterly report is
based on the revised task document.

d) Interface with other Organizations 

Worked with WWRPDT and CWPDT on the ftp access of the 3D mosaic data
for case studies.

e) Activity Schedule Changes 

None.

wremap wr wφ• wθ• wgapfil•=
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03.6.15 WARP Activities
The WARP is integral to AT controller displays. Warp is significant in that it shifts the
burden of displaying weather radar returns to an instrument specifically designed as a
weather radar: the WSR-88D. However, due to the nature of its mission and hardware,
the WSR-88D cannot take the same approaches to data quality control as do the long-
range L-band radars currently used by ATC. New approaches to data quality control
need to be developed so the users have confidence in the weather data products dis-
played to them.

a) Current Efforts

Work continues on providing the National Air Traffic Controllers Association
(NATCA) with guidance on the accuracy of ORPG AP (anomalous propagation)
-mitigated composite reflectivity products.  While the AP removal algorithm can
be effective in removing non-precipitation returns, reflectivity returns associated
with storm cells can be adversely affected.  AP-mitigated composite reflectivity
products have been examined in a variety of precipitation events to examine
the potential for a reduction in the areal coverage and magnitude of reflectivity
returns as compared to composite reflectivity products without AP removal.   

Figures 15-23 show examples of WSR-88D Level II reflectivity, ORPG product
36 (0-70,000 composite reflectivity without AP mitigation), and product 96 (0-
70,000 ft composite reflectivity with AP mitigation) for three different convective
events.  Figure 15 shows one of the more striking examples of how the AP-mit-
igation algorithm can reduce reflectivity returns.  In this convective event,
numerous small (~20 km in diameter), individual convective cells exist east and
northeast of the Corpus Christi, Texas WSR-88D (KCRP) on June 10, 2003,
with many of the cells containing regions of >50 dBZ echoes (Figure 16).  How-
ever, the AP-mitigation algorithm reduces the maximum reflectivity returns by 5-
15 dBZ for most storms.  In this example, the reduction is very clear because
there are numerous cells containing localized (~4 km) regions of >50 dBZ
regions shown in red while no cells contain regions of >50 dBZ in the AP-miti-
gated product (Fig. 17).

In Figure 18, a handful of cells are evident northeast of the Pueblo, Colorado
(KPUX) WSR-88D on May 31, 1996.  The cells are slightly larger (~30-40 km in
diameter) than those shown in Figs. 15-17 and also have correspondingly
larger regions of >50 dBZ returns (Figure 19).  Once again, the AP-mitigated
algorithm reduces the intensity of the cells (Figure 20), although in this case,
some >50 dBZ pixels remain.  Figure 21 shows reflectivity returns at approxi-
mately 0000 UTC, May 4, 1999, associated with a central Oklahoma tornadic
outbreak.  The mature convective cells in this case are much larger with diame-
ters of 60 km or greater (Fig. 22).  In addition, the regions of maximum intensity
are also much larger (~20 to 30 km).  ORPG product 96 (Figure 23) does not
reduce the intensity of the reflectivity returns to the degree it does in the first
two cases, however, areal coverage of >50 dBZ returns is still reduced.
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Subjective examination of AP-mitigated products suggests some smoothing of
reflectivity data is occurring causing a reduction in magnitude and areal cover-
age of maximum reflectivity returns. 

b) Planned Efforts 

Investigate the ORPG AP-mitigated code to determine if the smoothing is inher-
ent to the AP algorithm or if it can be removed, providing a simple solution to
this potentially dangerous problem.

c) Problems/Issues 

None.

d) Interface with other Organizations 

None.

e) Activity Schedule Changes 

None.

Figure 15. Corpus Christ, TX (KCRP) WSR-88D Level II reflectivity image from 1527 UTC, June
10, 2003.
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Figure 16. Same as Figure 15, except for ORPG product 36 (0-70,000 composite reflectivity
without AP mitigation).
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Figure 17. Same as Figure 15, except for ORPG product 96 (0-70,000 composite reflectivity
with AP mitigation).
NEXRAD Enhancements PDT 3  Quarter Report, 7/15/03, page 23



rd

Figure 18. Pueblo, CO (KPUX) WSR-88D Level II reflectivity image from 1919 UTC, May 31,
1996.
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Figure 19. Same as Figure 18, except for ORPG product 36 (0-70,000 composite reflectivity
without AP mitigation).
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Figure 20. Same as Figure 18, except for ORPG product 96 (0-70,000 composite reflectivity
with AP mitigation).
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Figure 21. Twin Lakes, OK (KTLX) WSR-88D Level II reflectivity image from 0001 UTC, May 4,
1999.
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Figure 22. Same as Figure 21, except for ORPG product 36 (0-70,000 composite reflectivity
without AP mitigation).
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Figure 23. Same as Figure 21, except for ORPG product 96 (0-70,000 composite reflectivity
with AP mitigation).
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Freezing Level Determinations with Polarimetric Radar: Retrieval Model and Application 
 

Kyoko Ikeda* and Edward A. Brandes 
National Center for Atmospheric Research, Boulder, Colorado 

 
 

1. Introduction  

 Backscattered signals from dual-polarization 
radars provide information regarding hydrometeor size, 
shape, orientation, and thermodynamic phase in 
precipitating storms.  Because polarimetric 
measurements are particularly sensitive to the presence 
of large, wetted particles that characterize melting 
layers, response signatures in the measurements can 
be used to designate freezing levels.  Previous studies 
to determine freezing levels have focused on reflectivity 
measurements (White et al. 2002; Mittermaier and 
Illingworth 2003).  In this study we present a freezing 
level detection algorithm that exploits melting layer 
signatures in vertical profiles of radar reflectivity (ZH), 
linear depolarization ratio (LDR), and co-polar 
correlation coefficient (ρHV).  Response signals from 
LDR and ρHV during hydrometeor phase changes are 
more pronounced than that for reflectivity, often allowing 
determination of the freezing level when signatures in ZH 
are absent.  Moreover, consensus estimates from the 
three parameters should reduce errors in the estimates 
compared with those derived solely from ZH.   
 The algorithm has been applied to radar data 
collected from a number of field campaigns.  
Performance is demonstrated with a multiple freezing 
level event observed in the Oregon Cascades during the 
Improvement of Microphysical PaRametrization through 
Observational Experiments (IMPROVE) II field 
campaign.  Although melting and freezing occur at the 
wet-bulb 0oC level, the current algorithm is designed to 
retrieve dry-bulb zeroes.  For saturated environments, 
as expected with upslope conditions in the Cascades, 
both temperatures occur at the same height.  For 
unsaturated conditions, wet-bulb zeroes occur at a 
lower level.  Examination of high resolution aircraft data 
from several events occurring during other field 
programs revealed that wet-bulb zero depressions were 
0-105 m.  The accuracy in freezing level heights 
deduced with the proposed algorithm is believed to be 
100-200 m. 
  
2. Overview of the freezing level detection algorithm 

 Typical vertical radar profiles through the 
melting layer disclose radar reflectivity (ZH), linear  
depolarization ratio (LDR), and differential reflectivity 
(ZDR) maxima and a co-polar correlation coefficient (ρHV) 
minimum just below the 0oC level (Fig. 1).  The onset of 
melting changes the density and dielectric factor of 

frozen hydrometeors (Fabry and Zawadzki 1995) 
causing them to behave as raindrops of equivalent size 
and increasing their reflectivity (Battan 1973; Chapter 
10).  Further increase in ZH results as wetted 
hydrometeors become sticky and aggregation occurs.  
Eventually, melting hydrometeors collapse into 
raindrops and an increase in terminal velocity removes 
them from the sample volume.  The net effect is a rapid 
decrease in reflectivity.   
 Melting snowflakes and aggregates wobble as 
they fall creating a distribution of canting angles.  
Particle canting causes a small portion of the 
transmitted energy to “leak” into the orthogonal 
direction.  The leakage is enhanced for large mixed-
phased particles and creates a distinct LDR maximum in 
the melting layer.  Correlations between horizontally and 
vertically polarized signals are typically close to unity for 
pristine ice crystals and raindrops.  However, changes 
in hydrometeor shapes and the presence of mixed-
phased precipitation cause ρHV to decrease to <0.93 in 
the melting layer.  Snow aggregates do not have 
preferred orientations; therefore they have small ZDR 
(<0.5 dB).  Raindrops are flattened and tend to orient 
themselves with their major axes near horizontal, 
causing ZDR to be 0.3−4 dB.  Often ZDR has a maximum 
value in the melting layer indicating large aspect ratios 
associated with partly-melted hydrometeors. 
 The principal idea behind the freezing level 
detection algorithm lies in identifying the heights at 
which the melting layer signature extremes discussed 
above exist and using statistical relationships between 
the signatures and the 0oC level.  Fig. 2 shows the 
depression of melting layer signature extremes for LDR, 
ρHV, and ZDR from the height of the reflectivity bright 
band maximum.  The data are from over 300 radar 
profiles obtained from constant antenna elevation scans 
collected on 5 September 1998 during the PRECIP98 
field campaign.  Vertical distributions of each parameter 
were calculated by averaging measurements over 10-
degree sectors at elevation angles between 4 and 12 
degrees.  Examination reveals that LDR and ρHV 
extremes typically occur 200 m below the ZH maximum 
while the maximum ZDR occurs 200-300 m below the ZH 
maximum.  The depression distributions are narrow for 
LDR and ρHV, and their extremes generally occur at the 
same heights.  The depression distributions for ZDR, on 
the other hand, are broad and often 500 m or more 
below that for reflectivity.  Also, there is no melting layer 
signature for ZDR at vertical incidence or in many 
convective situations.  Consequently, only ZH, LDR, and 
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Figure 1: Profiles of radar reflectivity (dBZ), linear depolarization (dB), correlation coefficient, and differential reflectivity (dB) from 28 
November 2001 163147 UTC.  The 0oC level at 2.53 km is an average of two soundings. 
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Figure 2:  Frequency distributions showing the offsets of the LDR, ρHV, and ZDR extremes [HGT(LDR), HGT(ρHV), and HGT(ZDR)] 
from the ZH maxima [HGT(ZH)].  

 
 A composite of LDR and ρHV depressions from 
PRECIP98 (Florida), STEPS (eastern Colorado), 
CASES (Kansas), TRMM-LBM (Brazil), MAP (Italy), and 
IMPROVE (northwestern U.S.) field projects suggests 
that offsets of the LDR and ρHV extremes from the ZH 
maximum are typically 200 m for warm season datasets, 
whereas an offset of 100 m is likely for cold season 
datasets (MAP and IMPROVE).  However, examination 
of individual profiles reveals that larger offsets associate 
with more intense precipitation. 
 Fig. 3 shows model profiles developed from the 
observed relations of melting layer signatures discussed 
above.  Freezing level designations begin by identifying 
the melting layer extremes in the observed vertical 
profiles.  Extremes in the observed and modeled profiles 
are aligned, and the correlation coefficient between the 
observed and modeled profile is calculated to determine 
the degree of fit.  When the observed distribution 
roughly matches the melting layer signature in the 
model, the correlation is high.  Melting layer signatures 
are accepted by the algorithm when correlation 
coefficients are greater than 0.7.  This threshold value 
was chosen because one half of the variability in the 
observations is explained by the model at this value.  
Freezing level determination is then made by knowing 
the statistical offset between the typical 0oC level and 
the heights of the ZH, LDR, and ρHV extremes.  The 
offset was 300 m for ZH and 500 m for LDR and ρHV for 
the PRECIP98 dataset.  The offsets of  
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Figure 3: Sample model vertical profiles of radar reflectivity, 
linear depolarization ratio, and correlation coefficient. 

200 m for ZH and 300 m for LDR and ρHV were used for 
the IMPROVE dataset.  Then the estimated freezing 
level height for the ith parameter (with 1 for ZH, 2 for 
LDR, and 3 for ρHV) is 

i ih ht offset= + i                     (1) 
for the height of the melting layer signature extreme hti.  
Resulting estimates from the three parameters typically 
vary.  A consensus (weighted) estimate is then 
computed from 
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where n is the number of parameters with a correlation 
coefficient (r) above the threshold value, and hi and ri 
are the freezing level height and correlation coefficient 
for the ith parameter, respectively.  When only one 
profile meets the threshold criteria, the consensus 
freezing level height is not calculated.  The measure of 
scatter among the estimates is expressed with the 
standard deviation σ, 
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This value serves as confidence factor for the retrieval. 
 Figure 4: Vertical cross-section of radar reflectivity at an 

azimuth of 250o.   The ordinate is height above ground level.  
The radar site is at an elevation of 0.457 km. 3. Application of the freezing level algorithm 

 In this section algorithm performance is 
demonstrated with a dataset collected over the Oregon 
Cascades during the IMPROVE II field campaign.  On 
28 November 2001 a large synoptic low pressure 
system approached the Cascades region from the 
northeastern Pacific Ocean.  By 1200 UTC, the low 
pressure center was located to the west of Vancouver 
Island, British Columbia and the associated warm and 
cold fronts were advancing across the northwestern 
coastal U.S. 
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 Radar data indicated that warm frontal 
precipitation over the IMPROVE domain was most 
intense between 0930 and 1000 UTC.  Soon afterward 
the radar displayed multiple freezing levels for 20-40 
minutes.  Fig. 4 is a vertical cross-section from 1009 
UTC for an azimuth of 250o.  In the figure the lower 
melting layer is located ~0.7 km above ground level 
(AGL).  The elevated melting layer is at ~2.3 km AGL.  
The figure also shows a sloped band of high reflectivity 
between 1.5 km AGL and the surface at a range of 11-
17 km.  [The slope is different from that expected for a 
rain streak because the horizontal wind was generally 
from the southwest (toward the right in the figure).  
Consequently, the sloping band is also believed to be 
connected with melting hydrometeors.]  
 Fig. 5 is a time series of ZH and LDR profiles 
between 0906 and 1121 UTC.  Consensus freezing 
levels deduced from the algorithm are superimposed.  
ρHV profiles are not shown because the identified 
melting layers were essentially the same as those from 
LDR measurements.  The profiles were constructed 
from range-height-indicator scans (RHI) by averaging 
measurements 3 km in the horizontal and 0.2 km in the 
vertical at a distance of 8 km for the same azimuth as in 
Fig. 4.  Multiple freezing levels were detectable for all 
quadrants in which RHI scans were performed, but 
measurements from the azimuth of 250o were least 
contaminated by ground clutter from nearby mountains.  
Fig. 5 suggests that the lower freezing level rose from 
1.05 km at 0906 UTC to 1.3 km MSL at 1009 UTC.  
Afterward, it descended slightly, dissipating by 1029 
UTC.  

Figure 5: Vertical profiles of a) radar reflectivity (dBZ) and b) 
linear depolarization ratio (dB) from 0906 to 1121 UTC at an 
azimuth of 250o and a range of 8 km.  Gray bold lines are 
consensus freezing level heights from ZH, LDR and ρHV.  
Dashed vertical lines represent a)10 dBZ and b) −25 dB with 
respect to each profiles.  Tick mark increments are equivalent 
to a) 10 dBZ and b) 5 dB. 

 An elevated freezing level first appeared in the 
ZH and LDR profiles at 1009 UTC and a height of 2.73 
km MSL.  The ZH signature for the elevated freezing 
level was the strongest at this time and weakened as 
precipitation decreased.  The LDR signature intensified 
to −17.3 dB by 1029 UTC.  According to the consensus 
estimates, the elevated freezing level rose initially to 
3.09 km at 1050 UTC and descended to 2.89 km MSL 
by 1121 UTC. 



 Synoptic analyses indicate that evolution of the 
two freezing levels responded to motion of the low 
pressure center and its associated warm front.  While 
the surface warm front was well upstream of the radar, a 
single freezing level was low to the ground.   As the 
warm air advanced, the elevated freezing level 
appeared.  The lower freezing level eventually 
dissipated as the surface warm front passed the profile 
location, and only the elevated freezing level remained.  
A frontal temperature inversion near the 0oC level was 
observed with a sounding released at 1100 UTC from 
Salem, Oregon (60 km northwest of the radar site).  The 
sounding found the upper and lower freezing levels to 
be 2.70 and 1.03 km MSL, respectively, in agreement 
with the estimated freezing level heights.     
 Over the next six hours the elevated freezing 
level fell an additional 0.3 km.  With cold frontal passage 
between 1700-1800 UTC, the freezing level rapidly 
descended to 1.7 km MSL by 2200 UTC (Fig. 6).  Data 
points in Fig. 6 are estimates of freezing level heights 
over a gridded domain (35x35 km) in the eastern sector 
of the radar.  The 0oC levels from observations are also 
plotted.  Generally, freezing level heights from ZH have 
larger variability than those from other parameters.  
Scatter in the designations are more pronounced after 
1730 UTC for all parameters.  This is due to broadening 
freezing level height distributions over the domain from 
weakening precipitation and descending freezing level 
caused by passage of the surface cold front. 
  
4. Summary and concluding remarks 

 A freezing level detection algorithm that utilizes 
polarimetric measurements has been described.  The 
algorithm looks for melting layer signatures in the radar 
parameters and applies a statistical offset between the 
0oC level and the signature heights.  Determinations are 
typically good when radar signals are strong.  Moreover, 
sensitivity of LDR and ρHV to mixed-phased 
hydrometeors often make designations possible when 
signatures are absent in ZH measurements.  The error 
with the algorithm is on the order of 100 to 200 m.  
Algorithm enhancement is possible by taking into 
account the precipitation intensity dependencies of the 
0oC-depressions.  The algorithm readily makes 
retrievals for distances to ~50 km.  At greater distances 
radar beam broadening make precise determinations 
difficult. 
 The algorithm was applied to a dataset 
collected over the northwestern U.S. on 28 November 
2001.  Evolution of the two observed freezing levels 
responded to the movement of the synoptic low 
pressure center and its associated fronts.  Initially, a 
single freezing level existed near ground.  An advancing 
warm front warmed the lower atmosphere and created 
the elevated freezing level.  Passage of the surface front 
and continued warming eventually overwhelmed the 
lower melting layer.  Later, cold front passage caused a 
rapid lowering of the elevated freezing layer. 
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Figure 6: Time series of freezing level estimates for 1400-2200 
UTC on 28 November 2001.  The estimates from ZH, LDR, and 
ρHV were obtained over a gridded domain in the eastern sector 
of the radar.  “Mean” of each parameter is the weighted mean 
over the domain, computed using the correlation coefficient 
between the model and observed vertical profile.  “Mean 
consensus” values were obtained similarly, except the 
reciprocal of σ from Equation 3 was used for weighting.  The 
NCAR sounding location on this day was ~52 km southwest of 
the radar site, at an elevation of 0.24 km. 
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1. Introduction 
 

Traditional methods of calculating rotational 
shear from Doppler radial velocity data can give 
results that vary widely from the true value of 
shear for a vortex.  Some factors that must be 
considered include noisy data and the offset of 
sample volumes from the center of rotation.  
This work illustrates preliminary results from a 
two-dimensional, local, linear least squares 
(LLSD) method to minimize the large variances 
in rotational and divergent shear calculations. 
 

Besides creating greater confidence in the 
value of intensity of meteorological features that 
are sampled, the LLSD method for calculating 
shear values has several other advantages.  
The LLSD removes many of the radar 
dependencies involved in the detection of 
rotation and radial divergence (or radial 
convergence) signatures.  Thus, these 
derivatives of the radial velocity field may be 
viewed in three-dimensional space or used as 
input to multi-sensor meteorological applications 
that are not single-radar based.  Additionally, 
fields of these radial estimates of rotation and 
divergence have specific signatures when 
boundaries or circulations are sampled.  This 
manuscript describes how the derivatives are 
calculated as well as how the rotational LLSD 
compares with the less-robust (but operationally 
used) “peak-to-peak” estimates of azimuthal 
shear.  The accompanying poster presentation 
will describe the divergent LLSD and examples 
of data mining techniques that use LLSD for 
boundary and rotation detection. 
 
2. Local, Linear, Least Squares Derivatives 
 

Elmore et al. (1994) describe a method for 
estimating divergent shear from single Doppler 
radar data for use in calculating headwind loss 
estimates for aircraft that encounter microbursts.  
The rotation portion of the derivative was also 

derived by Elmore et al., but not utilized for 
microburst detection.  The LLSD technique was 
implemented in NSSL’s Damaging Downburst 
Prediction and Detection Algorithm (Smith et al. 
2003) for detecting low-level outflows and mid-
level convergence and rotation in storm cells.  
Mitchell and Elmore (1998) first explored the 
uses of the LLSD for identifying regions of high 
shear in mesocyclones and tornadic vortex 
signatures. 
 

Elmore et al. (1994) show that the estimates 
of radial divergence (ur) and rotational shear 
(us) can be calculated on a local neighborhood 
surrounding each range gate, where: 
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Here, Vij is the radial velocity, ∆r is the pulse 
volume width, sij is the azimuthal distance from 
the center of the kernel to the point (i,j), and wij 
is a uniform weight function.  Because ur and us 
are derived from only the radial component of 
the wind, they are approximations of one half the 
horizontal divergence and vertical vorticity (“half 
vorticity”, hereafter), respectively, assuming a 
symmetric wind field. 
 

In order to make LLSD calculations on a 
field of radial velocities, the data are passed 
through a 3x3 median filter to reduce noise.  
Then, because the LLSD calculations require a 
complete kernel of data in order to produce a 
result, missing radial velocities are filled in with 
the median of the four adjacent range gates.  
Finally, the fields of ur and us are calculated.  



The size of the kernel that is used in the 
calculation is variable, and is described below. 
 
3. LLSD of Rotational Shear 
 

LLSD of rotational, or azimuthal, shears are 
calculated for simulated circulation signatures of 
different sizes and at different ranges from a 
hypothetical radar in order to compare with 
traditional methods of estimating the strength of 
circulations.  We use a Rankine combined 
vortex model to generate simulated circulation 
signatures in the Doppler radial velocity field 
(Wood and Brown 1997).  We superimpose 2 
ms-1 uniform noise on the radial velocity field to 
test the robustness of the LLSD calculations. 

 
We compare the LLSD values to the more 

traditional “peak-to-peak” azimuthal shear 
calculation, given by 

 

d
VVuas

minmax −=  

 
where Vmax and Vmin are the maximum outbound 
and minimum inbound radial velocities (on 
opposite sides of a circulation), respectively, and 
d is the distance between those two peaks.  For 
the LLSD calculations, we choose three different 
kernel sizes that are each 3 range gates deep 
and approximately 2500 m, 5000 m, or 8000 m 

wide.  Thus the number of radials used in the 
calculation varies with range from the radar, 
although a minimum of three radials of data are 
required for a complete calculation.  Kernels that 
use a fixed number of radials at all ranges 
usually only provide good shear estimates in a 
small percentage of those ranges. 

Figure 1: Mean and 95% confidence limits for 
LLSD and peak-to-peak estimates of azimuthal 
shear at the vortex center for a 5 km diameter 
vortex with half vorticity of 0.01 s-1. 

Figure 2: Mean and 95% confidence limits for 
LLSD and peak-to-peak estimates of azimuthal 
shear at the vortex center for a 8 km diameter 
vortex with half vorticity of 0.01 s-1. 

 
To test the variability of the three LLSD 

kernels, we generate synthetic radial velocity 
signatures of vortices at ranges every 5 km from 
20 km to 200 km.  Because radar data suffer 
from many imperfections, including noise and 
sampling issues that can affect azimuthal shear 
values (Wood and Brown 2000), 1000 vortices 
of the same size and strength are generated at 
each range, each with different noise patterns 
and azimuthal offsets to the center of the 
simulated vortex.  This allows for calculation of 
mean azimuthal shear values and 95% 
confidence intervals for the three LLSD kernels 
and uas. We test these calculations on simulated 
vortices of three different diameters: 2.5 km, 5 
km, and 8 km. 
 

Figure 1 shows the 2500m LLSD kernel and 
peak-to-peak azimuthal shear estimates for a 5 
km diameter vortex with half vorticity of 0.01 s-1.  
In this case, the mean LLSD value is within 
about 20% of the true value out to about 140 
km, with a much smaller variance than that of 
the peak-to-peak azimuthal shear calculations.  



These values drop with range because of the 
geometry of the radar beam – circulations are 
not well sampled at long ranges.  For a larger-
scale 8 km diameter vortex (Fig. 2) sampled with 
the 2500 m kernel, the mean LLSD values are 
within 5% of the true value out to about 150 km.  
For brevity, results from the 5000 m and 8000 m 
kernel are not shown.  However, these larger 

kernels tended to underestimate the strength of 
smaller vortices compared to the 2500 m kernel. 

Figure 3:  The distribution of range positional 
errors for the 2500 m LLSD kernel (top) and 
the peak-to-peak azimuthal shear estimate 
(bottom) for a 5 km diameter vortex.  The 
center grey line is the median, the box is the 
interquartile range (IQR), the whiskers are the 
lesser of 1.5x(IQR) or the data range, and the 
single dots are outliers. 

Figure 4:  Same as Fig. 3, except for azimuthal 
position error. 

Because we use synthetic radar data, the 
true location of the center of the circulation is 
known. Range and azimuthal position errors 
were calculated for both the LLSD and peak-to-
peak methods.  For azimuthal shear, the center 
of circulation was considered to be halfway 
between velocity absolute maxima on each side 
of the circulation.  The NSSL Mesocyclone 
Detection Algorithm (Stumpf et al 1998) uses 
this method to determine the center of a 
circulation.  For the LLSD rotation, the center of 
circulation was considered to be at the LLSD 
rotation maximum.   



NA17RJ1227, National Science Foundation 
The errors in range (Fig. 3) for both methods 
are quite similar, although the variance is 
smaller for the LLSD estimate.  However, the 
azimuthal distance errors (Fig. 4) for the peak-
to-peak method are significantly larger than the 
LLSD.  Additionally, the distribution of the peak-
to-peak location estimates is not Gaussian.  This 
is illustrated in Fig. 5.  While the LLSD position 
estimates are clustered around the center of the 
diagram, there are three distinct groupings for 
the peak-to-peak data.  Because the peak-to-
peak method only uses two data points in its 
calculations, it is highly susceptible to errors 
caused by the radial offset from the center of the 
circulation and noise. 

 
4. Conclusion 
 

The local, linear, least squares approach to 
calculating radial velocity derivatives is a vast 
improvement over the frequently-used but 
simplistic and grossly inaccurate method of 
calculating shear from two data points.  The 
LLSD provides relatively smooth fields that may 
be used in other applications to identify features 
such as boundaries and vortices, as well as to 
accurately assess their strength and position.    
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Figure 5: Scatter diagram of positional errors 
for the peak-to-peak azimuthal shear estimate 
and the LLSD estimate of the center of 
circulation for a vortex at 120 km range. 
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7.1: Quality Control of WSR-88D Data

V Lakshmanan1, Kurt Hondl2, Gregory Stumpf1, Travis Smith1∗

Abstract

We describe a real-time algorithm for removing non-precipitating echoes from WSR-88D reflectivity data using
vertical profiles of reflectivity, Doppler velocity and Spectrum Width. Various attributes, described in this paper, were
computed from the radar moments. A few volume scans of radar data were chosen and used to train a feed-forward
neural network trained in a supervised manner using resilient-propagation and adaptive weight decay. The trained
network was tested on other, independent data cases. The performance of the algorithm was compared to existing
methods of performing automated quality control on radar reflectivity data using these independent test cases. We
find that the neural-net outperforms the other techniques handily. We also explore the limits on how general the
neural network is and make suggestions for quality control in general situations.

1. Introduction

From the point of view of automated applications operat-
ing on weather data, echoes in radar reflectivity may be
contaminated. These applications require that echoes
in the radar reflectivity moment correspond, broadly,
to “weather”. By removing ground clutter contamina-
tion, estimates of rainfall from the radar data using the
National Weather Service (NWS) Weather Surveillance
Radar-Doppler 1998 (WSR-88D) can be improved (Ful-
ton et al. 1998; Kessinger et al. 2003). A large num-
ber of false positives for the Mesocyclone Detection Al-
gorithm (Stumpf et al. 1995) are caused in regions of
clear-air return (McGrath et al. 2002). Poor segmention
and forecasting are achieved by a hierarchical motion
estimation technique in regions of ground clutter (Lak-
shmanan et al. 2003; Lakshmanan 2001). Hence, a
completely automated algorithm that can remove regions
of ground clutter, anamalous propagation and clear-air
returns from the radar reflectivity field would be very
useful in improving the performance of other automated
weather algorithms.

The problem of examining the radar moments for au-
tomated removal of non-precipitating echoes has been

the focus of some research by Steiner and Smith (2002)
and Kessinger et al. (2003). The Radar Echo Classi-
fier (REC) described in (Kessinger et al. 2003) has been
implemented into the operational Open Radar Product
Generator (ORPG). It incorporates the ideas introduced
in (Steiner and Smith 2002) and hence, provides a good
baseline for comparision. In this paper, the development
of a neural network (NN) to do the same task is de-
scribed. We compare the neural network’s performance
on independent cases with the Radar Echo Classifier
(REC).

2. The Neural Networks

The final set of features used in the network for which
results are reported were: for the lowest scan of veloc-
ity, spectrum width and the second lowest scan of re-
flectivity: local mean, local variance, difference between
the data value and the mean, for the lowest scan of
reflectivity: local mean, local variance, difference be-
tween the data value and the local mean, REC Tex-
ture (Kessinger et al. 2003), homogeneity, SPIN (Steiner

∗1V Lakshmanan, Gregory Stumpf and Travis Smith are with the Cooperative Institute of Mesoscale Meteorological Studies (CIMMS), Uni-
versity of Oklahoma. 2Kurt Hondl is with the National Severe Storms Laboratory, Norman, OK

1



and Smith 2002), number of inflections at a 2dBZ thresh-
old, SIGN (Kessinger et al. 2003), echo size. Features
related to the vertical profile of reflectivity were the max-
imum value, weighted average, difference between data
values at the two lowest scans, echo top height at a 5dBZ
thresholds.

To decorrelate the data value from the mean and me-
dian, the difference between the data value and the local
mean was used. The weighted average of the reflectiv-
ity values is computed over all the elevations where the
weight of each data point is given by the height of that
pixel above the radar. This takes into account the entire
vertical profile instead of just the first two elevations. The
homogeneity of the reflectivity field is defined as:

homxy =

∑
iεNxy

1

1+(
Ixy−Ii

Ixy
)2

card(Nxy)− 1
(1)

where Nxy is the set of valid pixels (Ii) in the neighbor-
hood, Nxy, of the pixel at (x, y) in the image, Ixy is the
pixel value and card(Nxy is the number of such neigh-
bors. Echo-size is defined as the fraction of neighbors
whose values are within 10dBZ of this pixel’s reflectiv-
ity value. An inflection point is defined similar to the
SPIN (Steiner and Smith 2002) except that the inflec-
tion is defined not in a polar neighborhood, but along the
entire radial until that point.

We used two separate neural networks – one in re-
gions where Doppler Velocity and Spectrum Width are
available, and another where they aren’t. All the neural
network inputs were scaled such that each feature in the
training data exhibited a zero mean and a unit variance
when the mean and variance are computed across all
patterns.

a. Network Architecture

We used a resilient backpropagation neural network
(RPROP) described in Riedmiller and Braun (1993).
The RPROP network was trained using supervised
batch learning in a multi-layer perceptron (MLP) network.
There was one hidden layer. Every input unit was con-
nected to every hidden unit, and every hidden unit to the
output unit. In addition, there was a short-circuit con-
nection from the input units directly to the output unit,
to capture any linear relationships. Every hidden node

had a “tanh” activation function, chosen because of its
signed range. The output unit had a sigmoidal activa-
tion function so that the outputs of the networks could
be interpreted as posterior probabilities (Bishop 1995).
Each non-input node had, associated with it, a bias value
which was also part of the training.

The error function that was minimized was a weighted
sum of the cross-entropy (which Bishop (1995) suggests
is the best measure of error in binary classification prob-
lems) and the squared sum of all the weights in the
network. The weight decay term improves generaliza-
tion (Krogh and Hertz 1992). The relative weight, λ, of
the two measures is computed within a Bayesian frame-
work (MacKay 1992; Bishop 1995).

The with-velocity network had 22 inputs, 5 hidden
nodes and one output while the reflectivity-only network
had 16 inputs, 4 hidden nodes and one output.

A validation set ensures a network’s generaliza-
tion, typically through the use of early stopping meth-
ods (Bishop 1995). In the neural network literature, a
validation set is usually utilized to select the architec-
ture of the neural network. We did not use a separate
validation set, mainly because we did not have enough
training data in order to do so. Because we lacked a
validation set, we did not consider any alternate net-
work topologies. A different network topology may out-
perform our neural network. Weight decay, rewarding
smaller weights, is an alternative way to ensure gener-
alization (Krogh and Hertz 1992; Bishop 1995).

We did use an independent testing set, as decribed in
Section 3.. An extended form of this study, could involve
training with the current training set, validating with the
current testing set, and then testing on a newly gathered
and truthed set of cases. Such a study could make use
of early stopping as well.

Just eight volumes of WSR-88D data were selected
to encompass different scenarios – strong convection,
stratiform rain, ice-coating, low-topped cells, etc. A hu-
man interpreter examined these volume scans and drew
polygons using the WDSS-II display (Hondl 2002) to
select “bad” echo regions. An automated procedure
used these human-generated polygons to classify ev-
ery pixel into the two categories (precipitating and non-
precipitating).



Radar Echo Classifier
Number nulls false-alarms miss hit POD FAR CSI

1 48554 2573 579 512 0.47 0.83 0.14
2 1187 161 0 0 nan 1 0
3 13440 23 24648 17927 0.42 0 0.42
4 46124 20474 1033 1126 0.52 0.95 0.05
5 10420 14 20798 13828 0.40 0 0.40
6 29731 629 4965 7562 0.60 0.08 0.57

total 149456 23874 52023 40955 0.44 0.37 0.35
Neural Network

1 50346 781 271 820 0.75 0.49 0.44
2 419 929 0 0 nan 1 0
3 13363 100 5489 37086 0.87 0 0.87
4 25517 41081 7 2152 1 0.95 0.05
5 10259 175 3828 30798 0.89 0 0.88
6 14697 15663 76 12451 0.99 0.56 0.44

total 114601 58729 9671 83307 0.90 0.41 0.55

Table 1: Skill scores when classifying using the Radar Echo Classifier and when using the Neural Network.

3. Results and Conclusions

For testing, a diverse set of volume scans of weather
data were chosen and bad echoes marked on these vol-
ume scans by a human observer. The volume scans are
listed below:

1. KAMA Apr 18, 2002 07:19:10 to 07:23:49 – Signif-
icant AP.

2. KFSX Jan 10, 2003 16:12:09 to 16:20:20 – Terrain-
induced ground clutter.

3. KTLX May 14, 2003 13:41:08 to 13:45:45 – Strong
convection with sharp gradients.

4. KTLX May 19, 2003 08:57:52 to 09:06:02 – AP and
spatially smooth clear-air return.

5. KINX May 20, 2003 10:25:52 to 10:30:31 – Strong
convection close to the radar.

6. KTLX May 20, 2003 16:39:14 to 16:44:30 – Clear-
air return at several elevations.

The volume scans were processed using the trained
neural network and using the Radar Echo Classi-
fier (Kessinger et al. 2003). Comparisions were made on
a pixel-by-pixel basis of all pixels for which at least one of
the elevations had a reflectivity value greater than zero

dBZ. Nulls refer to pixels which are not weather-related,
and are correctly classified. Hits refer to pixels which are
weather-related and are correctly classified. Misses refer
to weather-related echoes that are missed, while false-
alarms refer to non-weather echoes that are incorrectly
classified.

The confusion matrices for each of the volume scans
are shown in Table 1 for the two algorithms being com-
pared. The first row of Figure shows a case of significant
AP/GC while the third row shows a significant precipita-
tion event. Looking at these images, it is possible to put
the quantitative measures (cases 1 and 3) in context. We
see that a lot of good data is misclassified by the Radar
Echo Classifier. At the same time, the neural network
makes its mistakes on lower reflectivity values, but gets
higher reflectivity values (whether AP/GC or good data)
correct more often. This is a consequence of the cost
factors used in the network error equation.

Terrain-induced ground-clutter (Jan. 10, 2003 from
KFSX, shown in the second row of Figure ) was not part
of the training regimen of the neural network, and does
pose problems. In mountain regions, terrain heights, or
the height of the echo above terrain, could be part of the
inputs to the network, instead of, as currently, simply the
height above the radar. The network would also have to
use texture statistics from the second tilt of the radar, and
use vertical differences for the lowest three tilts.

The neural network identifies regions of precipitation
with high skill. It is able to identify bad echoes (AP/GC)
when they are similar to cases that it has seen before,
but is not able to deduce unfamiliar situations (terrain-

induced GC, vertically continuous clear-air return, chaff,
etc.) Even with these limitations, however, the neural net-
work greatly outperforms existing automated techniques.
At locations where one or more of these bad-echo forma-



Unedited Vertical Maximum Edited using Neural Network Edited using (Kessinger et al. 2003)

Figure 1: Selected testing cases: KAMA 4/18/2002, KFSX 1/10/2003 and KTLX 5/14/2003. Performance on a
data case with significant AP/GC is shown in the first row. The second row illustrates that the Neural Network
performs poorly on cases from the Mountain West, where it was not trained, while the third row shows a typical
spring precipitation event from the Great Plains.

tions is frequent, the neural network should be trained
with those. The network, if trained judiciously, shows
high skill in “remembering” and removing bad-echo pat-
terns that it has been trained on.
Acknowledgement Funding for this research was provided under NOAA-OU Coopera-
tive Agreement NA17RJ1227, FAA Phased Array Research MOU, and the National Science Foundation Grants
9982299 and 0205628.
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15.14: Motion Estimator Based On Hierarchical Clusters

V Lakshmanan∗

Cooperative Institute of Mesoscale Meteorological Studies
University of Oklahoma

Abstract

In this paper, we describe the use of statistically derived
hierarchical clusters of weather data to derive movement
estimates from pairs of frames in a time sequence. We
show that the use of hierarchical clusters enables small
cells to be tracked over short periods of time while us-
ing the movement of the larger scale features they are
embedded in for longer periods.

The motion estimator has been applied both to reflec-
tivity data obtained from the National Weather Service
Radar (WSR-88D) and to cloud-top infrared tempera-
tures obtained from the GOES-11 satellite. We demon-
strate the results on both these sensors.

1. Short-term forecast methods

The operational way of identifying storms from radar im-
ages involves the use of multiple thresholds and counting
runs of values above a threshold along a radial. The cen-
troids are then used as proxy for the storms (Johnson
et al. 1998) and tracked either on the basis of proximity
to expected position or through a a linear programming
approach (Dixon 1994). Change in position is extrapo-
lated.

A second technique is to use rectangular sub-grids
and find the maximum correlation within a search ra-
dius (Rinehart and Garvey 1978; Tuttle and Gall 1999).
A modification of this technique is to pre-filter the data so
as to track only the larger scales (Wolfson et al. 1999;
Lakshmanan 2000). It is also possible to use sub-grids
ranging in size from that of the entire image to small

∗Corresponding author address: lakshman@ou.edu, also affiliated
with NOAA/OAR/National Severe Storms Laboratory.

16km x 16km grids and to compute motion estimates at
each of these scales. Smoothness criteria can be used
to constrain these estimates at different scales.

Identifying, matching and extrapolating storm core lo-
cations is suitable for small scale storms. The large scale
features and cross-correlation technique is suitable for
longer forecasts, but with loss of detailed motion esti-
mates. An assumption here is that the storms are of the
scale of the sub-grid, not larger. The multiscale estima-
tion is suitable also for large scale forecasts, but with less
precise detailed motion estimates.

When used for advection, all the correlation tech-
niques rely on reverse projection, so there needs to be
wind speed at the spot where the storm is moving to.
The image template methods also assume that all pixels
within a grid are moving together.

We use a hybrid approach where motion estimates
are made for groups of storms (rather than for sub-grids
of the image), but at various scales. The motion esti-
mate for a storm cell is the movement that minimizes the
mean-absolute-error between the current frame and cor-
responding pixels in the previous frame, except that the
template is not a sub-grid of the image, but is instead the
actual shape of the storm cell.

Instead of simply matching storm cells across frames,
motion estimates are made by finding the best match for
the storm-template. Thus, the major steps in the tech-
nique are:

1. Find storms at different scales.

2. Estimate motion at the various scales.

3. Forecast for different periods using motion at differ-
ent scales.
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2. Identifying storms

A K-Means clustering technique from Lakshmanan
(2001); Lakshmanan et al. (2002) is used to identify
components in vector fields. The technique provides
nested partitions, i.e. the identified storms structures are
strictly hierarchical. The technique works by clustering
image values (reflectivity/infrared temperature, etc.) in
the neighborhood of a pixel on two opposing criteria:

• Belong to same cluster as your neighbors.

• Belong to cluster whose mean is closest to your
value.

Hierarchical segmentation is incorporated into the K-
Means clustering technique by steadily relaxing inter-
cluster distances.

K of this K-Means clustering is not the number of re-
gions in the final segmented output. It is the number of
central vectors about which we do the clustering. The
number of regions is determined by the spatial location.
As the number K increases, the clusters cover a smaller
range in the texture space. In case the number of re-
gions is not known a priori, a very high value of K may
be chosen. The most detailed segmentation may have
too many regions, but coarser levels might yield the de-
sired result. This is one advantage of using a hierarchical
technique.

We iteratively move pixels minimizing

E(k) = λdm(k) + (1− λ)dc(k) 0 ≤ λ ≤ 1 (1)

where the distance in the measurement space is:

dm(k) =‖ µn
k − Txy ‖ (2)

and the discontiguity measure is::

dc(k) =
∑

ijεNxy

(1− δ(Sn
ij − k)) (3)

A region growing algorithm is employed to build a set
of connected regions, where each region consists of 8-
connected pixels that belong to the same K-Means clus-
ter. If a connected region is too small, then its cluster
mean (the mean of the texture vectors at each pixel in
the region) is compared to the cluster means of the ad-
joining regions and the small region is merged with the

closest mean. The result of the K-Means segmentation,
region growing and region merge steps is the most de-
tailed segmentation of the image.

The inter-cluster distances of all adjacent clusters (or
regions) in the image are computed. A threshold is set
such that half the pairs fall below this threshold. If a pair
of clusters differs by less than this threshold, the clusters
are merged and cluster means updated. This process
is continued until no two adjacent regions are closer in
cluster space than the threshold. When this process is
complete, we have the next coarser scale of the seg-
mentation. This process is repeated until no changes
happen.

3. Motion Estimation

Once the storms have been identified from the images,
these storms are used as a template and the movement
that minimizes the absolute-error between two frames
is computed. For radar images, we used consecutive
(5 min) volume scans. For satellite imagery, we used
frames 400 seconds apart.

Motion estimation is done by moving a template of the
identified cluster at the appropriate scale around in the
previous image. A matrix of mean absolute error at the
different positions is obtained as shown in Figure 1

The field is minimized by weighting each pixel by how
much it differs from the absolute minimum and finding
the centroid.

For each storm template, we also get a growth/decay
estimate. This is based on how much the average value
inside the template changes based on the template at
the best match.

4. Short-term Forecast

The forecast of the fields is done based on the motion es-
timates, growth and decay heuristic and the current data.
Forecasts can be made on fields other than the tracked
field. For example, motion estimates can be derived from
VIL and applied to radar reflectivity and probability fields
of lightning and hail.

The forecast is done in three steps:



Figure 1: Matrix of mean absolute error by position.
Larger errors are “hotter”. Two different locations are
shown.

1. Forward: project data forward in time to a spatial
location given by the motion estimate at their current
location and the elapsed time.

2. Define a background (global) motion estimate given
by the mean storm motion.

3. Reverse: obtain data at a spatial point in the future
based on the current wind direction at that spot and
current spatial distribution of data.

The skill of this technique is quantititavely measured
by comparing, for example, the 30 minute forecast
against the actual field closest to 30 minutes ahead. Re-
sults over a 750 minute period on reflectivity from the
Fort Worth radar on April 1, 1995 are shown in Figures 2
and 3.

The CSI seems to indicate the technique performs a
lot better than persistence. The MAE, especially in the
longer-range forecasts, doesn’t show much difference
between the two. The reason is that the MAE takes into
account actual reflectivity values. We are good at pre-
dicting storm location, but not so good at growth/decay.

A forecast based on satellite infrared temperature is
shown in Figure 4.

Figure 2: Skill (red) at forecasting a radar reflectivity field
compared to a persistence forecast (green). (a) Values
30dBZ and above for 15 minutes (b) Values 30dBZ and
above for 30 minutes (c) Values 30dBZ and above for 60
minutes (d) Mean absolute error in 60 minute forecast



Figure 3: The original (left) and a 15 minute forecast on
KFWS reflectivity data from April 1995.

Figure 4: The original (left) and a 30 minute forecast of
infrared temperature from Oct. 1999.

Further work is needed in these areas:

1. High bias – associated with splatting during forward
projection.

2. Poor forecast of actual data values (high MAE), i.e.
poor growth/decay estimate.

3. A better choice of scale for making forecasts.

4. Assimilation of mesoscale model wind speeds.

5. Use of Doppler radar velocity estimates.

6. Images look unrealistic beyond 60 minutes.
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Multiscale Storm Identification and Forecast

V Lakshmanan1, R. Rabin2, V. DeBrunner3∗

Abstract

We describe a recently developed hierarchical K-Means clustering method for weather
images. that can be employed to identify storms at different scales. We describe an
error-minimization technique to identify movement between successive frames of a
sequence and show that we can use the K-Means clusters as the minimization kernel.
A Kalman filter is used to provide smooth estimates of velocity at a pixel through time.
Using this technique in combination with the K-Means clusters, we can identify storm
motion at different scales and choose different scales to forecast based on the time scale
of interest.

The motion estimator has been applied both to reflectivity data obtained from the
National Weather Service Radar (WSR-88D) and to cloud-top infrared temperatures
obtained from GOES satellites. We demonstrate results on both these sensors.

1. Introduction

The segmentation of weather imagery is a fundamental problem to automated weather
analysis, as has been pointed out in Peak and Tag (1994); Lakshmanan et al. (2000);
Johnson et al. (1998). There are numerous pattern recognition algorithms that have
been developed on weather images, such as for rainfall estimates (Lai et al. 2000), and
cloud classification (Lee et al. 1990), but segmentation techniques for weather images
have not been addressed. This is true even of work that attempts to factor out weather-
related effects in satellite imagery of land (Markus and Cavalieri 2000; Narasimhan
and Nayar 2000).

In the meteorological community, the importance of multiscale segmentation has
been often noted (Johnson et al. 1998; Wolfson et al. 1999; Lakshmanan et al. 2000).
In (Peak and Tag 1994), the authors detail the difficulties that traditional segmentation
algorithms have with satellite weather images because of the textural nature of clouds.
As a result, a complex technique consisting of a sequence of fixed thresholds, followed
by a neural network that decides how and when to prune or merge the resulting regions

∗1Corresponding author address: lakshman@ou.edu. V Lakshmanan is at the Cooperative Institute of
Mesoscale Meteorological Studies, U. Oklahoma (OU) and is also affiliated with NOAA/OAR/National
Severe Storms Laboratory (NSSL).2Robert Rabin is with NSSL and the Cooperative Institute of Meteoro-
logical Satellite Studies (CIMSS) at the University of Wisconsin, Madison.3Victor DeBrunner is with the
Department of Electrical and Computer Engineering at OU.
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is proposed (Peak and Tag 1994). We show here that using a hierarchical technique
in combination with a texture segmentation algorithm makes segmentation of satellite
weather images possible such that even small cloud features can be identified.

The textural nature of weather imagery makes robust segmentation for storm track-
ing purposes very difficult. For storm tracking to be useful, the identification and track-
ing algorithm should be completely automated. The identification algorithm should not
require training, i.e. the algorithm should not expect to see examples of all the “objects”
it must identify. Storm “cells” (small scale features) should be capable of being identi-
fied. Because the notion of scale is natural in the storm tracking context, we would like
to add the requirement that storms at various scales be identified, with their hierarchical
structure intact. A multiscale tracking algorithm would be a significant improvement
over current tracking schemes which concentrate either on small scales(e.g: (Johnson
et al. 1998)) or on large scales (e.g: (Wolfson et al. 1999)).

In the United States, the operational way to identify storms from radar images
involves the use of multiple thresholds and counting runs of values above a threshold
along a radial. The centroids are then used as a proxy for the storms (Johnson et al.
1998) and tracked either on the basis of proximity to expected position or through a
linear programming approach (Dixon 1994). The change in position is extrapolated.

Identification and tracking algorithms for satellite weather imagery have been im-
plemented for mesoscale convective systems (Morel et al. 1997) – where the features
of interest (storm anvils colder than 240K) are on the scale of about 10,000km2. Our
goal, however, is to identify storm scale features, features on the scale of about 10km2.

Another technique (French et al. 1992) is to use neural networks to model input
reflectivity fields as a set of nodes and to forecast reflectivity locations in the future
based on the evolution of the nodes required to model successive frames. The problems
with this technique are that it requires training a neural neural network in real-time,
and that a trained neural network can not be used to forecast fields which have not been
tracked.

A third technique is to use rectangular sub-grids and to find the maximum corre-
lation within a search radius (Rinehart and Garvey 1978; Tuttle and Gall 1999). A
modification of this technique is to pre-filter the data so as to track only the larger
scales (Wolfson et al. 1999; Lakshmanan 2000). It is also possible to use sub-grids
ranging in size from that of the entire image to small (say, 16km x 16km) grids, and to
compute motion estimates at each of these scales. Smoothness criteria can be used to
constrain these estimates at different scales.

Identifying, matching and extrapolating storm core locations is suitable for small
scale storms. The large scale features and cross-correlation technique is suitable for
longer forecasts, but with loss of detailed motion estimates. An assumption here is
that the storms are of the scale of the sub-grid, not larger. The multiscale estimation is
suitable also for large scale forecasts, but with less precise detailed motion estimates.

When used for advection, all the correlation techniques rely on reverse projection,
so there needs to be wind speed at the spot where the storm is moving to. Methods rely
on correlation estimates of rectangular templates also assume that all pixels within that
rectangular template are moving together.

We use a hybrid approach where motion estimates are made for groups of storms
(rather than for sub-grids of the image), but at various scales. The motion estimate



for a storm cell is the movement that minimizes the mean-absolute-error between the
current frame and corresponding pixels in the previous frame, except that the template
is not a rectangular sub-grid of the image, but is instead the actual shape of the storm
cell.

Instead of simply matching storm cells across frames, motion estimates are made
by finding the best match for the storm-template. Thus, the major steps in the technique
are:

1. Find storms at different scales.

2. Estimate motion at the various scales.

3. Forecast for different periods using motion at different scales.

Because the motion estimates are made for storms, it is possible to interpolate be-
tween storm boundaries to obtain motion estimates at every part of the domain.

2. Hierarchical texture segmentation to identify storms

A K-Means clustering technique from Lakshmanan (2001); Lakshmanan et al. (2002) is
used to identify components in vector fields. The technique provides nested partitions,
i.e. the identified storms structures are strictly hierarchical. The technique works by
clustering image values (reflectivity/infrared temperature, etc.) in the neighborhood of
a pixel on two opposing criteria:

• Belong to same cluster as your neighbors.

• Belong to cluster whose mean is closest to your value.

Hierarchical segmentation is incorporated into the K-Means clustering technique by
steadily relaxing inter-cluster distances.

The technique works by iteratively moving pixels between clusters minimizing

E(k) = λdm(k) + (1− λ)dc(k) 0 ≤ λ ≤ 1 (1)

where the distance in the measurement space is:

dm(k) =‖ µn
k − Txy ‖ (2)

and the discontiguity measure is::

dc(k) =
∑

ijεNxy

(1− δ(Sn
ij − k)) (3)

A region growing algorithm is employed to build a set of connected regions, where
each region consists of 8-connected pixels that belong to the same K-Means cluster. If
a connected region is too small, then its cluster mean (the mean of the texture vectors
at each pixel in the region) is compared to the cluster means of the adjoining regions
and the small region is merged with the closest mean. The result of the K-Means



segmentation, region growing and region merge steps is the most detailed segmentation
of the image.

The inter-cluster distances of all adjacent clusters (or regions) in the image are
computed. A threshold is set such that half the pairs fall below this threshold. If a pair
of clusters differs by less than this threshold, the clusters are merged and cluster means
updated. This process is continued until no two adjacent regions are closer in cluster
space than the threshold. When this process is complete, we have the next coarser scale
of the segmentation. This process is repeated until no changes happen.

a. Weather Radar Images

Texture segmentation using Markov Random Field (MRF) models has been utilized
to segment synthetic aperture radar (SAR) images, mainly because SAR images are
characterized by a lot of speckle (Dong et al. 2001; Schroder et al. 1998; Smits and
Dellepine 1999), a problem which is resolved through the use of neighborhood statis-
tics. Another reason for using texture segmentation on SAR imagery is that the same
MRF model used for segmentation can also be used for classifying the identified seg-
ments (Dong et al. 2001).

Texture segmentation has not been applied to weather radar data before. In weather
radar data, especially in cases where there is significant precipitation, the problem of
speckle does not arise except in the immediate vicinity of the radar. Hence, traditional
texture segmentation provides no significant advantage. In fact, as shown in Figure 1e,
even a scalar segmentation approach works quite well. What neither the scalar segmen-
tation approaches, for example (Johnson et al. 1998), nor standard texture segmentation
approaches (Blum and Rosenblat 1972; Hofmann et al. 1996; Ma and Manjunath 1997)
can provide is a nested partition of identified segments. The watershed segmentation
approach of Najman and Schmitt (1996) can provide a nested partition, but does not
segment weather data well (See Figure 1f). As shown in Lakshmanan et al. (2002);
Lakshmanan (2001), multiscale segmentation can be achieved by agglomerative K-
Means clustering of texture vectors and slow relaxation of the allowed inter-cluster
distance.

We wish to segment the reflectivity moment of radar elevation scans obtained from
a Doppler Weather Service Radar (WSR-88D). The data have been mapped from polar
coordinates into a Cartesian grid tangential to the earth’s surface at the radar location
where each pixel is a square area of one kilometer on each side. The pixel values,
in dBZ, range from about−7dBZ to about64dBZ, with the reflectivity values for
some pixels missing. Missing values and all reflectivity values less than0dBZ were
thresholded to be0dBZ before the segmentation process.

The radar elevations scans in this study were collected every 5-6 minutes. The
weather surveillance radars used by the National Weather Service scan through thun-
derstorms starting at a low elevation angle,0.5o for Volume Coverage Pattern (VCP)
21, and after completing a full360o azimuthal sweep, progressively increase the eleva-
tion angle until an upper limit is reached (19.5o in VCP 21). See Figure 2 (Crum and
Alberty 1993; Smith 1995). The data were remapped to a Cartesian plane and were
then segmented using the K-Means clustering technique.
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Figure 1: Segmenting a radar reflectivity image. (a) A radar reflectivity image, from
Fort Worth May 5, 1995. (b) The result of segmenting the radar reflectivity image
using the Markov Random Field (MRF) approach of Blum and Rosenblat (1972). (c)
The result of segmenting the image using the method of this paper, tweaked to process
the reflectivity range of interest. The most detailed scale is shown. (d) The next higher
scale of segmentation using the method of this paper. (e) Simply separating the image
into contiguous bands of10dBZ. (f) Using the watershed approach of Najman and
Schmitt (1996).



Figure 2: Volume Coverage Pattern (VCP) 21 of the WSR-88D, a weather surveil-
lance radar used by the National Weather Service. The volume coverage is shown.
The beamwidth is 0.95 degrees and there are 9 elevation scans in this VCP. Figure
from Smith (1995).

b. Satellite Infrared Images

We demonstrate results of segmenting the infrared window channel (11µ) of GOES
satellite imager data. The images are 200x300 with each pixel representing a4km ×
4km. The images are projected onto a plane tangential to the surface of the earth.
The satellite data were collected over the continental United States using GOES-11 on
March 29, 1998. The pixel values were also mapped from radiance values to equivalent
black body temperature in degrees Kelvin before the segmentation. Images of the
sequence are available at eight minute intervals.

The sequence of satellite images captures a day of significant thunderstorm activity.
Several thunderstorms grow and decay during the day. The temperatures and sizes of
the cloud tops in the images show relate in a bulk sense to the magnitude and extent
of clusters of storm updrafts within the anvil clouds. Segmentation of this sequence
should be able to consistently identify the thunderstorm cloud tops in the images. Ide-
ally, when cloud tops appear to split or merge, the corresponding segmented regions
should do the same. A very important requirement is that small changes in the storm
structure should be reflected as small changes in the segmented region corresponding
to the storm.

Studies (Browning 1979; Bellon and Zawadzki 1994) have shown that a single
storm cell grows and decays in under an hour. Therefore, a storm cell can be expected
to stay for no more than seven frames of the satellite sequence. However, a line of
thunderstorms within which these cells crop up can be expected (Browning 1979) to
persist for up to six hours. Also, the cloud top (anvil) may persist after the cell on
radar decays. Therefore, the segmentation should lend itself to segmenting regions
corresponding to larger scale features while identifying small scale features that are
contained within the large scale feature but have shorter life-times.



A single infrared image was segmented using various segmentation methods in
the literature. The results are shown in Figure 3c and d. The results of segmentation
using the other approaches (Figure 3b,e and f. are poor in terms of the scale of the
resulting regions. This is not surprising because the infrared satellite weather imagery
has several characteristics that make it hard to segment: very low dynamic range (from
about 225K to 240K) for the regions of interest, poor resolution as compared to the
scale of the phenomena of interest, and high pixel value variance, even in the absence
of edges. It is instructive to compare the poor performance of these algorithms on the
satellite image (see Figure 3) with the performance of the same algorithms on radar
reflectivity images in Section a.

The poor spatial resolution of the satellite image affects our algorithm also, in the
scale of features that we can detect. Although we can detect features as small as 10
pixels in the image, this translates to about 40km2, a mid-size storm cell (although
significantly more detailed than what could be obtained using earlier approaches). The
pruning threshold of 10 pixels was set in the algorithm so that any statistics collected
are somewhat reliable. One possible way to relax this threshold is by creating a pseudo-
high resolution form of the original image, thus getting less square kilometers in the
10-pixel threshold. Unfortunately, on satellite weather images, even a pseudo-high res-
olution technique (Yao 1999) introduces unacceptable smoothing (Lakshmanan 2001),
resulting in worse performance. A second possibility, one that we have not yet looked
into because of the prohibitive cost for a continuously running system, is to obtain
weather satellite data that has higher spatial resolution. A third possibility is to use the
multi-channel nature of satellite weather information to form the pixel representation
(instead of using a texture vector based on neighborhood statistics).

Instead of using only texture measurements from only the infrared channel, we used
texture measurements (mean and variance) computed on four channels corresponding
to 3.9, 6.7, 11 and 12 microns (near infrared, water vapor, window and “dirty window”
respectively (Menzel and Purdom 1994)). Since every pixel of the segmented out-
put actually corresponds to four relatively independent measurements (rather than just
one), the minimum pruning size in the algorithm can be reduced from about 10 pixels
to about 3. The result of using multi-channel information and a lower size threshold is
shown in Figure 5 where it is compared to the segmented result if only the 11 micron
image had been used.

Notice that the result of segmenting using all four channels (Figure 5f) has smaller
regions than the result that uses only the infrared window channel. It is not clear,
however, how significant these smaller features are in the context of thunderstorms.

3. Motion Estimation

Once the storms have been identified from the images, these storms are used as a tem-
plate and the movement that minimizes the absolute-error between two frames is com-
puted. For radar images, we used consecutive (5-6 min) volume scans.

Motion estimation is done by moving a template of the identified region at the
appropriate scale around in the previous image. A matrix of mean absolute error at the
different positions is obtained as shown in Figure 6
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Figure 3: Segmenting an infrared satellite weather image. (a) The infrared image being
segmented. Notice the various storms at the top of the image. The darker areas in the
bottom correspond to ground. (b) The result of segmenting the image using the Markov
Random Field (MRF) approach of Blum and Rosenblat (1972). There is no detail – it
is effectively a binary segmentation. (c) The result of segmenting the image using the
method of this paper (the most detailed scale). Notice the fine detail within the clouds.
(d) The next higher scale of segmentation using the method of this paper. The strong
storm cells being significantly colder are retained – the large cloud masses are merged.
(e) Simply separating the image into contiguous bands of1Kelvin. There is a lot of
detail, but no organization. This is what you get using hierarchical thresholds. (f) Using
the watershed segmentation approach of Najman and Schmitt (1996). Because of the
textural nature of the data, the watershed algorithm has very poor performance.
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Figure 4: A close-in look at the results shown in Figure 3.. (a) The infrared image
being segmented (same as Figure 3a). (b) A close-in look at the input satellite infrared
image of (a). (c) A close-in look at the result of segmenting the image using the method
of this paper (the most detailed scale). Notice the fine detail within the clouds. (d) A
close-in look at the next higher scale of segmentation using the method of this paper.
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Figure 5: Using multi-channel satellite data for segmentation. (a) 3.9 micron infrared
(b) 6.7 micron water vapor (c) 11 micron window (d) 12 micron dirty window chan-
nels of data. (e) Most detailed segmentation using only the 11 micron image (f) Most
detailed segmentation using all four channels. The segmentation is more detailed than
the segmentation that was achieved in (e), but whether these extra details are useful is
yet to be determined.

Figure 6: Matrix of mean absolute error by position. Larger errors are “warmer”. Two
different locations are shown.



Instead of simply finding the absolute minimum, a smoother minimum of the abso-
lute error field is sought. The field of absolute errors is minimized by weighting each
value by how much it differs from the absolute minimum and finding the centroid.

For each storm template, we also get a growth/decay estimate. This is based on
how much the average value inside the template changes based on the template at the
best match.

Given the motion estimates for each of the regions in the image, the motion estimate
at each pixel is determined through interpolation. At the pixelxy, the motion estimate
uxy is given by

uxy =
Σiuiwixy

Σiwixy
(4)

whereui is the motion estimate for theith region and the weight of the this estimate at
the pointxy is given by:

wixy =
Ni

‖ xy − ci ‖2
(5)

Ni is the number of pixels in theith region,ci its centroid and‖ denotes the Euclidean
distance between the two points.

This motion estimate is for the pair of frames that were used in the comparison. We
do temporal smoothing of these estimates by running a Kalman filter Kalman (1960)
at each pixel of the motion estimate. The Kalman estimator is built around a con-
stant acceleration model with the standard Kalman update equations Brown and Hwang
(1997).

a. Short-term Forecast

The forecast of the fields is done based on the motion estimates, growth and decay
heuristic and the current data. Forecasts can be made on fields other than the tracked
field. For example, motion estimates can be derived from VIL and applied to radar
reflectivity and probability fields of lightning and hail.

The forecast is done by first project data forward in time to a spatial location given
by the motion estimate at their current location and the elapsed time. Locations not
filled by this forward projection are filled by interpolating using an inverse square-
distance metric of nearby filled locations.

The skill of this technique is quantititavely measured by comparing, for example,
the 30 minute forecast against the actual field closest to 30 minutes ahead. For the
mean absolute error results, the actual values are used. For the critical success index
(CSI) results, the best match with a 5x5 window is used. Comparisions are made with
a plain persistence, and with motion estimates derived by minimizing the correlation
of a 5x5 template between the frames.

Results over a 60minute period on reflectivity from the Fort Worth radar on April
201995 are shown in Figures 7 and 8.

The CSI and MAE measure different aspects of the forecast accuracy. The MAE
takes into account actual reflectivity values and is, therefore, a measure of how good
the growth-and-decay aspect is. The CSI is a measure of predicting storm location. We
are good at predicting storm location, but not so good at growth/decay.
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Figure 7: Skill at forecasting a radar reflectivity field compared to a persistence forecast
and to a local correlation approach. (a) Values 30dBZ and above for 15 minutes (b)
Values 30dBZ and above for 30 minutes (c) Values 30dBZ and above for 60 minutes
(d) Mean absolute error in 60 minute forecast



A forecast based on satellite infrared temperature is shown in Figure 9. The data are
taken from GOES-12 imagery on Oct. 9, 2001. The data provided were 100 seconds
apart; we used every 4th frame of the sequence to compute motion estimates. Work to
compute skill scores on satellite data is underway.

A version of this paper with color illustrations is available online at

http://www.cimms.ou.edu/˜lakshman/Papers/kmeans_motion.pdf

4. Conclusions

It is possible to use a K-Means clustering to provide hierarchical identification of
storms. The clusters can then be used to estimate the movement of the storm cores.
A forecast that projects the movement of the storm cores linearly possesses some skill.
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Figure 8: (a) Reflectivity data from KFWS, April 1995. (b) Most detailed scale of
segmentation, used in forecasting under 30 minutes. (c) Coarse segmentation, used in
forecasting more than 90 minutes. (d) Motion estimate (red is eastward motion) (e)
15min forecast (f) 60min forecast



Figure 9: The original (left) and a 30 minute forecast of infrared temperature from Oct.
9, 2001.



14.9: Real-time Merging of Multisource Data
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Abstract

We describe an extension of the virtual volume concept
to multiple sensors. Data from multiple sensors are com-
bined in real-time and mapped into a constantly updat-
ing three-dimensional grid. The data are combined in a
time-centric manner, with data replacing older data, re-
gardless of the sensor that the older data came from. We
discuss scaling problems with this method and how they
can be resolved.

We demonstrate this method of merging real-time data
on base data (such as radar reflectivity) as well as on
derived data (such as linear least square derivatives).

1. Method

a. Time-ordering

Lynn and Lakshmanan (2002) described the concept of
virtual volumes of radar data, where the volume of radar
data is defined by the latest elevation scans at all times.
Such a definition is valid for a single-radar product, as
described in (Lynn and Lakshmanan 2002). Is it possible
to extend the virtual volume idea to multiple sensors?

Another way to think of the virtual volume is as a time-
ordered list of elevation scans. The traditional volume
scan is an elevation-ordered list, with the elevations ar-
ranged from the the lowest tilt to the current radar scan. If
we define a radar volume as a time-ordered list that con-
tains the entire angular space of elevation scans, then
the virtual volume results.

With this time-based definition, it is possible to define
a multisensor merged grid where each of the parts is
updated with the most current sensor input.

∗Corresponding author address: lakshman@nssl.noaa.gov

b. Mergers and mosaics

Radar reflectivity data, with volumes in the traditional
sense have been merged successfully by Zhang et al.
(2000). The merging scheme, refered to as “mosaick-
ing”, consists of obtaining volumetric radar data periodi-
cally and using Cressman interpolation to create a three-
dimensional data set. The data are quality controlled us-
ing factors such as the radar range.

In this paper, we propose a different approach to merg-
ing data from multiple sensors. Instead of using data that
is essentially a snapshot, the entire volume is updated
with elevation scan inputs from each radar.

c. Technique

The technique is to connect to multiple data streams
and with the arrival of an elevation scan to update
the output volume with data from that elevation scan.
The WDSS-II Application Programming Interface (Lak-
shmanan 2002) supports the concept of an listener (or
Observer (Gamma et al. 1994)) attached to multiple
streams and reacting to the input.

To handle the problem of not receiving data from one
or more of the sensors, every grid cell updated is marked
with the sensor that it was updated by. When data from a
sensor expire, the grid cells that were updated with that
data are reset. Naturally, this also handles non-update of
grid cells due to factors such as changes in the volume
coverage pattern.

Updating a large three dimensional volume with data
that arrive every 30 seconds from each radar (in a sce-
nario where we are merging data from upto 4 radars)
could be computationally intensive, but several optimiza-
tions outside the scope of this paper are available. The
merger process was tested on a Linux Pentium-III desk-
top; it easily keeps up with a real-time feed from four
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weather service radar while using less than 100MB of
memory.

d. Outputs

We will demonstrate the technique using data from three
weather service radars (KTLX, KSRX and KINX in Okla-
homa City, Hot Springs and Tulsa respectively) on May
20, 2001 around 21:45 UTC. Although it is weather ser-
vice radar that was used to generate the outputs shown
here, we have also successfully used a combination of
weather service radar and Terminal Doppler Weather
Radar (TDWR). In Figure 1, the lowest tilt from each of
the three input radars is shown.

The three-dimensional grid was output level by level
into separate NetCDF (Jenter and Signell 1992) files
and visualized with WDSS-II. In Figure 2a and 2b, the
merged data at 2000m and 3000m respectively are
shown. Note that the pattern of elevation update is
clearly visible in these images. If we use Barnes filtering
and confidence-weighting in combination with the purely
time-based update used here, we envision higher quality
of the resulting data.

The default behaviour is to output the grid with every
update. This scales well to two radars, where on the
average, a new output is obtained every 15 seconds, but
the increased resolution is confusing beyond that. There-
fore, the merger process provides an option to write out
a new grid only when the time since the last update is
greater than, say, 30 seconds.

In addition to the layers of the grid, the merger process
puts out a volume product to enable easy navigation up
and down the volume and to permit examination by flying
through the volume and drawing cross-sections. (See
Figure 3).

Finally, the output can optionally include derived fields
such as the vertical maximum (composite – See Fig-
ure 4) and the vertical average.

e. Blending

The example outputs in the above section were gener-
ated by simply updating each grid cell with the latest
data from any radar that falls in the spatial volume of that
grid cell. Spatial volumes within the atmosphere may be
sensed by different tilts of the same radar (considering
beam width of the radar beams) and by different radars.

Figure 1: The lowest tilts from the three radars used
to demonstrate the results shown here. Data were col-
lected on May 20, 2001 from Oklahoma City, Hot Springs
and Tulsa.
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Figure 2: The merged 3D grid at 2000m (a, top) and
3000m (b). Notice that the pattern of elevation-by-
elevation update is clearly evident. With interpolation
and filtering, the quality of the resulting grid can be im-
proved.

a

b

Figure 3: Ways of visualizing the resulting 3D grid: by
flying through and by drawing vertical cross-sections.



Figure 4: The maximum in the vertical direction at every
grid point is an optional product that may be obtained
from the 3D grid. Note that there is a new composite
product formed every time the 3D grid is updated. This
is an example of a multisensor time-update (or virtual
volume) algorithm.

Figure 5: If the data are radar reflectivity, as in these ex-
amples, a vertical integrated liquid (VIL) calculation can
be computed on the 3D grid. Note that there is a new VIL
product formed every time the 3D grid is updated. This is
an example of a multisensor time-update (or virtual vol-
ume) algorithm.

Thus, when combining data from multiple sensors, it is
possible to “blend” the data, rather than simply taking
the latest elevation scan. Several strategies have been
employed:

1. Taking the maximum reflectivity from any of the
radars. This assumes that the radars are uniformly
calibrated, but future extensions can correct for cal-
ibration errors. An example of this is shown in Fig-
ure 6.

2. Blending the data by assigning a weight inversely
proportional to the distance from the radar. An ex-
ample of this is shown in Figure 8.

3. Blending the data by assigning a weight inversely
proportional to both the distance from the radar and
its age, such that newer data are assigned higher
weights. This is shown in Figure 7.

4. Blending the data by spreading the beamwidth, so
that the radar data from successive elevation scans
are linearly interpolated into the space between
them. Although this does not show much difference
in Figure 9, it is an effective strategy for single radar
volumes.

2. Conclusion

We described a new way of merging data from multiple
sensors, by constantly updating a three-dimensional grid
of data with data from the sensors. This allows a more
current view than traditional merging methods. Future
plans include doing quality control of the data and imple-
menting non-uniform and nested grids.

Although demonstrated here on radar reflectivity, the
algorithm has been used to merge derived fields such as
the local linear least square derivative field (Smith 2002)
as well.

Acknowledgement The work detailed in this paper was
supported with funds from the National Science Founda-
tion, the Federal Aviation Authority and the National Se-
vere Storms Laboratory (NSSL). The author would like to
thank Kurt Hondl, Jason Lynn and Travis Smith for con-
tributions to the ideas underlying this algorithm.



Figure 6: Blending data from two radar by choosing the
maximum value from either radar. This strategy is use-
ful for getting around beam-blockage, radar horizon and
cone-of-silence issues.

Figure 7: Blending data from two radar by assigning
them weights inversely proportional to the distance from
the radar and to the age of the data.

Figure 8: Blending data from two radar by assigning
them weights inversely proportional to the distance from
the radar.

Figure 9: Blending data from different elevation scans of
the same radar by linearly interpolating between them.
This strategy is useful for single radar volumes.
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