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03.6.2 Polarization and Frequency Diversity
Algorithms based on polarimetry will meet the aviation needs for information about the
volumetric extent of hail, freezing rain, snow, and icing conditions, as well as non-
hydrometeor scatterers. The biggest potential payoff is enhanced data quality. For all
practical purposes, polarimetric techniques will eliminate problems associated with
sea-clutter, ground clutter, AP, and biological scatterers.

a) Current Efforts

(NSSL):

HCA development continues. Most of this work appears as appendices to this
report. Appendix A contains the latest, complete description of the NSSL HCA,
which fulfills deliverables 03.6.2.E6 and part of 03.6.2.E10 (recent progress on
HCA). Appendix B contains a complete description of the sea-clutter elimination
algorithm and fulfills requirements for deliverable 03.6.2.E13 (classification in
marine environments). Appendix C contains a report on spectral whitening with
range to improve spectrum moment estimation, which fulfills deliverable
03.6.2.E5.

(NCAR):

03.6.2.10  Winter storm case studies.

Analyses of video disdrometer observations collected from 11 events with snow
and mixed-phase precipitation is continuing. The dataset includes temperature,
dew point, wind, precipitation rate, and visibility data.  A number of events have
been selected for anaysis.  Calibration procedures have been established to
improve the disdrometer estimates of particle size, axis ratios, and terminal
velocities.

Rain-snow discrimination and freezing rain detection is facil- itated by knowing
if a freezing or melting layer exists.  Also, hydrometer classification requires
that the freezing level be known.  NCAR's freezing level algorithm was
upgraded to make it sensitive to changes in precipitation intensity.  Early ver-
sions assumed fixed height depressions for the maximum melting layer signa-
tures from the 0C level.  In truth, the depressions increase as precipiation
intensity increases.  The upgrade is described in the report 03.6.2.E12 (below).
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Freezing level designations can be made with an accuracy of 100-200m.  Algo-
rithm performance is described in a report in preparation which should be avail-
able shortly.

A report on progress entitled "Winter Storm Studies: Video Disdrometer Mea-
surements" (Appendix D) is attached, which completes deliverable 03.6.2.E10.

03.6.2.11 Improved hail detection with NCAR's S-Pol radar.

Results from a field program conducted in Florida (PRECIP98) revealed that
the raindrop size distributions were on occasion dominated by small drops.
The small drops resulted in small values of differential reflectivity and caused
false alarms with the hail detection algorithm proposed by Aydin et al. that is
based on reflectivity and differential reflectivity measurements and NCAR's
hydrometeor classification algorithm (HCA). Raindrop disdrometer measure-
ments were used to redefine the boundary that is assumed to separate "rain-
only" and "hail-comtaminated" radar measurements.  The new boundary
reduces the number of false alarms.

Methods for hail detection that are less sensitive to drop-size variations are
under investigation.  A possible approach is to use the consistency among
measurements of reflectivity, differential reflectivity, and specific differential
propagation phase. A possible hail detection method is to estimate the specific
differential phase from measurements of reflectivity and differential reflectivity
and compare this estimate with the measured value.  Preliminary testing indi-
cates that this approach may also yield information regarding hail size.  The
method also has fewer tunable parameters.

NSSL and NCAR will collaborate in the development of a comprehensive test of
proposed polarimetric hail detection algorithms.

Appendix E contains a description of the upgraded algorithm using improved
drop shapes and a proposed algorithm based on measurement consistency
entitled "Hail Detection with Polarimetric Radar," fulfilling deliverable
03.6.2.E11.

03.6.2.12 Test NCAR's freezing level on a polarimetric WSR-88D.

NCAR's freezing level algorithm (FLA) was applied to a polarimetric dataset
obtained with the NSSL radar (KOUN).  The proposed upgrade to the WSR-
88D does not allow for measurements of the linear depolarization ratio.  Conse-
quently, the algorithm was modified to run only with the reflectivity and correla-
tion coefficient measurements.  [Differential reflectivity and differential
propagation phase measurements are deemed less attractive for freezing level
retrieval because these parameters show more variablity.]  The test indicated
the algorithm should work well on WSR-88D data.
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A brief report illustrating application of the NCAR FLA to the KOUN measure-
ments entitled "Improvements to the NCAR Freezing-Level Algorithm" is
attached as Appendix F and fulfills deliverable 03.6.2.E12

03.6.2.14 and 03.6.2E14 Polarimetric radar detection of icing conditions.

This work is on hold. Preliminary investigation with radar measurements
obtained with NCAR's S-Pol radar during the IMPROVE field programs suggest
that the radar may be capable of detecting icing conditions associated with
embedded convection in stratiform precipitation and icing in the upper regions
of stratiform precipitation.  Unfortunately, the necessary verification data do not
exist. We will attempt to obtain the necessary datasets during the WISP04 field
program.

03.6.2.15 and 03.6.2.E15 Evaluation of radar and radiometer data collected
during the IMPROVE field program.

A radiometer dataset from IMPROVE II was examined to determine if the radi-
ometer could be used as a surrogate for aircraft observations of liquid water.
The radiometer integrates the liquid water along the beam.  Unfortunately, rain
that occurred on the day chosen for analysis could not be separated from that
potentially associated with icing conditions.  We will attempt to obtain the nec-
essary measurements during the WISP04 field program.

b) Planned Efforts

Continue HCA development and testing using available cases from appropriate
platforms.

c) Problems/Issues 

None.

d) Interface with other Organizations 

None.

e) Activity Schedule Changes 

None.
NEXRAD Algorithm PDT 4  Quarter Report, 10/15/03, page 3



th

03.6.3 Circulations
Particularly violent or long-lived storms tend to possess certain notable qualities,
including, for example, mesocyclones. The current WSR-88D algorithms have a very
high false alarm rate. Controllers find such high false alarm rates unacceptable. To
mitigate this problem, new more robust and reliable circulation detection algorithms
will be developed. Algorithms that use circulations to diagnose storm severity or esti-
mate storm longevity will be considerably improved by this work.

a) Current Efforts

NSSL continued development of the Linear Least Squares Derivatives tech-
nique for the diagnosis of rotational and divergent shear during FY03.  This
work consisted several steps:

·The code was rewritten and optimized to eliminate redundancy and to allow for
use on multiple radar platforms (WSR-88D, TDWR);

·Models were developed to simulate Doppler radar data depicting vortices and
divergence (downburst) signatures;

·LLSD products were tested in a real-time setting with operational users;

·Data collection for approximately 100 tornado event days was initiated;

·Confidence bounds were computed for the azimuthal shear component of the
LLSD.

The LLSD technique was compared to traditional "peak-to-peak" calculations of
azimuthal shear, such as diagnosed by the WSR-88D Mesocyclone Detection
Algorithm (MDA).  Fig.1 shows the 2500m wide LLSD kernel and peak-to-peak
azimuthal shear estimates for a 5 km diameter simulated vortex with "half vor-
ticity" of 0.01 s-1 and Gaussian noise of 2 m s-1.  In this case, the mean LLSD
value is within about 20% of the true value out to about 140 km, with a much
smaller variance than that of the peak-to-peak azimuthal shear calculations.
These values drop with range because of the geometry of the radar beam - cir-
culations are not well sampled at long ranges.

Because we use synthetic radar data, the true location of the center of the cir-
culation is known. Range and azimuthal position errors were calculated for both
the LLSD and peak-to-peak methods.  For azimuthal shear, the center of circu-
lation was considered to be halfway between velocity absolute maxima on each
side of the circulation (such as the MDA).  For the LLSD rotation, the center of
circulation was considered to be at the LLSD derivativeThe errors in range (Fig.
2) for both methods are quite similar, although the variance is smaller for the
LLSD estimate.  However, the azimuthal distance errors (Fig. 3) for the peak-to-
peak method are significantly larger than the LLSD.  Additionally, the distribu-
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tion of the peak-to-peak location estimates is not Gaussian.  This is illustrated in
Fig. 4.  While the LLSD position estimates are clustered around the center of
the diagram, there are three distinct groupings for the peak-to-peak data.
Because the peak-to-peak method only uses two data points in its calculations,

Figure 1. Mean and 95% confidence limits for LLSD and peak-to-peak estimates of azimuthal

shear at the vortex center for a 5 km diameter vortex with half vorticity of 0.01 s-1.

Figure 2. The distribution of range positional errors for the 2500 m LLSD kernel (left) and the
peak-to-peak azimuthal shear estimate (right) for a 5 km diameter vortex.  The center grey line
is the median, the box is the interquartile range (IQR), the whiskers are the lesser of 1.5x(IQR)
or the data range, and the single dots are outliers.
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it is highly susceptible to errors caused by the radial offset from the center of
the circulation and noise.

NSSL has developed a "rotation tracks" product based on the LLSD azimuthal
shear output.  This product has been successfully used operationally in two
National Weather Service forecast offices during FY03.  This product shows the
6-hour maximum of low-altitude circulations, which frequently corresponds to
tornado or mesocyclone paths (Fig. 5).  In order to improve the LLSD azimuthal

Figure 3. Same as Fig. 2, except for azimuthal position error.

Figure 4. Scatter diagram of positional errors for the peak-to-peak azimuthal shear estimate
and the LLSD estimate of the center of circulation for a vortex at 120 km range.
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shear estimates shown in Fig. 1, a Cressman weighting scheme was intro-
duced to smooth the response curve close to the radar, where a larger number
of azimuths are required to meet the kernel width criteria.

A convergence/divergence radial velocity model was implemented in order to
develop confidence bounds for the divergence portion of the LLSD.  This model
allows for variation of the size, intensity, range from the radar, and noise of
radial velocity signatures of events such as microbursts.  This model will be
used to generate confidence bounds for the LLSD divergence calculations.

While this work displays results using tornadic storms, applications for LLSD
extend well beyond such special cases. In particular, boundaries are surpisingly
apparent in the derivative fields. In addition, th eoverall state of a storm might
be diagnosed based on the profile of radial divergence associated with it. This
last example requires better identification and tracking fo strom entities, which
will become availabel with the implementation of the K-means clustering tech-
nique.

Figure 5. 6-hour maximum of rotational azimuthal shear (s-1 ), along with tornado paths and F-
scale ratings, for the Nov 11, 2002 tornado outbreak from the KGWX (Columbus, MS) WSR-
88D.
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b) Planned Efforts 

Continue development of enhanced, weighted LLSD techniques that also pro-
vide confidence limits for estimates.

c) Problems/Issues 

None. 

d) Interface with other Organizations 

None.

e) Activity Schedule Changes 

None.
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03.6.4 Technical Facilitation
Technical facilitation supports the NEPDT algorithm development. There is currently
no standard vehicle outside of NSSL for algorithm development support. The interface
being developed at the NSSL, the WDSS-II, provides a way to develop, validate, verify
and demonstrate the NEXRAD algorithms developed within this PDT. Additionally,
WDSS-II provides a route into the Open Radar Product Generation (ORPG) system.
WDSS-II will support and incorporate the MITRE Common Operations Development
Environment (CODE). WDSS-II is an important ingredient for the overall success of the
NEPDT because, in consonance with CODE, coding and testing standards at the appli-
cation prototype level are enforced. Transfer of single-radar algorithms to the ROC will
be straightforward, as anything within WDSS-II must also conform to CODE stan-
dards. Overall, NEPDT efforts will inevitably enhance the algorithms that have been
accepted or will be implemented by the ROC as part of the WSR 88D system. 

a) Current Efforts

1) Infrastructure support for research tasks:

a) We can now compute and display radar reflectivity at various temperature
levels based on data from multiple radars and isotherms heights derived from
the RUC2 model in real-time.(Fig. 6.

b) We have developed gridded lightning product based on lightning flash den-
sity.(Fig. 7).

c) We now support data readout in both English and Metric units to support both
scientific users (who want Metric) and real-time forecasters (who want English).
The unit setting is changeable on the fly.

d) With the easier PRF-selection in ORPG Build 5, we envision that weather
service forecasters will have different PRFs within the same tilt much more

Figure 6. Reflectivity isotherms computed based on data from 3 radars and the RUC2 analysis
grid in real-time. Left: Reflectivity at 0C. Right: Reflectivity at -20C.
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often. Hence, we now support multiple ingest, display and dealiasing of data
with multiple Nyquist velocities in the same elevation scan.

e) Display of data from the Mosaic and QPESUMS algorithms.

f) Display of several polarimetric radar algorithm products.

g) ORPG product display. We worked on displaying some data from the ORPG
baseline to enable comparison of algorithm improvements with the baseline
system. We can also display several ORPG Build5 products - this was used for
verifying that the ORPG algorithms were correct. Products displayed included
several table products: mesocyclone, storm tracks, hail index and some base
data products (Fig. 8).

h) GRIB data display. Improved the ingest and display of GRIB data (model and
analysis fields) by introducing region specification and improved colormaps
(Fig. 9).

i) The multi-radar merger process was modified so that the blending of data
from multiple radars uses a power-weighted averaging function. The difference
is insignificant.

Figure 7. Gridded lightning data created from all the lightning flashes in a 15-minute interval..
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2) Lightning Prediction Algorithm. We are developing a lightning-prediction
algorithm that predicts lightning initiation based on reflectivity isotherms and
past lightning activity. The lightning ingest algorithm was rewritten to avoid the
use of a GUI, to aid automated use. In addition, a program to grid lightning flash
data, and another program to compute reflectivity isotherm levels was written.
These serve as inputs to the lightning prediction algorithm which uses a Linear

Figure 8. ORPG base reflectivity and HailIndex table products.

Figure 9. Model data from GRIB files.
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Radial Basis Function based on past history to make predictions of lightning ini-
tiation (Figs. 10 and 11).

3) Radar Quality Control (Appendix H). Several algorithms were modified to
optionally use a neural network quality control reflectivity data as their input.
This increases the skill of these other algorithms:

a) Meso-cyclone Detection Algorithm. The velocity data that is used by the
modified MDA is not the entire velocity data, but a cut-out such that the MDA
does not make any detections in data deemed to have reflectivity below 0dBZ.
In the absence of quality control, the MDA finds several mesocylones in clear-
air. When such clear-air echoes are removed by the QCNN, these false alarms
are avoided, without any impact on the true detections (Figs 12 and 13).

Figure 10. Reflectivity isotherms computed based on data from 3 radars and the RUC2 analysis
grid in real-time. Left: Reflectivity at 0C. Right: Reflectivity at -20C. These are two of the inputs
to the lightning prediction algorithm.

Figure 11. The lightning density over 15 minutes. This is used to train the Linear RBF in real-
time, so that the lightning prediction algorithm automatically evolves with the environment.
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b) Storm-cell Identification and Tracking Algorithm. Centroid estimates improve
when there is some precipitation embedded inside an area of anomalous prop-
agation (Appendix G).

Figure 12. MDA performance in clear air.

Figure 13. MDA performance on QC-ed data; there are now no false alarms in clear air.
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c) Motion Estimation and Forecast: The quality of the forecasts improves when
the motion estimation algorithm is run on QC'ed radar data. (Figs. 14 and 15).

d) Multi-radar mosaics. Multi-radar merged Reflectivity with quality-control of
reflectivity and internal advection individual radar views, as well as the high-res-
olution merger of the quality-controlled data (Figs. 17 and 17). The basic
mosaic process is identical to that used in the 3D gridded mosaic. Hence, this
product will be merged with the 3D gridded mosaic product, to account for
advection in FY04.

4) New Dealiasing Algorithm. A new dealiasing algorithm developed by Qin Xu
et al. was implemented in real-time mode on both WSR-88D and TDWR data
for easier comparison with the 88D routines. The algorithm performs better than
the 88D dealiasing algorithm in certain situations. The 88D algorithm, in turn,
was found to perform better (even on TDWR data) than the native-TDWR algo-
rithm (Fig. 18).

Figure 14. Left: What actually happened in 30minutes vs. the forecast of what would happen in
30 minutes when the input was the "raw" reflectivity data. Note how poor the forecast is, essen-
tially because the AP pattern 30 minutes ago is also getting advected. 

Figure 15. Left: What actually happened in 30minutes vs. the forecast of what would happen in
30 minutes when the input was the quality-controlled reflectivity data. Note how much better the
forecast is, when the bad AP is removed before the motion estimates are computed.
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5) Software was written that would compute the beam-blockage for every WSR-
88D radar in the continental US, which can lead to a potentially significant
imporvement in data quality. A Java display tool was created to view these
beam-blockage patterns for use by the Weather Decision Training Branch
(Figs. 19, 20 and 21). While developed for Weather Decision Training Branch,
this capability stands to substantially enhance radar data quality overall.

6) Maintenance tasks:

Fixed problems in the following areas:
      (a) the ORPG infrastructure (LB_read)

Figure 16. Views of the same storm from 3 different radars: KTLX, KINX and KSRX. Note the
differing resolutions, as well as the extensive clear-air return. Compare with Figure 3d-2.

Figure 17. The same storm with the data from all 3 radars merged. The merged data has been
quality-controlled using the QC neural network developed at NSSL. The storm cells are at high
resolution, in the right spot, taking the time differences, and viewing angles of each of the
radars into account. It is likely that with the QC'ed field, some storm cells that could get lost in
the clear-air return from the individual radars are clearly visible.
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      (b) operational WDSS-II build, for Wichita WFO
      (c) TDWR volume display
      (d) Hide button functionality.

b) Planned Efforts 

Continue merger of advection routine into 3D gridded mosaic.

c) Problems/Issues 

None.

Figure 18. Comparision of dealiasing algorithms. (a) the original, aliased velocity data. (b) Per-
formance of the 88D dealiasing algorithm (c) Performance of the new Qin Xu algorithm.

Figure 19. Terrain around the Phoenix Weather Service Radar.
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d) Interface with other Organizations 

None.

e) Activity Schedule Changes 

None.

Figure 20. he newly developed tool aims to allow the user to trace different ray paths (other
than standard atmosphere).
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Figure 21. Visualizing the terrain along the path of a radial.
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03.6.12 Product Implementation
Product implementation is a the process by which implementation paths are explored
and defined within the aviation community systems that are best for NEPDT products.
This process includes collaboration with other PDTs to help define the nature of WSR-
88D they need. Technical facilitation also includes the low-level process of defining
technical details (formats, data set file structures, etc.) of the products developed
NEPDT. 

a) Current Efforts

Development begun on National 3D gridded mosiac. Pursuit of an additional
product to estimate refractivity has begun. Atmospheric refractive index can be
used to help identifiy areas that are a combination of cool/dry or moist/warm,
which should be useful for boundary identification. 

Extensive meetings held at NCAR and ETL concerning future NAPDT organi-
zation and activities.

b) Planned Efforts 

Continue efforst at implementing new work plans that include a boader range of
weather radar product development.

c) Problems/Issues 

None.

d) Interface with other Organizations 

NCAR, MIT/LL, ETL.

e) Activity Schedule Changes 

None
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03.6.14 Multi-radar Composites
The area for which any arbitrary ARTCC has responsibility likely encompasses the cov-
erage area of several WSR-88D installations. Neither the ROC nor the NWS has plans
to treat the various WSR-88D installations as a single network, so there are no existing
algorithms that use data from more than one radar. This is a serious limitation, because
treating each radar separately leads to ambiguities when the radar data overlap. Cur-
rently, the users must independently mitigate these ambiguities, which requires signifi-
cant knowledge about meteorological radar data and the nature of the algorithms that
are run on these data. Aviation users generally do not possess this knowledge, so for the
WSR-88Ds to be treated as a network, algorithms and techniques aimed specifically at
multiple radar composites must be developed.

a) Current Efforts

03.6.14.1-2 Real-time, high resolution 3D reflectivity mosaic for the CIWS
region.

The activities for this quarter include a system upgrade to the real-time CIWS
mosaic computer.  The upgrade increases security measures of the computer
system such that they meet the NOAA computer security standards.  The
upgrade includes moving the computer from outside the NSSL firewall to inside
and updating operating system from Linux RedHat7.3 to Linux RedHat9.0.
The random access memory (RAM) on the machine is increased from 2GB to
8GB to alleviate memory shortage problems when wide spread precipitations
occur in the CIWS domain.

The new enhanced 3D mosaic algorithm has been tested using various archive
cases and it is implemented for the real-time CIWS domain.  The enhance-
ments are described below.

1) Product time stamps are modified to be more representative of observation
times.

Time stamps of the previous 3D mosaic products used clock times (round up to
the whole 5 minutes) when the 3D mosaic ran (see red arrows in Fig. 1).  The
3D mosaic finds latest volume scans from all radars that are within a certain
time window (default value is 15 min) and then mosaic them onto the analysis
grid.  When data latency is long, product time stamps are usually lagging the
actual observation times (Fig.22), sometime by a significant amount.  The new
enhanced mosaic uses average times of all radar volume scans that go into the
mosaic as product time stamp (see blue arrows in Fig. 22).  This is more repre-
sentative of when the mosaic analysis fields valid than the clock times.

2) New diagnostic products are created to show smoothing effect of the 3D
mosaic scheme.
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Many existing severe storm algorithms (e.g., storm cell identification and track-
ing, hail detection, mesocyclone detection, etc) use the maximum echo inten-
sity of storms as a parameter. When radar reflectivities are analyzed onto
Cartesian grids, storm intensities are usually damped due to smoothing in the
analysis scheme. Therefore it is important to understand the smoothing effect
of the 3D mosaic. In the new 3D mosaic, two composite reflectivity mosaic
fields are generated. One is derived from the 3D reflectivity mosaic with the
interpolation and gap-fillings. Another is derived by mapping vertical column
maximum reflectivities from multiple radars onto the Cartesian grid without any
interpolation and gap filling. A difference field between the two is also gener-
ated as a new product. Fig. 23a-c shows these results. Fig. 2c shows a differ-

ence field between the non-smoothed composite reflectivity field (Fig. 2a) and a
composite reflectivity field from a 3D mosaic grid using a nearest neighbor anal-
ysis scheme. With the nearest neighbor analysis, the 3D mosaic only smoothes
data in close ranges (usually <40km) where sizes of radar data bins are smaller
than analysis grid cells (in this case 1km x 1km).  The smoothing effect is not
significant (<3dbz) unless within 10km range of the radar.  Fig. 24 shows similar
images as in Fig. 2 except for a 3D mosaic using a vertical interpolation

Figure 22. A schematic plot of the mosaic product time stamps.  The legend is: Bold black line:
time axis; Thin black lines: observational times; Dotted lines: clock times when the mosaic runs;
Red arrows: product time stamps based on clock; Blue arrows: new product time stamps based
on observations.

Figure 23. Non-smoothed composite reflectivity (a), composite reflectivity field derived from a
3D mosaic with a nearest neighbor analysis (b), and the difference between the two (c). 
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scheme.  The interpolation caused damping not only in close ranges, but also in
far ranges.  Nevertheless, the damping is still not significant beyond 10km
range.  Given the fact that the nearest neighbor analysis causes discontinuities
on constant height levels (Fig. 25), the vertical interpolation analysis is still a

preferred mosaic scheme over the nearest neighbor scheme.

3) Steeper mosaic weighting function is used for preserving high-resolution
storm structure.

Figure 24. Non-smoothed composite reflectivity (a), composite reflectivity field derived from a
3D mosaic with a vertical interpolation scheme (b), and the difference between the two (c).

Figure 25. Horizontal cross section of reflectivity at 6km (msl) from 3D mosaic with a nearest
neighbor scheme (a) and with a vertical interpolation scheme (b), respectively.
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The previous 3D mosaic uses a Cressman weighting function when combining
multiple radar data at a same grid point. However, the Cressman weighting
function is too flat and high-resolution storm observations near one radar can
be smeared by low-resolution observations from another radar that is far away
(Figs. 26a and c).  After replacing the Cressman weighting function with a

steeper exponential function (Fig. 27), the smear effects are significantly allevi-

ated (Fig. 26d vs.b).

Figure 26. Composite reflectivities from KLOT (a), KIWX (b), mosaic of the two using the Cress-
man weighting function (c), and mosaic of the two using the exponential weighting function (d).

Figure 27. The Cressman and exponential weighting functions used to generate Figs 5c and
5d, respectively. Here Ri=300km for the Cressman function and Ri=50km for the exponential
weighting function.
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4) Modified gap-filling scheme to increase computational efficiency.

In the 3D mosaic scheme, a general vertical interpolation between tilts is per-
formed for all cases.  When a brightband is identified a gap-filling scheme is
invoked and additional horizontal interpolation is performed to reconstruct strat-
iform echoes.  In the previous 3D mosaic scheme, the gap-filling procedure is
performed on the fly and is separate from the regular vertical interpolation.  In
the new mosaic, the gap-filling procedure is combined with the regular vertical
interpolation and a unified lookup table is created for the polar-to-Cartesian
coordinates transformations.  Some code modifications are done to speed up
the lookup tables generation process. The modifications dramatically reduced
CPU usage (from ~1 hour to ~2 minutes per radar per domain) even though the
RAM usage increased some (from ~300MB to ~500-600MB for a
1001x1001x21 grid).   The modifications also reduced the CPU times for the 3D
mosaic by ~20-50%.

This completes deliverable 03.6.14.E2.

03.6.14.6-7 A 4-D dynamic data analysis and visualization system.

Initial code has been developed for the 4-D dynamic grid (4DDG) and prelimi-
nary results are generated from a case study in Oklahoma on August 14, 2002.
Fig. 28 shows the 4DDG domain for the case study.  The domain covers south-

Figure 28. Example 4DDG domain.
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west Oklahoma region, and KFDR and KTLX radars are located at the south-
west and northeast corners of the domain, respectively.

Two movies are generated from the 4D dynamic reflectivity mosaic and the
movies are available at http://cimms.ou.edu/~jzhang/4ddg/4DDG_Demo_1.gif
and http://cimms.ou.edu/~jzhang/4ddg/4DDG_Demo_2.gif.

Both movies show a time series of a vertical cross section that cut through the
two radars (with KTLX at the left corner and KFDR at the right).  Note that in the
4DDG, the analysis is updated every time when a new tilt of data arrives.  The
first movie (4DDG_Demo_1.AVI) shows results where new data overwrite old
data. The second movie (4DDG_Demo_2.AVI) shows results where an expo-
nential time weighting function (wt = exp[-t2/T2], where T is a time decay scale
with a value of 120 seconds) is used.  It is apparent that the exponential time
weighting produces a more consistent analysis than the new-overwriting-old
scheme.  It is also evident that range dependency of radar observations has
large impact on the mosaic field.  In the first movie, when the analysis grid was
updated by KFDR data at frames 16, 18, and 20, the intensity of a storm cell
close to KTLX (left corner) was greatly damped because the KFDR data were
from farther ranges than were the KTLX data.  This damping effect is not domi-
nant in the second movie because the KFDR data are weighted both in time
and in space, using an exponential weighting function wmosaic = exp [-r2/R2]
(here R is a space length scale with a value of 50km).  More case studies are
needed to understand the spatial and temporal variations of different storm sys-
tems and their relationships with radar sampling and analysis schemes, and dif-
ferent time and space scale factors may be required for different weather
regimes.

This completes deliverable 03.6.14.E6-7.

b) Planned Efforts 

The development of a prototype 4-D dynamic grid will continue.

c) Problems/Issues 

None.

d) Interface with other Organizations 

Continue to provide the real-time 3D mosaic data to CWPDT, WWPDT and
CIWS Project.

e) Activity Schedule Changes 

None.
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03.6.15 WARP Activities
The WARP is integral to AT controller displays. Warp is significant in that it shifts the
burden of displaying weather radar returns to an instrument specifically designed as a
weather radar: the WSR-88D. However, due to the nature of its mission and hardware,
the WSR-88D cannot take the same approaches to data quality control as do the long-
range L-band radars currently used by ATC. New approaches to data quality control
need to be developed so the users have confidence in the weather data products dis-
played to them.

a) Current Efforts

NSSL has been providing guidance on the accuracy of ORPG AP (anomalous
propagation) -mitigated composite reflectivity products for the Federal Aviation
Administration (FAA) and The National Air Traffic Controllers Association
(NATCA).  NATCA has recently become very concerned about the accuracy of
ORPG product 96 (0-70,000 ft composite reflectivity with AP mitigation) relative
to ORPG product 36 (0-70,000 ft composite reflectivity without AP mitigation).
An example from June 10th of this year (Figs. 29-31) shows how the reflectivity
values from the composite reflectivity product are reduced (sometimes signifi-
cantly) by the AP mitigation algorithm.

Fig. 29 shows numerous small (~20 km in diameter), individual convective cells
exist east and northeast of the Corpus Christi, Texas WSR-88D (KCRP) on
June 10, 2003, with many of the cells containing regions of >50 dBZ echoes.
However, the AP-mitigation algorithm reduces the maximum reflectivity returns
by 5-15 dBZ for most storms (Fig. 30).  In this example, the reduction is very
clear because there are numerous cells containing localized (~4 km) regions of
>50 dBZ regions shown in red, while no cells contain regions of >50 dBZ in the
AP-mitigated product.

The ORPG AP mitigation algorithm is based on an AP-edit/removal technique
developed at Lincoln Labs (Smalley and Bennett 2001).  However, one of the
differences between the two methods is the use of a median filter by the ORPG
product that is not used by the Lincoln Labs technique. It was found that the
preferred operation of the AP-edit technique was not to use the median filter,
but instead a scatter filter.  

The median filter used by ORPG can be manually bypassed through modifica-
tion of the ORPG code.  Fig. 31 displays the result of the ORPG AP algorithm
when not using the median filter.  By comparing Figs. 30 and 31, it is clearly
shown that the reduction of reflectivity magnitudes in ORPG product 96 is
entirely attributable to the median filter. In fact, in this case, the AP algorithm
identifies very few pixels that can be attributed to AP as seen by comparing
Figs. 29 and 31. However, since the median filter is applied over the entire
reflectivity field to produce ORPG product 96, the resultant reflectivity image is
significantly modified.
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Smalley and Bennett (2001) outline how to use an optimal adaptation parame-
ter set associated with the median filter so that it could respond more like the
much preferred scatter filter.  However, even with the use of these optimal set-
tings, a very undesirable result is still obtained for the June 10, 2003 case.
Possible solutions for this particular case are still being considered.

This completes deliverable 03.6.15.E4

Figure 29. ORPG Composite Reflectivity Product 36 output for the Corpus Christi (KCRP)
WSR-88D radar at 1531 UTC, June 10, 2003.
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Smalley, D. J. and B. J. Bennett, 2001: Recommended Improvements to the
Open RPG AP-Edit Algorithm.  Wx Project Memorandum No. 43PM Wx-
0081, 45 pp.

b) Planned Efforts 

Continue investigation of data quality issues as pertains to WARP applications.

Figure 30. Same as Fig. 29 except for the ORPG AP-edited Composite Reflectivity Product 96.
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c) Problems/Issues 

None.

d) Interface with other Organizations 

None.

Figure 31. Same as Fig. 30 except that the median filter is not used.
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e) Activity Schedule Changes 

None.
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1. Description of the classification algorithm 
 

 One of the important advantages of polarimetric weather radars is their ability to 
discriminate between different types of hydrometeor and non-hydrometeor radar 
scatterers. Our classification algorithm is based on the principles of fuzzy logic outlined 
in (Vivekanandan et al. 1999, Zrnic and Ryzhkov 1999, Straka et al. 2000, Liu and 
Chandrasekar 2000, Zrnic et al. 2001). According to fuzzy logic methodology, different 
hydrometeor classes are described by one-dimensional or two-dimensional membership 
functions that are expressed as follows: 
 

F(i)(Vj) = P(i)(Vj)   (1) 
or 
 

F(i)(Z,Vj) = P(i)(Z) PZ
(i)(Vj)   (2) 

 
In (1) and (2), Z is the radar reflectivity factor at horizontal polarization and Vj is the 
value of the jth additional radar variable (polarimetric or non-polarimetric). One-
dimensional unconditional membership functions P(i)(Z) and P(i)(Vj) characterize 
probability distributions of Z and Vj for the ith class, whereas the membership functions 
PZ

(i)(Vj) characterize conditional probability distribution of the variable Vj for the ith class 
for a given Z. The product of P(i)(Z) and PZ

(i)(Vj) represents the two-dimensional 
membership function characterizing joint probability distribution of Z and Vj in the Z – 
Vj plane for the ith class. One-dimensional membership functions generally have 
asymmetric trapezoidal shape with maximal value of 1 and minimal value of 0 (Fig. 1). 
These trapezoidal functions are described by 4 parameters: x1, x2, x3, and x4 as shown in 
Fig. 1. 

 
Fig. 1 Trapezoidal membership function 
 
 Aggregation value for each class is defined as: 
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where Wj is the weight assigned to the jth variable and M is the number of variables. 
Hydrometeor class is identified by the maximal aggregation value. 
 In our classification analysis, we use both Eq (1) and (2) to determine the 
membership functions F(i). The choice of Eq (2) is preferable if the probability 
distribution of the variable Vj strongly depends on the radar reflectivity as a parameter. 
This is usually the case for differential reflectivity ZDR in rain, i.e., ZDR increases with 
increasing Z. 
  Five radar variables have been used for automatic classification so far. They are: 
(1) radar reflectivity Z, (2) differential reflectivity ZDR, (3) cross-correlation coefficient 
ρhv between horizontally and vertically polarized components of the radar return, (4) a 
texture parameter SD(Z) of the Z field, and (5) a texture parameter SD(ΦDP) of the field 
of differential phase ΦDP. The two latter variables are especially efficient for 
discrimination between meteorological and non-meteorological radar echoes. The 
parameters SD(Z) and SD(ΦDP) characterize the depth of small-scale fluctuations of Z 
and ΦDP along the radar ray.  To obtain SD(Z), we average raw Z data (sampled every 
0.256 km) along the radial using 1-km-width running average window and subtract the 
smoothed estimates of Z from their original values. Similar procedure is used for 
computing the parameter SD(ΦDP) but with two times wider averaging window. 

Two polarimetric variables, ZDR and ρhv, are smoothed along the radial using 
averaging windows of 5 gates. Both ZDR and ρhv should be corrected for noise prior to 
application of the classification algorithm. This is especially important for light rain, 
snow, and clear-air echoes caused by biological scatterers. ZDR and ρhv are noticeably 
biased if signal-to-noise ratio (SNR) is less than 20 dB. Efficient correction of both 
variables can be made for SNR > 5 dB. If SNR < 5 dB, then correction is considered 
unreliable and no classification is performed at pixels with SNR < 5 dB. 

Because the Sigmet RVP7 processor does not provide SNR directly, we estimate 
SNR from radar reflectivity factor Z and distance R using the following formula 

 
SNR (dB) = Z(dBZ) – 20 log(R(km)) + C , (4) 

 
where the “constant” C is usually between 27 and 33. The value of C for a particular day 
of observations can be estimated using the scatterplots ρhv

(cor) – SNR, where ρhv
(cor) is the 

value of the cross-correlation coefficient corrected for noise as 
 

ρhv
(cor) = ρhv (1 + 1/snr) . (5) 

 
In (5) snr = 100.1 SNR (dB). If the constant C is estimated correctly, then the scattergram 
ρhv

(cor) – SNR is “flat” , i.e., there is no apparent dependence of ρhv
(cor) on SNR for SNR > 

5 dB. Such tuning of the constant C is performed automatically during data processing. 
Correction of ZDR for noise is made according to formula 

 
ZDR

(cor)(dB) = 10 log[(α snr Zdr)/(α snr + α - Zdr)] , (6) 
 

where Zdr = 10 0.1 ZDR(dB) and  α is a ratio of noises in the horizontal and vertical channels. 
In the current version of the classification algorithm, α = 1.48 and 10log(α) = ZDR

(noise) = 
1.7 dB.  



The classification procedure can be customized according to the user needs. 
Depending on the primary task, different sets of radar variables, different classes, and 
different weight vectors W can be used in the classification routine. For example, the 
algorithm can be optimized either for discrimination between meteorological and non-
meteorological scatterers (meteo versus non-meteo) or for distinguishing different 
categories of meteorological echo (e.g., rain versus hail or snow). 

At the moment, we use three different versions of the polarimetric classification 
algorithm with different degree of sophistication. Classification is performed with the 
data collected at one or two lowest elevations (0.5º and 1.5º). The same classification 
principles can be applied to the data obtained in vertical cross-section. However, since 
the RHI antenna scanning is not accepted in the NEXRAD mode of operation, the 
identification of radar echoes at two lowest PPI scans was our primary task during 
JPOLE. 
 
1.1. Version 1. Meteorological versus non-meteorological scatterers.  

 
Version 1 represents a simplest type of the classification algorithm that proves to 

be very efficient to discriminate between radar echoes caused by meteorological and non-
meteorological scatterers such as ground clutter / anomalous propagation (AP), insects, 
birds, bats, and chaff. Three classes are identified according to this classification scheme: 
(1) hydrometeors of meteorological origin, (2) ground clutter / AP, and (3) non-
meteorological scatterers in atmosphere (insects, birds, bats, and chaff). All five radar 
variables are used for identification. The parameters x1 – x4 describing five one-
dimensional membership functions for three classes are presented in Table 1. These 
functions are also displayed graphically in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Fig. 2 Membership functions characterizing three classes: (1) meteorological 
scatterers (blue lines), (2) biological scatterers (green lines) , and (3) ground clutter / 
anomalous propagation (red lines) with 5 radar variables. 

 
 
 
 
 
 
 



 
Table 1. Parameters of the membership functions for three classes. 

  
P(Z) 

 GC/AP BS MS 
X1 (dB) 15 5 5 
X2 (dB) 20 10 10 
X3 (dB) 70 20 65 
X4 (dB) 80 30 75 

PZ(ZDR) 
X1 (dB) -4 0 fl – 0.3 
X2 (dB) -2 2 fl 
X3 (dB) 1 10 fh 
X4 (dB) 2 12 fh +0.3 

P(ρhv) 
X1 0.5 0.3 0.85 
X2 0.6 0.5 0.97 
X3 0.9 0.8 1.0 
X4 0.95 0.83 1.01 

P(SD(Z)) 
X1 (dB) 2 1 0 
X2 (dB) 4 2 0.5 
X3 (dB) 10 4 3 
X4 (dB) 15 7 6 

P(SD(ΦDP)) 
X1 (deg) 30 8 0 
X2 (deg) 40 10 1 
X3 (deg) 50 40 15 
X4 (deg) 60 60 30 

 
In Table 1, GC/AP stands for ground clutter /anomalous propagation, BS – for biological 
scatterers, and MS – for meteorological scatterers; fl and fh are functions of radar 
reflectivity  
 

fl = -0.50 + 2.50 10-3 Z + 7.50 10-4 Z2    (7) 
 

fh = 0.08 + 3.64 10-2 Z + 3.57 10-4 Z2  ,   (8) 
 
where Z is expressed in dBZ.. One –dimensional membership functions F(i)(Vj) as 
defined by Eq (1) are used  for all variables and all classes. The only exception is made 
for the membership function F(Z,ZDR) of the meteorological scatterers that is defined 
according to (2). Equal weights are given to all five radar variables in Eq (3).  
 
 
 



1.2 Version 2. The “summer” classification algorithm 
 

 Version 2 of the classification algorithm enables discrimination between radar 
echoes caused by (1) ground clutter and AP, (2) biological scatterers, (3) “big drops”, (4) 
light rain, (5) moderate rain, (6) heavy rain, and (7) rain / hail mixture. Notification “big 
drops” is used for rain that is characterized by the dominance of big drops and deficit of 
small drops in raindrop spectrum. This very special type of drop size distribution (DSD) 
is usually observed in the zones of rapidly developing convection and has important 
prognostic value for weather forecasters. Three radar variables: Z, ZDR, and ρhv are used 
for classification. Historically, this is the earliest version of the classification algorithm 
and several examples of classification presented in section 4 of this report were obtained 
using this version of the algorithm. Two texture variables, SD(Z) and SD(ΦDP), will be 
added  later. 
 Two-dimensional membership functions F(i)(Z,Vj) determined from (2) are used 
in this version of the classification algorithm. The parameters of the membership 
functions for all 7 classes are presented in Table 2. 
 
Table 2. Parameters of the membership functions for seven classes in the “summer” 
classification algorithm. 
 

P(Z) 
 GC/AP BS BD LR MR HR R/H 

x1 (dB) 25 5 15 5 30 40 45 
x2 (dB) 35 15 20 10 35 45 50 
x3 (dB) 75 20 45 35 45 55 75 
x4 (dB) 85 30 50 40 50 60 80 

PZ(ZDR) 
x1 (dB) -5 1 fh-0.3 fl-0.3 fl-0.3 fl-0.3 -0.3 
x2 (dB) -3 3 fh fl fl fl 0 
x3 (dB) 0 7 fb fh fh fh fl 
x4 (dB) 2 9 fb+0.3 fh+0.3 fh+0.3 fh+0.3 fl+0.3 

PZ(ρhv) 
x1 0.45 0.45 0.89 0.89 0.89 0.89 0.84 
x2 0.55 0.55 0.90 0.90 0.90 0.90 0.85 
x3 0.80 0.80 1.00 1.00 1.00 1.00 0.96 
x4 0.90 0.90 1.01 1.01 1.01 1.01 0.97 

 
In Table 2, GC/AP stands for ground clutter / anomalous propagation, BS – for biological 
scatterers, BD – for big drops, LR – for light rain, MR – for moderate rain, HR – for 
heavy rain, R/H – for rain/hail mixture; fl and  fh are defined by (7) and (8); fb is another  
function of radar reflectivity: 

 
fb = -0.20 + 0.108 Z – 6.43 10-4 Z2  ,   (9) 

 
where Z is expressed in dBZ. Equal weights W1 = 1 and W2 = 1 are given to the 
membership functions associated with ZDR and ρhv in Eq (3). 



 Note that the parameters of similar membership functions in Table 1 and Table 2 
might be different because the classification procedure continuously evolved during the 
JPOLE period.  Therefore, earlier and later versions of the classification algorithm differ 
in details. For each classification example in this report, we clearly specify particular 
version of the classification routine. 
 
1.3 Version 3. The “winter” classification algorithm. 

 
 In the version of the classification algorithm that was used for cold season 

weather events, we add two categories of snow particles, dry and wet snow, to the list of 
classes and use the texture parameter of the Z field SD(Z) together with Z, ZDR, and ρhv. 
This version of the classification algorithm enables discrimination between radar echoes 
caused by (1) ground clutter and anomalous propagation, (2) biological scatterers 
(including insects and birds), (3) dry snow, (4) wet snow, (5) stratiform rain, (6) 
convective rain, and (7) rain/hail mixture. 

Table 3 contains parameters of the membership functions for the “winter” 
classification algorithm. As in version 2, the two-dimensional membership functions 
defined from (2) are utilized. 

 
Table 3. Parameters of the membership functions for seven classes in the “winter” 
classification algorithm. 
 

P(Z) 
 GC/AP BS DS WS SR CR R/H 

x1 (dB) 25 5 5 15 5 38 48 
x2 (dB) 35 15 10 25 10 43 53 
x3 (dB) 75 20 25 35 43 53 75 
x4 (dB) 85 30 30 45 48 58 80 

PZ(ZDR) 
x1 (dB) -5 0 -0.3 0.6 fl-0.3 fl-0.3 -0.3 
x2 (dB) -3 3 0 1.0 fl fl 0.0 
x3 (dB) 0 7 0.3 1.8 fb fb fl 
x4 (dB) 2 10 0.6 2.2 fb+0.3 fb+0.3 fl+0.3 

PZ(ρhv) 
x1 0.45 0.45 0.93 0.83 0.97 0.96 0.84 
x2 0.55 0.55 0.94 0.85 0.98 0.97 0.85 
x3 0.70 0.70 0.97 0.94 1.00 1.00 0.96 
x4 0.80 0.80 0.98 0.96 1.01 1.01 0.97 

PZ(SD(Z)) 
x1 (dB) 4 1 -0.5 0 -0.5 -0.5 -0.5 
x2 (dB) 6 2 0.5 1 0.5 0.5 0.5 
x3 (dB) 30 4 3 3 2.5 2 2 
x4 (dB) 32 5 4 4 3.5 3 3 

 
In Table 2, GC/AP stands for ground clutter / anomalous propagation, BS – for 

biological scatterers, DS – for dry snow, WS – for wet snow, SR – for stratiform rain, CR 



– for convective rain, and R/H – for rain / hail mixture; functions fl(Z) and fb(Z) are 
defined by Eq (7) and (9). 

Several classes of radar scatterers have very distinctive polarimetric properties 
and can be recognized easily if the fuzzy logic methodology is applied on a pixel-by-
pixel basis. This means that no analysis of general pattern or surrounding pixels of data is 
needed. Ground clutter / AP, insects, birds, chaff, hail, wet snow (bright band) belong to 
this category of scatterers. All of them are characterized by anomalously low values of 
cross-correlation coefficient. Differential reflectivity is mainly negative for ground clutter 
/ AP, very high positive for biological scatterers and chaff, and moderately high for wet 
snow. Combination of high Z and relatively low ZDR is a distinctive feature of hail or 
rain/hail mixture. SD(Z) is usually much higher for non-meteorological scatterers 
(especially for ground radar returns) than for any weather hydrometeors. 

A major problem is discrimination between stratiform rain and dry aggregated 
snow for which membership functions in the fuzzy logic formalism are heavily 
overlapped. Both classes are characterized by relatively low Z and ZDR combined with 
high ρhv (Ryzhkov and Zrnic 1998). Furthermore, there is no distinction in terms of the 
texture of the Z field as well. 

Fig. 3 illustrates three scatterplots of Z versus ZDR obtained from the 
measurements with the KOUN radar for three different types of snow. Dry aggregated  

 
Fig. 3  Z – ZDR scatterplots for different types of snow. Two curves confine “rain” area. 
 
snow was observed on 6 February 2003 between 15 and 16 Z over the whole state of 
Oklahoma. Seven hours later, dry aggregated snow changed to more crystallized snow in 
a very cold air NW of the radar. It was characterized by much higher ZDR and lower Z. 
Heavy convective snowfall occurred on 24 February 2003 in southern Oklahoma. The 
corresponding Z – ZDR scatterplot for the period between 22 and 24 Z is also displayed in 
Fig. 3.  Radar reflectivities over 50 dBZ are unusually high for snow in the latter case, but 
corresponding values of ZDR are relatively low compared to the ones typically observed at 
the bottom of the bright band. The region between two curves in Fig. 3 represents 



locations of Z – ZDR pairs for pure rain as derived form the multi-year statistics of DSD 
measurements in central Oklahoma. 

It is evident that rain and snow are heavily overlapped in the Z – ZDR plane for 
reflectivities between 20 and 40 dBZ. There is no clear distinction between these two 
classes in KDP and ρhv as well. A clue for successful discrimination between these classes 
lies in the fact that stratiform rain and aggregated snow are usually separated by the 
bright band that has very pronounced polarimetric signatures and can be easily detected. 
Therefore, rain / snow delineation is contingent on reliable identification of the bright 
band. 

Although it is easier to perform bright band identification at RHI, we have to do 
classification at PPIs because RHI antenna scanning is not accepted in the NEXRAD 
mode of operations. Fig. 4 and 5 demonstrate how the melting level is exhibited in the 
fields of Z, ZDR, and ρhv at two lowest elevation tilts: 0.5 and 1.5° in the case of a 
stratiform rain with relatively low bright band.  

At both elevations, radar reflectivity gives little clue about location and height of 
the melting level. The bright band signature is more pronounced in the ZDR fields, 
particularly at higher elevation. However, the best indication of the melting level is given 
by ρhv at 1.5°.  The cross-correlation coefficient drops abruptly from 0.99 to less than 
0.96 at the slant range where a radar beam intersects the bottom of the melting layer. 
After dropping in the melting layer, ρhv tends to increase in dry snow aloft. This increase, 
however, might be masked with a general decrease of ρhv with range due to weakening of 
radar signal and broadening of the radar beam. It can be shown that ρhv is negatively 
biased if signal-to-noise ratio is less than 20 dB. The same is true for ZDR.  Thus, the 
appropriate correction of ρhv and ZDR at low SNR is crucial for rain / snow 
discrimination. 

In the current version of the classification algorithm, slant ranges separating rain 
and melting snow are determined at every azimuth from the radial profiles of corrected 
ρhv at the elevation of 1.5°.  After some editing and median filtering in azimuth, the 
“bright band contour” is generated at 1.5°. The corresponding “bright band contour” at 
lower elevation is obtained from the one at 1.5° using simple geometric considerations 
and an assumption of horizontal uniformity.  Then traditional “fuzzy logic” approach is 
applied for classification on a pixel-by-pixel basis at both elevations using all available 
radar variables. However, categories of rain and non-meteorological scatterers are 
prohibited beyond the “bright band contour” where snow is expected. Similarly, snow is 
not allowed to appear below bright band. 

The bottom panel of Fig. 5 represents results of rain / snow discrimination for the 
case of 10/24/02. 
 



 
 

Fig. 4 Composite plot of Z, ZDR, and 
ρhv at El = 1.5º for stratiform rain on 24 
October 2002 (1832 Z). 
 

 
 

Fig. 5 Composite plot of Z, ZDR, ρhv 
and results of classification at El = 0.5º 
for stratiform rain on 24 October 2002 
(1832 Z).

 
 
 
 
 
 

 
 
 
 
 
 



  
2. Improvement in data quality 
 

There are several data quality issues that can be addressed with a dual-
polarization radar. Here we mention at least three of them for which we claim apparent 
improvement judging from the JPOLE data. 

 
2.1 Filtering out non-meteorological echoes. 
 
 In most weather-related applications the users prefer to work with the fields of 
radar variables that are not contaminated with echoes of non-meteorological origin such 
as ground clutter / AP, insects, birds, bats, chaff, etc. Meteorological and non-
meteorological scatterers possess very distinctive polarimetric properties. A detailed 
description of polarimetric contrasts between weather and non-weather radar echoes with 
several supporting examples is given in section 4.5.  
 In order to assess the capability of the KOUN radar to classify meteorological and 
non-meteorological scatterers, we have selected 8 cases with extensive areas of radar 
echo caused by either AP or biological scatterers. A list of these cases is presented in 
Table 4. Additional information about the selected cases can be found at (Pam’s web site) 
 
Table 4. List of the JPOLE cases with the most pronounced non-meteorological echoes.  
 
Number  Date Time (UTC) Description 
1 06/13/2002 3 - 9 AP in the rear side of MCS 
2 08/13/2002 9 - 11 AP and Bio mixed with rain 
3 08/24/2002 6 - 9 AP and Bio mixed with rain 
4 08/28/2002 11 - 14 Widespread AP, no rain 
5 09/15/2002 1 - 8 Migratory birds and rain 
6 10/27/2002 2 - 9 Migratory birds and rain 
7 10/29/2002 5 - 13 Migratory birds and light rain 
8 05/01/2003 9 - 12 Very strong and extended AP 
 
For each case, we perform echo classification every 6 to 15 minutes at the two lowest 
elevation tilts, 0.5º and 1.5º, using the version 1 of the classification algorithm. Three 
classes of radar echo: hydrometeors, biological scatterers, and ground clutter / AP are 
distinguished. The radar data and results of classification for both elevations are 
displayed and stored for the 400 x 400 km area in Cartesian format with resolution 2 x 2 
km. For each event, we examined animations of the fields of classified echoes to check 
spatial and temporal continuity of the classification results. This visual continuity test 
shows good spatial / temporal “coherency” of the classification fields and their 
consistency with what one has to expect from common sense. 
 To our knowledge, there is no well established methodology for quantitative 
assessment of the performance of such classification procedures. Accurate ground truth 
validation is not possible because of lack of verification data at such small spatial and 
temporal scale. Rain gage information can be useful just to determine fact of rain in the 
close proximity of the gage. Satellite data analysis is another option to assess the 



possibility of rain or AP over large areas (however, with coarse spatial and temporal 
resolution). Validation information regarding biological scatterers and their flying habits 
is also very limited. In some previous studies (Moszkovicz et al. 1994) an “assessment 
of well-trained radar operator” was used as a ground truth to validate different techniques 
for AP detection and mitigation. This criterion is quite subjective and, unfortunately, 
there is no simple way to avoid certain degree of subjectivity for such type of validation. 
Our approach to validate the capability of the classification scheme to recognize 
meteorological and non-meteorlogical echo is also not void of subjectivity.  

We select certain areas of the radar echo at both elevation tilts which should 
contain only weather or non-weather echoes and count the number of 2 x 2 km pixels 
identified as “meteo” or “non-meteo” in these areas. The distances too close from the 
radar and the areas of complex mixture of the echoes from AP, biological, and 
meteorological scatterers have been avoided. We have identified such “test” areas 
practically for all examined events and examine multi-hour statistics of classification for 
each of these areas.  The number of pixels identified as “non-meteo” in pure rain areas 
was usually less than 1% of the total number of pixels for which SNR > 10 dB. Similar 
proportion of misclassification (less than 1 %) was found in an opposite situation - 
“meteo” pixels in the AP areas - provided that SNR is again higher than 10 dB. The 
quality of classification deteriorates with decreasing SNR (up to 5% of misclassified 
pixels in several cases if SNR > 5 dB). This deterioration is attributed to the fact that key 
polarimetric variables ZDR and ρhv are biased by noise and their reliable correction for 
noise is possible only for SNR > 5 – 10 dB. The use of total differential phase ΦDP which 
is not affected by noise is more promising at relatively weak signals. This option will be 
carefully exploited in the near future. The major problem, however, will be the separation 
of the contributions from the forward scattering and backscattering effects in the total 
differential phase. Only the “backscattering portion” of ΦDP should be used for 
classification. 
 
2.2 The accuracy of radar reflectivity measurements. 
 
 Once the sources of radar echo are identified and “unwanted” echoes are filtered 
out, the next problem is to ensure high accuracy of the radar reflectivity measurements. 
Radar reflectivity factor Z can be biased due to radar miscalibration, partial beam 
blockage, and attenuation in rain and hail. The latter factor was usually widely ignored at 
S band. Ryzhkov and Zrnic (1995) showed that for extended regions of heavy 
precipitation typical for Great Planes the Z bias due to attenuation can be significant. It 
was shown, that in pure rain (without hail) such bias at S band can be approximately 
estimated from ΦDP: 
 

∆Z (dB) = 0.04 ΦDP (deg)   (10) 
 
Those observational results were supported by theoretical simulations by Bringi et al. 
(1990). Measured differential phases exceeding 100º are very common for precipitation 
in Oklahoma. This means that negative biases of Z over 4 dB in magnitude occur quite 
frequently at long propagation paths in precipitation. Such biases cause in about two 
times underestimation of rain rate if the conventional NEXRAD relation is utilized and 



poor hail detection at large distances form the radar. Good example of significant 
attenuation along a squall line passing the KOUN radar is presented in Fig. 6. In this  

 
Fig. 6. Correction of radar reflectivity for attenuation using differential phase. 16 June 
2002, 0201 UTC, El = 0.5º 
 
example differential phase exceeds 250º in the western part of a squall line and the 
corresponding bias of Z is larger than 10 dB! Gradual decrease of Z with range along the 
squall line is quite obvious in Fig. 6a. As a result, hail at large distances from the radar is 
not identified. The problem is fixed if radar reflectivity is corrected according to Eq (10) 
(Fig. 6b). Attenuation in hail is much more significant than in rain and the coefficient of 
proportionality in (10) is even higher in the presence of hail on the propagation path.  

 Accurate calibration of radar reflectivity factor still remains a serious problem at 
the WSR-88D radar network. Recent findings by Gourley et al (2003) show that the Z 
biases of 2 – 3 dB are quite common. The problem of accurate measurements of Z is 
further exacerbated at lowest elevations whereby a radar beam can be partially blocked. 
One of the great advantages of a dual-polarization radar is its capability to measure 
specific differential phase KDP that is immune to radar system miscalibration, beam 
blockage, and attenuation in precipitation. In (Goddard et al. 1994, Gorgucci et al. 1999), 



the idea of self-consistency among Z, ZDR, and KDP was suggested to assess possible 
biases in Z. According to this approach, Z, ZDR, and KDP are not independent variables in 
rain, and Z at horizontal polarization can be roughly estimated from ZDR and KDP using 
the following relation 

 
                     Z = a + b log(KDP) + c ZDR ,                (11) 
 

where Z is expressed in dBZ, ZDR  - in dB, and KDP – in deg/km. The coefficients a, b, 
and c in (11) depend on a radar wavelength and are relatively insensitive to the drop size 
distribution (DSD) variations. We used the multiyear statistics of DSDs in central 
Oklahoma measured with the 2D-video disdrometer to compute radar variables at the 
wavelength of 11 cm and obtained the following coefficients in (11): a = 48.5, b = 11.4, 
and c = 0.94. In a companion report (Ryzhkov et al. 2003), we examined the performance 
of the suggested polarimetric consistency technique for radar reflectivity calibration via 
direct comparisons of reflectivities measured by the KOUN radar and operational KTLX 
radar located at the distance of 20.3 km from the polarimetric one. For 19 rain events (out 
of total 22 examined) the difference between two estimates (polarimetric and direct) was 
within 1 – 1.5 dB. We believe that, after some additional refinements, the polarimetric 
consistency technique will provide the accuracy of the radar reflectivity measurements 
within 1 dB.  
 Specific differential phase KDP does not require calibration, whereas differential 
reflectivity ZDR does. However, since ZDR is a relative parameter (a ratio), it is easier to 
calibrate ZDR than Z. As shown by Melnikov et al. (2003), the bias of ZDR was kept under 
0.2 dB for the KOUN measurements during JPOLE. According to the consistency 
relation (11), the ZDR measurement error of 0.2 dB causes the corresponding error of Z 
calibration less than 0.2 dB. Differential reflectivity measurements can be biased more 
significantly if the radar beam at lowest elevation is partially blocked (Ryzhkov et al. 
2002). This is the case for the NSSL’s research Cimarron polarimetric radar. Ryzhkov et 
al. (2002) have developed methodology for calibration of ZDR in the presence of severe 
beam blockage. After ZDR is appropriately calibrated, Eq (11) can be applied to obtain 
unbiased radar reflectivity factor even in the case of substantial blockage of the radar 
beam (Ryzhkov et al. 2003). 
 
2.3 Doppler wind measurements in clear air 
 
 All methods for Doppler wind measurements in clear atmosphere assume that 
clear-air radar scatterers are ideal tracers of wind and turbulence, i.e., they do not have 
their own component of motion. Biological scatterers like insects, birds, and bats 
represent overwhelming majority of the clear-air scatterers (along with small-scale 
nonuniformities of refractive index caused by turbulence). If these biological scatterers 
are strong flyers, they produce a bias in Doppler wind estimates that needs to be 
eliminated from meteorological analysis. It is important to distinguish between passive 
(mostly insects) and non-passive tracers of winds (birds and bats) in order to guarantee 
acceptable quality of radar wind retrievals in clear atmosphere such as VAD (Velocity – 
Azimuth Display). It is very common that the VAD wind profiles obtained during peaks 
of nocturnal bird migration in spring and fall are heavily contaminated. Zrnic and 



Ryzhkov (1998) were the first who showed significant differences in polarimetric 
properties of small Rayleigh scatterers like insects and big non-Rayleigh scatterers like 
birds. Birds usually have much larger differential phase upon scattering δ and lower 
differential reflectivity ZDR than insects.  
 At the moment, all versions of our classification algorithm do not make 
distinction between insects and birds and both types of biological scatterers are combined 
in the same class “biological scatterers”. One of the reasons for that is that polarimetric 
signatures of birds and insects have very pronounced azimuthal dependence and at certain 
azimuths (usually close to the main wind direction) ZDR and δ for birds and insects are 
very similar. Therefore, their discrimination based on pixel-to-pixel fuzzy logic approach 
might not be efficient at these azimuthal directions.  Nevertheless, there are extended 
areas of radar echo where such classification can be performed in very clear and 
straightforward way. In other words, the areas of high δ (of the order of 70 - 100º) and 
relatively small ZDR (usually lower than 3 dB) associated with birds can be easily 
identified and the corresponding sectors of wind fields retrieved using the VAD 
technique should be flagged. 
 Section 4 contains more detailed description of polarimetric signatures of insects 
and birds as well as some graphical examples of the differences between them. 
 
 
3. Winter storms 
 
 The KOUN radar collected polarimetric data for 4 snow storms during JPOLE: on 
3 – 4 December 2002, 6 February 2003, 23 February 2003, and 24 February 2003. These 
snow events encompass wide variety of different snow types including heavy convective 
wet snow associated with intense electrical activity (24 February 2003), crystallized snow 
in very cold air pool (6 February 2003), and more common aggregated dry snow 
observed on 3 – 4 December 2002 and 23 February 2003. Some results of preliminary 
polarimetric analysis of the snow storms occurred on 3 – 4 December 2002 and 24 
February 2003 are reported by Ryzhkov and Zrnic (2003), Scharfenberg and Maxwell 
(2003),  and Miller and Scharfenberg (2003). 

 The performance of the classification algorithm is demonstrated for the winter 
storm on 3 – 4 December 2002 (Fig. 7). This storm was associated with the passage of a 
cold front accompanied by the transition from rain to freezing rain and snow in the 
Oklahoma City metropolitan area. During this event, the melting layer was slowly 
subsiding with much lower height of the bright band in the cold air pool N – NW from 
the radar. This feature is manifested by the pronounced asymmetry of the “rain” area with 
respect to the radar location. 

  At 1803 Z (12/03/02), differential reflectivity gives clear indication of the bright 
band in the northern sector. More precise determination of the bright band localization 
was possible from the ρhv data at the elevation of 1.5°. About nine hours later, the height 
of the melting layer remained almost the same in the southern sector, but noticeably 
decreased to the north from the radar (right column in Fig. 7). Note the bright band 
signature in the Z field associated with increase of ZDR and drop in ρhv in that direction. 

At 0302 Z (12/04/02), rain was recognized up to the distances 50 – 60 km at the 
lowest elevation scan NW from the radar. At the same time, surface temperature fell 



below zero and freezing rain was reported on the ground. This freezing rain caused 
significant damage in the Oklahoma City metropolitan area.  

  



Fig. 7. Composite plots of Z, ZDR, ρhv, and results of classification at El = 0.5º for the 
3 – 4 December snow event (12/03/02, 1803 Z – left column, 12/04/02, 0302 Z – right 
column).  Surface temperatures (Fº) are shown in the classification images.  
Note that after dropping in the melting layer, the cross-correlation coefficient restored 
high values exceeding 0.99 at higher levels aloft where snow is dry (Fig. 8c). 
Corresponding lower values of ZDR in dry snow are very similar to those observed in rain 
below the melting level. This again underlines importance of the bright band 
identification for separation between dry aggregated snow and light rain. 

More detailed meteorological interpretation of polarimetric variables and its use by 
the forecasters at the Norman NWS office for this winter storm is described in the paper 
of Scharfenberg and Maxwell (2003). 
 
4. Non-meteorological scatterers 
  
 The capability of the polarimetric radar to discriminate between meteorological 
and non-meteorological scatterers is demonstrated using the version 1 of the 
classification algorithm. As mentioned in section 1.1, this version allows discrimination 
between three classes of radar scatterers: meteorological, biological, and ground clutter / 
AP. Five radar variables are used for classification: radar reflectivity Z, differential 
reflectivity ZDR, cross-correlation coefficient ρhv, the texture parameter of the radar 
reflectivity field SD(Z), and the texture parameter of the differential phase field SD(ΦDP). 
The corresponding membership functions are represented graphically in Fig. 2. These 
membership functions were obtained after careful analysis of the scatterplots of 
multiparameter data collected for many hours during several days of observations. 
 All three classes are heavily overlapped in the Z domain (Fig. 2a). They are much 
better separated in terms of other four variables. Differential reflectivity of non-
meteorological scatterers varies in wide range. Very high positive ZDR values 
unambiguously signify biological scatterers (primarily insects), whereas negative ZDRs 
indicate ground clutter / AP. The separation between the three classes based on the sole 
ZDR is problematic if the measured ZDR is between 0 and 2 dB (Fig. 2b) 

 The use of cross-correlation coefficient yields very good separation of 
meteorological and biological scatterers (Fig. 2c). The distinction between weather 
echoes and ground clutter /AP is not as clear in the ρhv domain. This can be explained by 
the fact that non-fluctuating radar signals from man-made targets are characterized by ρhv 
very close to 1 (similar to meteorological scatterers), whereas natural land covers (trees, 
grass, etc.) have very low ρhv. The cross-correlation of the mixture of man-made and 
natural scatterers depends on their relative contribution to the radar return in the 
particular radar resolution volume.  

The texture of radar reflectivity (SD(Z)) that is widely used for AP detection with 
non-polarimetric radars (Kessinger et al. 2001, Steiner and Smith 2002) apparently has 
value to distinguish meteorological scatterers and ground clutter / AP, but it is not of a 
great help to isolate the radar echoes from precipitation and insects and birds. The texture 
of differential phase SD(ΦDP) is more promising than SD(Z) for delineation of 
precipitation and AP and shows less overlap between meteorological and biological 
scatterers (Fig. 2d,e). 



Although none of the five radar variables enables perfect delineation between 
three classes, their combination is very efficient if the fuzzy logic approach is used for 
classification. This complementary character of multiparameter information is illustrated 
in Fig. 8 where the fields of 6 variables are displayed at the lowest elevation tilt of 0.5º  

 



Fig. 8. Composite plot of Z, ZDR, ρhv, ΦDP, SD(Z), and SD(ΦDP) at El = 0.5º on 13 August 
2002, 1024 Z. 
 

for the case of 13 August 2002 when all three sources of radar echo produced 
significant radar returns. Differential phase ΦDP is displayed in addition to the five radar 
variables mentioned above. We plan to add ΦDP to the classification scheme in the near 
future. Differential phase promises to be a very valuable recognition variable provided 
that (a) the forward and backward propagation components are separated in ΦDP and (b) 
the differential phase is measured unambiguously between 0º and 360º.  

The latter requires some explanation. An intrinsic differential phase of the radar 
signal due to ground clutter and AP is almost randomly distributed within the interval 
where the phase is measured (0º – 180º in the RVP7 processor). After radial averaging 
over 9 successive gates is made, the originally random ΦDP tends to bunch around the 
middle of the phase interval, i.e., 90º (Fig. 10). Unfortunately, the radar signals 
backscattered from birds have almost the same differential phase (within 70 - 100º). If 
differential phase is measured in the 0º - 360º interval, then the predominant ΦDP for 
ground clutter / AP is about 180º and better separation between ground clutter and birds 
would be achieved. 

Examples of classification for the cases of 24 August 2002 and 1 May 2003 are 
presented in Fig. 9 and 10. In the first case, all three types of radar echoes are mixed 
together and the radar reflectivity image gives no clue for identification. The 
classification algorithm identifies extended regions of AP embedded in precipitation. 
Animation of the classification fields shows high degree of spatial / temporal 
“coherency” of these fields and gives us more confidence in the performance of the 
classification scheme. It is interesting to note a difference between regions likely 
associated with insects (south of the radar) and birds (x = 100, 200 km, y = -150, -30 km) 
in the SE sector of the image. “Birds” have lower ZDR and higher ΦDP (not shown) than 
“insects”. Also, the “bird” signatures are observed at larger distances and higher altitudes 
(about 3 km) which are quite unlikely for insect-related echoes. Mean value of ΦDP for 
“insects” is about 40º which is substantially lower than the one for “birds”. 

Fig. 10 illustrates the case with extremely strong AP echo in the SW sector. This 
echo persisted for about 3 hours and was observed also at the elevation angle of 1.5º, 
although with lesser spatial extension. No rain was recorded by the Oklahoma Mesonet 
and ARS Micronet gages in this area. Again, radar reflectivity field gives an impression 
of strong convective precipitation in the SW sector. Moreover, the presence of AP at 
higher elevation might confuse traditional AP mitigation schemes based on the Z texture 
and vertical continuity of the radar echo. The fuzzy logic classification algorithm 
unambiguously identifies the source of this echo as AP. Less than 1% of radar pixels in 
this area were wrongly classified as “precipitation” during all three hours of observation 
of this extreme AP event. At the same time, thin line of rain in the NE sector was 
correctly identified as precipitation. 

As mentioned in section 3, the quality of classification deteriorates with 
decreasing signal-to-noise ratio (SNR). In all figures, results of classification are 
displayed for SNR > 5 dB. The use of differential reflectivity (not biased by noise) in the 
classification algorithm (together with existing radar variables) will hopefully allow us to 
lower the SNR threshold for reliable classification. 



 
 
 

 
Fig.9. Composite plot of Z, ZDR, ρhv, and results of classification at El = 0.5º on 24 
August 2002, 0734 Z. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
Fig. 10. Composite plot of Z, ZDR, ρhv, and results of classification at El = 0.5º on 1 May  
2003, 1107 Z. 
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DISCRIMINATION BETWEEN WEATHER AND SEA CLUTTER 
USING DOPPLER AND DUAL-POLARIZATION WEATHER RADARS 

 
ABSTRACT 
 

The results of automatic discrimination between weather and sea clutter using S-band dual-polarization Doppler 
weather radar are presented. The data were collected with the NCAR SPOL radar located in the Pacific shoreline near 
Seattle, USA. The multiparameter dataset includes backscattered power P (or radar reflectivity Z), Doppler velocity V, 
spectrum width σv, differential reflectivity ZDR (polarization ratio), differential phase ΦDP, linear depolarization ratio 
LDR, and cross-correlation coefficient ρhv. Two versions of classification algorithm based on fuzzy logic are explored. 
One of them utilizes only Doppler radar variables (P and V), whereas the other makes use of both Doppler and 
polarimetric measurands. 

 
INTRODUCTION 
 
 Algorithms for automatic classification of different meteorological and non-meteorological scatterers based on 
the use of multiparameter data from Doppler polarimetric weather radars have been developed during recent years. 
These classification schemes utilize ideas of fuzzy logic and prove to be very efficient for hail detection, rain/snow 
discrimination, identification of ground clutter (including anomalous propagation), birds, and insects [1]. In this study, 
we apply this methodology to distinguish between sea clutter, precipitation, and marine boundary layer clouds observed 
with coastal or shipborne S-band radars. 
 We have examined Doppler polarimetric radar data obtained from the IMPROVE I Field Experiment: Offshore 
Frontal Precipitation Study conducted by the University of Washington west of the Seattle, WA, area during the period 
4 January – 14 February 2001. The data were collected with the NCAR SPOL 10-cm dual-polarization radar located on 
the Pacific shoreline at the height of 10m above sea level. The multiparameter dataset includes backscattered power P 
(or radar reflectivity Z), Doppler velocity V, spectrum width σv, differential reflectivity ZDR, differential phase ΦDP, 
linear depolarization ratio LDR, and cross-correlation coefficient ρhv.  
 NCAR SPOL is a very sensitive radar capable detecting Z = -15 dBZ at ranges up to 50 km [2]. The radar has a 
pencil beam of 0.93º. Raw data are sampled every 0.15 km along a range up to 180 km with an azimuthal resolution of 
1º. Five days of observations have been examined so far. The multiparameter data from three elevation tilts: 0.0º, 0.5º, 
and 1.5º, have been thoroughly analyzed with the major focus on the PPIs at the lowest tilt where the problem of 
discrimination between weather and sea clutter is the most challenging. 
 
OBSERVATIONS 
 

Four types of radar echo in the sea sector of PPI are easily distinguished. The first of them is  “normal” sea 
clutter with a range extension determined by the height and strength of evaporation duct [3]. The second is “anomalous” 
sea clutter likely caused by multipath propagation attributed either to reflections from elevated layers or to strong local 
non-uniformities of the evaporation duct. The third is the weather echo associated with the marine boundary layer 
stratiform clouds (MBLSC) that exist almost all the time in the US Pacific coast area and cover about 25% of the World 
Ocean. These are shallow clouds consisting of cloud-size or drizzle-size droplets. The height of the cloud top is usually 
between 0.5 and 1.5 km, and radar reflectivity Z is usually less than –5 to 0 dBZ. Most often these clouds do not 
produce precipitation, or produce very light drizzle-type rain near sea surface. These clouds are important objects of 
climatological studies because of their omnipresence and strong effect on radiative transfer.  The fourth type of radar 
echo is caused by precipitating clouds that are most often associated with atmospheric fronts.  

Figure 1 illustrates a case where at least three types of echo coexist: (1) “normal” sea clutter, (2) MBLSC, and (3) 
convective precipitation. The PPI fields of returned power and mean Doppler velocity at the 0.0º elevation angle are 
displayed in Fig. 1a,b. The radar is located at the point (0,0). Simple visual analysis of the P and V images points to 
convective precipitation as the most likely origin of isolated echoes that are immersed in a uniform background of 
extended echoes that can be attributed either to weather or sea scatterers.  Only detailed examination of multiparameter 
data provides a clue about the possible origin of the extended radar echo. Example of such data along the azimuthal 
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Fig. 1 Combined plot of the fields of returned power P, mean Doppler velocity V, and results of non-polarimetric and 
polarimetric classification for data at 0.0º elevation on 2 February 2002 (16:10 UTC). The NCAR SPOL radar is located 
at (0,0).  Solid line corresponds to the direction for which raw multiparameter data are displayed in Fig. 2. 
 
direction 273.7º (depicted as a solid line in Fig. 2a) is shown in Fig. 2. There are three range intervals that are 
characterized by distinct Doppler and polarimetric signatures. The echo from convective precipitation in the 140-160 
km range is recognized by low LDR, high ρhv, large negative values of V, and very small spatial variations of ZDR and 
ΦDP.  The high reflectivity region close to the radar (0 – 30 km) has much higher LDR, lower ρhv, smaller values of V, 
and large spatial variations of ZDR and ΦDP that are likely associated with echoes from the sea surface. The low 
reflectivity zone between 30 and 60 km has properties that are somewhere in between convective rain and sea clutter.  
These echoes are likely to be from shallow marine boundary layer stratiform clouds (MBLSC). In this particular case, 
the echoes are confined within the 0 – 500 m height interval. Because the echoes from these clouds are relatively weak 
and signal-to-noise ratio (SNR) is low, such polarimetric variables as ZDR, LDR, and ρhv are significantly biased by 
noise. Therefore, the contrast between sea clutter and MBLSC is not as clear as between sea clutter and precipitation 
from convective clouds. Measurements of differential phase and Doppler velocity are not affected by noise (at least for 
SNR > -5 dB) and are particularly useful for distinguishing MBLSC from the sea clutter. Differential phase provides 
amazingly sharp delineation between sea and weather echoes at the distance of 30 km (Fig. 2). The sea – weather 
transition is also marked by a pronounced change in the magnitude of Doppler velocity. Our analysis of the Doppler 
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Fig. 2 Radial dependencies of P, V, ZDR, LDR, ΦDP, and ρhv at the azimuthal direction shown in Fig. 1a. 
 
velocity data for all 5 days of observations shows that the magnitude of V for sea echoes is usually less than 5 m s-1, 
whereas any Doppler velocities within the unambiguous range ±22 m s-1 are possible for meteorological echoes.  
 
FUZZY LOGIC CLASSIFICATION 
 
 Fuzzy logic classification method requires knowledge of membership functions for different variables and 
classes. In order to determine membership functions, we analyzed scattergrams of measured radar variables versus mean 
power of returned signal (or signal-to-noise ratio) separately for weather and sea clutter. We examined such 
scattergrams for different days of observations and found that they do not differ much from case to case. In Fig.3, some 
of these scatterplots for the 2 February 2001case are represented. Black and grey dots correspond to sea clutter and 
weather clutter respectively. In addition to the ρhv – SNR, LDR – SNR, and ZDR –SNR scattergrams, we display the 
SD(P) – SNR scattergram, where SD(P) is the standard deviation of P that characterizes the texture of the P field. 
 To obtain SD(P), we average raw P data (sampled every 0.15 km) along the radial using 1-km-width running 
average window and subtract the smoothed values of P from their original raw values. A similar procedure was used to 
estimate SD(ΦDP) that characterizes the texture of the ΦDP field. 
 It is evident from Fig. 3, that despite overlapping for SNR < 10 dB, sea and weather clutter are very well 
separated in terms of ρhv, LDR, and SD(P). The separation is even better for SD(ΦDP) (Fig. 1). As in the case of Doppler 
velocity, the two classes of echo are well overlapped in the ZDR  - SNR plane although the corresponding scattergrams 
have very different widths. Noticeably larger values of SD(P) for sea clutter reflect the fundamental fact that an 
amplitude distribution of the echoes from the sea surface is much wider than the one from hydrometeors. 
 We consider two versions of classification scheme: polarimetric and non-polarimetric ones. The polarimetric 
classification algorithm utilizes SD(ΦDP), ρhv, LDR, ZDR, V, and SD(P), whereas only SD(P) and V are used in the non-
polarimetric version. Once discrimination between sea and weather clutter is made, a simple threshold of Z = -5 dBZ is 
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Fig. 3 Scattergrams of  ρhv, LDR, ZDR, and SD(P) versus SNR for (a) sea echoes (black dots) and (b) weather echoes 
(grey dots). The data are taken at the elevation angle of 0.0º on 2 February 2001. 
 
used to distinguish between MBLSC (denoted as “clouds” in Fig. 1c,d) and convective precipitation (marked as 
“precip”). Results of automatic classification are displayed in Fig. 1 c,d. As expected, polarimetrric algorithm exhibits 
superior performance. Although non-polarimetric version produces more speckles, it delineates quite well sea clutter 
and both types of weather echoes. 
 
POSSIBLE PRACTICAL APPLICATIONS 
 

The need for partitioning the near-surface radar echo leads to very important practical implications regarding the 
technique for estimating evaporation duct heights from sea echoes [3].  Discrimination between sea and weather echoes 
has to be performed prior to application of the mentioned technique. 
 There are many National Weather Service WSR-88D S-band radars operating in the coastal regions of US. The 
standard technique for ground clutter rejection based on filtering around zero Doppler frequency doesn’t work for sea 
clutter because the latter has essentially non-zero mean Doppler velocity. This study provides an alternate approach for 
sea clutter detection and rejection. 
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ABSTRACT 

 Demonstration of a method for improved Doppler spectral-moment estimation is 

made on the NOAA’s research and development WSR-88D in Norman, Oklahoma. Time 

series data have been recorded using a commercial processor and digital receiver 

whereby the sampling frequency is several times larger than the reciprocal of the 

transmitted pulse width. The in-phase and quadrature-phase components of oversampled 

weather signals are used to estimate the first three spectral moments by suitably 

combining weighted averages in range with usual processing at fixed range locations. 

The weights are chosen in such a manner that the resulting signals become uncorrelated. 

Consequently, the variance of estimates decreases significantly as is verified by this 

experiment. 

1. Introduction 

 There are compelling scientific and practical reasons to rapidly acquire volumetric 

radar data. For example, observations at minute intervals are required to understand the 

details of vortex formation and demise near the ground. Even faster rates of volumetric 

data are needed to determine the presence of transverse winds (Shapiro et al. 2001). Fast 

update rates would also yield more timely warnings of impending severe weather 

phenomena such as tornadoes and strong winds. Even rainfall measurement would be 

better if radar data were available at shorter intervals than the current 6 minutes (Fabry et 

al. 1994). 

Surveillance weather radars have a mechanical control of beam position and dwell 
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a relatively long time (~ 50 ms) to obtain sufficient number of independent echo samples 

for accurate estimates of Doppler spectral moments (Doviak and Zrnić 1993). Thus, the 

volume update times are dictated by two limitations: 1) the inertia of the mechanically 

steered antenna, and 2) the correlation time of weather signals. Phased array radars 

promise to increase the speed of volume coverage. Reports about simultaneous use of 

phased array radar for tactical application and weather observation indicate that a radial 

of data can be obtained from only two transmitted pulses as opposed to over 40 on the 

WSR-88D (Owen et al. 1998). Closer examination of this success reveals that rapid beam 

swinging is not the main contributor to such fast updates; rather, it is the pulse 

compression. Pulse compression requires wide transmitter bandwidth that is not available 

to the operational weather radar community. Hence the dilemma of how to increase the 

data acquisition speed and fully utilize the rapid beam steering afforded on phased array 

radars. An improvement by a factor of two is possible by "beam multiplexing", where the 

data from different directions are collected in a repetitive time-shared pattern (Doviak et 

al. 2001). This, however, falls short of the desired capability.  

A very different scheme to process weather radar data has recently been proposed. 

Koivunen and Kostinski (1999) suggest to decorrelate (whiten) the time series of weather 

echoes and then process these to obtain better estimates of powers. To achieve this type 

of whitening, prior knowledge of the weather signal correlation coefficient is required 

(Schultz and Kostinski 1997). Consequently, the spectrum should be known or rather 

tight constraints on the range of its values must be imposed, neither of which is practical. 

These issues are discussed in the cited and other references (Kostinski and Koivunen 

2000). 
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Torres and Zrnić (2003) capitalize on the known behavior of weather signals in 

range and present a viable method for reducing variance of spectral moment estimates. 

They propose to sample the signal in range at time intervals L times smaller than the 

pulse duration. Then, by a linear transformation, whiten the L samples, compute various 

autocovariances (or Doppler spectra) of the samples, and combine these to obtain spectral 

moment estimates. The underpinning assumption is that the oversampled weather signals 

are wide-sense stationary over the pulse depth. This assumption is implicit in standard 

processing of weather signals whereby a matched filter precedes spectral processing. An 

in-depth analysis of the scheme is documented elsewhere (part I of this paper, also Torres 

2001), whereas herein we present a sample of a test on the NOAA research and 

development WSR-88D radar to demonstrate its practicality.  

2. Theoretical Background 

 If the returned echoes are sampled more frequently in range than once per pulse 

duration, it is possible to reduce the variances of estimates. Averaging of L oversampled 

estimates reduces the variance by a factor LI known as the effective number of 

independent samples, which is computed from 

 ∑
−

−−=

− −
=

1

)1(
2

1 )(
L

Ll
SI l

L
lL

L ρ ,           (1) 

where ρS(l) is the correlation coefficient of the variable averaged to obtain the estimates 

(Doviak and Zrnić 1993). Note that the maximum possible reduction in variance through 

averaging is by L, which is achieved only if signals are uncorrelated. Thus, if samples are 

correlated, simple averaging does not lead to an optimum variance reduction. As an 
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example, consider a rectangular transmitted pulse and a receiver with infinite bandwidth 

for which the magnitude of the correlation coefficient of oversampled complex signals in 

range is (Doviak and Zrnić 1993)  

 
1 /

( )
0
l L l L

l
otherwise

ρ
 − <

= 


.                                 (2) 

The correlation coefficient for oversampled powers is |ρ(l)|2 = |ρS(l)|. Substituting this 

ρS(l) in (1), one finds that LI = 2 in the limit for very large L. Therefore, a reduction of at 

most two in variance is possible by directly averaging the oversampled power estimates. 

 A different scheme to process the samples and achieve a significantly smaller 

variance of estimates is described in part I of this paper. It entails decorrelating the 

oversampled signals in range and then processing these in the usual manner. That is, 

powers of the uncorrelated signals (in range) are averaged to obtain the reflectivity, and 

estimates of the autocovariance in sample time are averaged to retrieve the mean Doppler 

velocity and spectrum width. 

 If the reflectivity is uniform on a distance of two pulse depths, the correlation 

coefficient of oversampled signals along range time is a function of the pulse shape and 

the receiver impulse response (Doviak and Zrnić 1993). This range-time correlation 

coefficient can be measured on data or by passing the (attenuated) transmitted pulse 

through the receiver and recording the response. It can then be used to whiten the samples 

as described in the formulation of part I. 

 It is instructive to compare the variances of estimates obtained by averaging in 

range autocovariances of oversampled signals with those obtained from averages of 

whitened signals. If noise effects are not taken into consideration, in the case of a 
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rectangular pulse, the ratio of the two variances is 

    ( )
( ) L

L
E
E

whitened

correlated

2
1

var
var 2 += ,           (3) 

where Ecorrelated stands for the estimate obtained by averaging L autocovariances from 

oversampled signals and Ewhitened is the estimate obtained by averaging L autocovariances 

from whitened oversampled signals (Torres 2001). 

3. Experimental Set Up 

 For validation of the theoretically-predicted variance reductions we used the 

Sigmet RVP7 digital processor passively coupled to the research and development WSR-

88D weather radar in Norman, Oklahoma. The RVP7 incorporates a digital receiver at 

intermediate frequency (IF) and has an inherent capability to sample signals at higher rate 

than the reciprocal of the pulse width. In addition, it can record a limited amount of time 

series data (I and Q). An antialias filter centered on the intermediate frequency (fif  ~ 57 

MHz) and with a bandwidth of about 8 MHz precedes the digital receiver. The IF signal 

was tapped ahead of the existing matched filter at a point where the receiver bandwidth 

was about 15 MHz and was passed through the antialias filter. Hence, the frequency 

response at the input to the digital receiver is primarily shaped by the antialias filter. The 

WSR-88D can easily switch between two pulse lengths: short equal to 1.57 µs (250 m 

range resolution) and long equal to 4.71 µs (750 m range resolution). The scheme was 

tested on both of these. 

Constraints on the RVP7 around which we designed the experiment are as 
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follows. The sampling frequency fs for the intermediate frequency (fif) signal is (5/8)fif. 

After sampling, a digital down-conversion is combined with a finite impulse response 

(FIR) filter (RVP7 User’s Manual). The filter has a variable number of taps W, and the 

spacing of output digital samples is D/fs which is also variable (Fig. 1). The weights on 

the FIR filter can be programmed for a desired frequency response; we chose a uniform 

set. The digital sinusoid for down-conversion starts with the same phase every D/fs 

seconds and therefore has a variable phase relation (from sample to sample) with respect 

to the IF signal unless D is a multiple of five. It is not possible to set D to an odd number, 

and the minimum allowable even multiple of five for D is 20. Phase discontinuities 

among output range samples render the whitening algorithm ineffective, thus we chose D 

= 20 (corresponding to gate spacing of 83.3 m) and the same value was used for the 

number of taps W. With this D, the number of samples L is 3 within the short pulse and 9 

within the long pulse. 

 As mentioned before, the processor can record time series data (I and Q) from a 

limited number of range gates. In the experiment we recorded data from 101 consecutive 

range locations spaced 83.3 m apart; each set of 101 samples from one transmitted pulse 

form a radial, and 128 radials constitute one record (due to the constraints imposed by 

RVP7 there is a gap of about one second between records). 

4. Measurements and Analysis of Results 

 Several sets of data from weather events and ground clutter were recorded in both 

the short (regular) and the long pulse mode. The whitening-transformation-based (WTB) 

estimates were obtained from these data sets. 
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a. Correlation Coefficient 

 Implementation of the whitening transformation requires knowledge of the 

autocorrelation function of oversampled signals along range. One robust way to compute 

the set of autocorrelation coefficients is from the oversampled weather data itself. The 

magnitudes and phases of the correlations obtained in this manner are given in Figs. 2 

and 3 for both pulse lengths. These curves are averages of sample autocorrelation 

coefficients in both range and time. The number of range locations for averaging was 

 L/101 ; the number of averages in time was 1280 (i.e., 1280 samples were averaged at 

each lag). At every range location the signal-to-noise ratio (SNR) was larger than 35 dB. 

For both pulse lengths the magnitude of the autocorrelation (Figs. 2a and 3a) has a fairly 

triangular shape, which is expected from a rectangular pulse. The deviation from straight 

lines is likely due to the non-vertical leading/trailing edges of the pulse and the effects of 

the overall radar system filter. The correlation coefficient of samples was also computed 

after the application of the whitening transformation (Eq. 3, part I) . The result is a noise-

like peak at lag zero and insignificant values at other lags (Figs. 2b and 3b). 

 We draw attention to the phases of the correlation coefficients. Note that the 

phase is non-trivial for the non-zero values of the magnitude. This phase shift is caused 

by the amplitude modulation to phase modulation (AM to PM) conversion whereby the 

voltage variations of the transmitted pulse envelope (primarily rise and decay and 

secondarily small ripples) are converted into phase variations of the RF carrier frequency. 

This effect is inherent to the klystron amplifier and it was found to be repetitive. 
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b. Spectral Moments 

 Mean power, mean Doppler velocity, and Doppler spectrum width were computed 

using estimators given in part I (equations 14, 16, and 19) in the following three ways: 

1) From regularly spaced range locations (at 83.3 m) first by averaging in range the in-

phase and quadrature-phase (I, Q) components, and then by processing the 

autocovariances to produce the moments. The coherent averaging of samples over the 

pulse duration (3 samples for short pulse and 9 for long pulse) is a digital matched filter 

which approximates its analog counterpart fairly well. Henceforth, this procedure is 

called the matched-filter-based (MFB) processing. 

2) From averages of autocovariances of oversampled signals. The number of averages in 

range was 3 for the short pulse and 9 for the long pulse. We call this procedure the 

oversampling-and-average-based (OAR) processing. It is a straightforward extension of 

the MFB processing, and about the best one can achieve with correlated oversampled 

data. 

3) From averages of autocovariances of oversampled and whitened data. The same 

number of averages as in 2) was used, and we call this procedure the whitening-

transformation-based (WTB) processing. 

Each initial autocovariance estimate (including at lag zero for power) was 

obtained from 32 contiguous time samples (I and Q components), which corresponded to 

dwell times of 31.57 ms for the short pulse and 71.68 ms for the long pulse. The pulse 

repetition frequencies were 1013.51 Hz for the short and 446.43 Hz for the long pulse. 

For the real data used in the experiment the true values of estimates are not known 
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but are required for calculation of variances. Consequently, these “true” values had to be 

estimated as well. To achieve this, short term (local) estimates of the mean values of 

autocovariances and corresponding spectral moments were obtained from 10 consecutive 

records of data. Because we had 100 records, ten variances at each range location 

obtained from local mean estimates were averaged, and their square roots (standard 

deviations) are plotted herein for comparisons. Short term averaging was necessary to 

mitigate the effects of radial changes (in the structure of the spectral moments) due to 

advection and evolution. Plots of the spectral moments vs. range for records spaced by 

20 s indicate progressive systematic changes in details (Figs. 4, 5 and 6, obtained from 

OAB estimates). The reflectivity features (Fig. 4) have clearly advected towards the radar 

by about 1 km during the time of 111 s (i.e., 100 records). Similar advection is present in 

the other two spectral moments. Advection across the beam and evolution are likely the 

cause of other changes in these features.  

There are different ways to deal with the fact that the correlation coefficient is 

complex (attributed to the phase shift produced by the AM to PM conversion in the 

klystron amplifier). One is to use it directly in Eq. 4 of Torres and Zrnić (2003). The 

other is to take out the progressive phase shift within the pulse that the AM to PM 

conversion causes, and then use the magnitude of the correlation coefficient in the 

aforementioned equation to decorrelate the samples.  We opted for the latter. 

We paired the plots of estimated standard deviations with “theoretical” values of 

standard deviations at each range location and for each procedure. By “theoretical” we 

mean prediction from analytic formulas and derivations applied thereof. The analytic 

formulas can be found in Doviak and Zrnić 1993 (equations 6.10, 6.21, and 6.30a) along 
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with the conditions under which those are valid (equations 6.20a and 6.20b). They 

contain summations of correlation coefficient at various lags, as well as noise effect 

terms. The sample-time autocorrelation coefficient was obtained by fitting a Gaussian 

shape to the autocorrelation estimated from data. Because the accuracy of estimates is 

inversely proportional to the lag number an adaptive fit was used. It starts from the peak 

of the correlation estimate (at lag zero) and proceeds to smaller values (larger lag values) 

dynamically averaging the width of the fit to closely match the observed autocorrelation 

shape. The process stops when the difference between the fitted and estimated correlation 

is larger than a threshold of 30 % (Fig. 7). This determined the value of the width which 

was then used to calculate the autocorrelation at subsequent lags. In all of our examples 

the signal to noise ratio was larger than 35 dB hence the noise enhancement effects were 

negligible (Torres and Zrnić 2003). Consequently, the noise was set to zero in theoretical 

computations. The standard deviation (SD) of power estimates was converted to a dB 

scale by the equation 

   













+=

oP
P

PSD
)ˆvar(

1log10)ˆ( ,           (4) 

where P̂ is the power estimate and Po is the estimate of the local mean value of power. 

Figures 8, 9, and 10 illustrate the standard deviations of spectral moments as a function of 

range for the oversampling factor L = 3. 

 The standard deviation of normalized power estimates obtained from whitened 

samples is consistently smaller than its counterparts (Fig. 8). All these estimates exhibit a 

maximum at approximately 79 km and 83.5 km. It is at these range locations that the 

spectrum width (see Fig. 6) exhibits a local minima. The spectrum width formula 
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(Doviak and Zrnić 1993) shows that a lower spectrum width corresponds to a higher 

autocorrelation in sample time. Therefore, the signal autocorrelation along sample time 

reaches its local maxima at these ranges. Consequently, this decreases the equivalent 

number of independent samples (LI) resulting in a higher variance for power estimates. 

Although whitening has decreased the )P̂SD(  the maximum value of about 1.5 dB is still 

larger than the 1 dB WSR-88D specification for a 1 km average. If the oversampling 

factor is increased to 8 (possible but not available on the RVP7 processor) the )P̂SD(  

over the 250 m pulse depth would be below the 1 dB specification. Note that theoretical 

values of SD (Fig. 8b) are in good agreement with the experimental data in Fig. 8a. 

 The experimentally determined SDs of mean Doppler velocity estimates (Fig. 9a) 

are in a reasonable agreement with the corresponding theoretical curves given in Fig. 9b. 

Both experimental (Fig. 10a) and theoretical (Fig. 10b) curves for the Doppler spectrum 

width show the expected improvements with the OAB, and the WTB techniques. 

Nonetheless, these are not well matched as there are considerable differences in the 

values of SDs. This could be attributed to the fact that the theoretical values are based on 

fitting a Gaussian spectral shape to data which is not always Gaussian, and the spectrum 

width estimator sensitivity to the spectral shape. In the case of the velocity SD, the two 

local minima are at approximate ranges (79 km and 83.5 km) where the spectrum width 

reaches a local minima (Fig. 6) and the SDs of the reflectivity reach a local maxima. This 

is because the lower spectrum width corresponds to higher autocorrelation in sample-

time, which produces smaller variance of velocity estimates (Doviak and Zrnić 1993). As 

the correlation increases LI decreases, but the effect in case of velocity estimates is a net 

decrease in the variance. The SD(v) for both oversampling and averaging and 
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oversampling and whitening satisfy the WSR-88D requirements (less than 1 m s−1). The 

same requirement on the SD(F) is fully met only if oversampling and averaging is 

applied. 

 Reduction in SDs for L = 9 are presented next (Figs. 11, 12, and 13). Changes due 

to advection and evolution were comparable to the ones in Figs. 4, 5 and 6 but more 

pronounced. This is expected, as the time to collect data was 186 seconds (compared to 

111 s for L = 3). Data was collected on the same day but from a different location in the 

storm and there was about 15 minutes of time difference between the two sets of records. 

The 1 dB error requirement for the reflectivity factor is met only in the case of 

oversampled and whitened data. In this example, the requirements for the velocity and 

spectrum width estimates are met with all three techniques. This is no surprise as the 

reflectivity is most stringent and dictates the dwell time. The improvement in spectral 

moment estimates due to whitening is more pronounced in the long pulse mode because 

the oversampling factor (L = 9) is three times larger than in the short pulse mode. 

Observe that the theoretically obtained SDs are somewhat smaller than the experimental 

ones. This is likely due to the increased pulse depth (in range) of 750 m. Hence, further 

departure from the assumption of uniform reflectivity within the pulse, resulting in 

incomplete whitening (Torres and Zrnić 2003). 

 Scatter plots (Figs. 14, 15, and 16) of the OAB versus WTB estimates show 

significantly larger dispersion of results in the case of spectrum width (even though 

negative values were approximated with the adjacent non-negative estimates). The 

overplot line is the best straight line fit in the least mean squares sense and is obtained by 

minimizing the perpendicular offsets. In case of reflectivity and velocity, the fit is well 

Appendix C



 14

balanced and shows no bias of the WTB estimates. The spectrum width fit exhibits no 

consistent bias, but is slightly tilted in the counter-clockwise direction. This effect along 

with the higher dispersion could be caused by the previously mentioned sensitivity of the 

spectrum width estimator to the non-Gaussian shape of the weather signal spectra that 

occurs in nature. 

 Finally, a comparison of variances of the estimates obtained by the three 

procedures and for the short pulse (L = 3) is summarized in Table 1. The theoretical 

values (based on equations 6.10, 6.21, and 6.30a in Doviak and Zrnić 1993) are also 

included. The variances have been obtained by averaging in both range (over 99 range 

locations) and time (1280 pulses or radials). Overall, the measured (in odd columns) and 

theoretical (even columns) ratios of variances agree very well, and the variances from 

whitened data are smallest. 

5. Conclusion 

 Definite demonstration of a novel procedure to process weather radar signals has 

been made. It was accomplished on actual time-series data recorded on the NOAA 

research and development radar while the antenna was stationary. This radar is an 

augmented WSR-88D.  For this paper, the pertinent addition is a commercial processor 

capable of sampling radar signals several times per pulse duration.   

Processing consisted of decorrelating the oversampled signals in range and 

applying standard procedures to the whitened samples. The standard deviations of 

whitening based estimates were compared to the ones obtained by regular (matched filter) 

processing and to the ones from simple averages of autocovariances. Variance reduction 
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equal to the number of oversampled points was achieved with the novel scheme as 

predicted by the theory. This verification was done on weather signals with large (> 35 

dB) SNR. 

The implications of this conceptual proof could be far reaching. Because errors of 

estimates are inversely proportional to the volume scanning times, it follows that weather 

phenomena can be surveyed faster, while maintaining the same level of accuracy as 

present processing methods. Alternatively, variance of estimates can be improved at the 

current volume scanning times. The method has no requirements for transmitter 

bandwidth other than the usual ones for pulse Doppler radars, and it allows traditional 

processing (i.e., matched filter) which is advantageous at low SNRs.  Further, the tests 

demonstrate that the technique is completely compatible with the WSR-88D and thus 

could be implemented on the US national network of weather radars (Torres and Zrnić 

2002). 
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Figure 1. Samples of (a) digitized IF signal and (b) baseband I and Q signal for the short 
pulse in RVP7. 
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Figure 2. Magnitude and argument of the autocorrelation (a) before and (b) after 
whitening for L = 3, obtained from time series of weather data. The short pulse was 

transmitted and one lag corresponds to ~ 0.57 :s. 
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Figure 3. Magnitude and argument of the autocorrelation (a) before and (b) after 
whitening for L = 9, obtained from time series of weather data. The transmitted pulse was 

long and one lag corresponds to ~ 0.57 :s. 
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Figure 4. Estimates of reflectivity factor on sets of 10 records spaced apart by 20 s, using 
an oversampling factor L = 3 (SNR > 35 dB). 
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Figure 5. Estimates of mean Doppler velocity on sets of 10 records spaced apart by 20 s, 
using an oversampling factor L = 3 (SNR > 35 dB). 
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Figure 6. Estimates of Doppler spectrum width on sets of 10 records spaced apart by 20 s, 
using an oversampling factor L = 3 (SNR > 35 dB). 
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Figure 7. Estimated and approximated autocorrelation coefficient along sample time for 
the difference threshold set at 30%. 
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Figure 8. (a) Experimental and (b) theoretical normalized standard deviation of power 
estimates in dB for an oversampling factor of L = 3.  
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Figure 9. (a) Experimental and (b) theoretical standard deviation of velocity estimates for 
an oversampling factor of L = 3.  
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Figure 10. (a) Experimental and (b) theoretical standard deviations of Doppler spectrum 
width estimates for an oversampling factor of L = 3. 
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Figure 11. (a) Experimental and (b) theoretical normalized standard deviation of power 
estimates in dB for an oversampling factor of L = 9. 
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Figure 12. (a) Experimental and (b) theoretical standard deviation of velocity estimates 
for an oversampling factor of L = 9.  
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Figure 13. (a) Experimental and (b) theoretical standard deviations of Doppler spectrum 
width estimates for an oversampling factor of L = 9. 
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Figure 14. Scatter plot of WTB versus OAB power estimates. The solid line is the best fit 
in the least squares sense. 
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Figure 15. Scatter plot of WTB versus OAB velocity estimates. The solid line is the best 

fit in the least squares sense. 
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Figure 16. Scatter plot of WTB versus OAB spectrum width estimates. The solid line is 

the best fit in the least squares sense.
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X = P 2.105955 2.073276 3.071418 2.970985 1.436999 1.432994 

X = v 2.238192 2.082410 2.942816 2.983750 1.317445 1.432994 

X = σv 2.791660 2.092170 4.655921 2.998174 1.722260 1.432994 

Table 1.  Variance ratios obtained for L = 3. The acronyms in the subscript are defined as 
follows: MFB –  matched-filter-based estimate; OAB– oversampling-and-average-based; 

WTB – whitenening-transformation-based; t - theoretical. 
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1. Introduction 
 
 A 2D-video disdrometer developed by Joanneum Research Inc., located in Graz, Austria, 
has been operating at NCAR’s Marshall observation site since July 2002.  Hydrometeor 
observations from more than a dozen storms were collected during the winter of 2002-2003.  The 
data are being used to study shape characteristics of frozen hydrometeors, particle canting 
angles, terminal velocities, and densities.  The disdrometer observations are needed to verify 
polarimetric radar signatures and particle distribution information retrieved from radar 
measurements.  The ultimate goals are to determine if polarimetric radar measurements can be 
used to estimate the density of frozen hydrometeors and visibility in snowstorms and to improve 
the quantification of winter precipitation.   
 Here we present a description of the disdrometer and show sample hydrometeor images.  
System bias corrections are discussed, and examples from winter storms are given. 
 
2. Disdrometer description 
 
 The disdrometer consists of two line-scan cameras providing front (camera A) and side 
(camera B) views of hydrometeors falling into the instrument.  Each camera has a single line of 
700 photo-detectors positioned opposite a light source.  Hydrometeors falling through the 
measuring area block the light source, shadowing some of the photo-detectors.  The number of 
blocked photo-detectors is recorded for each camera at a frequency of 34.1 kHz.  The sampling 
creates image projection slices of the hydrometeors. 
 Information provided on individual hydrometeors includes silhouette images, height and 
width information from each camera, and the particle terminal velocity.  Hydrometeor widths are 
computed from the number of shadowed photo-detectors.  Particle heights are determined from 
the number of blocked line scans and the scan line height.  Particle terminal velocity is computed 
from the vertical distance between the two camera planes and the time the hydrometeor takes to 
break each plane.  Other hydrometeor parameters obtained are the particle axis ratio, canting 
angle, and horizontal velocity.  The instrument has a measuring surface area of 10 cm x 10 cm. 
 Images of various hydrometeor types are shown in Fig. 1.  The top left images show a 
moderate-size aggregate.  The maximum height and width are 5.1 and 5.4 mm, respectively, 
from camera A and 5.1 and 4.7 mm from camera B.  The fall velocity was 1.5 m s–1.  A raindrop 
having an equivalent volume diameter of ~3.5 mm is shown in the top right images.  The oblate 
shape typical of large drops is reproduced.  Images at the lower left are from a hailstone with a 
diameter of ~7 mm and having a fall velocity of 10.1 m s–1.  Images at the lower right show a 
snow pellet from a mixed-phase precipitation event.  The equivalent-volume diameter and fall 
velocity are 3.3 mm and 3 m s–1, respectively. 
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2. Calibration and data processing 
 
 Disdrometer observations of particle size are verified by dropping calibration spheres 
with known diameters (0.5–10 mm) into the instrument after mechanical and optical alignments 
have been checked.  The measurements are compared with the nominal sizes to determine 
correction factors.  Typically, our system yields uncalibrated particle heights that are ~10 percent 
taller than true size.  A smaller adjustment is normally required for particle width. 
 Calibration shapes for verifying particle axis ratios are not available.  Instead, this 
measurement is verified with raindrops.  For light wind conditions and in the absence of drop 
collisions the relationship between drop flattening and drop size is well known.  Fig. 2a shows 
the axis ratio with respect to estimated equivalent-volume diameters after dimension corrections 
were applied.  The agreement between the axis ratios and the empirical relationship from 
Brandes et al. (2002) is excellent for the 17 March 2003 dataset.  Offsets for the other two cases 
may be caused in part by drifts in the calibration and varying wind conditions.  It is clear that the 
instrument has trouble with small particles.  Part of the problem is related to spatial quantization 
(~0.15 mm for particle width).  Data editing procedures are still under development. 
 Figure 2b shows the relationship between raindrop size and terminal velocity.  The latter 
have been reduced to sea level.  The Marshall site is located at an elevation of 1.742 km MSL.  
Lower air density causes fall speeds to be about 6% greater than at sea level.  Except for the 
small drops, the observed terminal velocities closely follow the relationship from Brandes et al. 
(2002). 

In summary, the instrument yields valid axis ratios and particle terminal velocities.  
Departures from expected values are predominately with small particles.  Fortunately, radar 
measurements respond primarily to the larger particles that are well sampled.  Direct 
comparisons between radar measurements and computed radar parameters determined from 
disdrometer observations are impacted by wind conditions, particularly for snowflakes because 
of their small terminal velocity. 
 
3. Examples 
 
 On 17–18 March 2003, a dataset was collected from a storm in which precipitation began 
as rain and later changed to snow (Fig. 3).  Eventually over 30 inches of snow was produced—
immobilizing some Front Range communities.  Rain began at the disdrometer site just before 
2200 UTC on 17 March when the temperature was 5oC (Fig. 3).  Over the next four hours, the 
temperature fell only 1oC.  Wet snow first appeared at ~0200 UTC.  Mixed-phase precipitation 
(rain and snow) continued until 0545 (UTC) when the temperature lowered to 1oC.  Fig. 4 shows 
a sampling of particle fall velocities observed between 0220 and 0250 UTC.  A mixture of rain 
and drizzle drops, partly-melted (mixed-phase) aggregates, and small snowflakes is evident.  The 
unadjusted terminal velocities for the drops roughly follow the curves given by Atlas et al. 
(1973, in red) and Gunn and Kinzer (1949, in yellow)].  Wetted aggregates having diameters of 
~2 mm fall with velocities between 1–2 m s−1 slower than raindrops of equivalent size.  Terminal 
velocities for the snowflakes in the 0.5 and 2.0 mm size range are clustered near 1.0 m s−1 and 
show only a slight tendency to increase with size.  After 0545 UTC, all hydrometeors were 
snowflakes with maximum sizes of ~5 mm.  Size distributions were close to exponential (e.g., 
Fig. 5a).  Although the total number of rimed aggregates and precipitation intensity increased 
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with time, the distribution remained exponential (Fig. 5b).  Changes in terminal velocity and the 
size distribution corresponded with changes in crystal habit and the degree of riming and 
aggregation reported by on-site observers. 
 A case of a mixed-phase precipitation changing to snow occurred on 6 April 2003 (Fig. 
6).  Weather conditions were characterized by light winds (generally < 3 m s–1) and decreasing 
temperatures.  The disdrometer began detecting partly frozen hydrometeors at ~0330 UTC.  
Temperature decreased from 3 to 1oC in one hour (Fig. 6a).  By 0436 UTC, snow aggregates 
became dominant.  Fig. 6b presents the precipitation rate (liquid equivalent) taken as the average 
of three GEONOR gauges.  The panel also presents an estimate of hydrometeor bulk density 
computed from volumetric data provided from the disdrometer (Fig. 6c) and one-minute interval 
liquid equivalent snowfall amounts from the gauges.  The bulk density is ~1 g cm−3 during the 
mixed-phase period and about 0.25 g cm−3 for the snow portion of the event.  Obviously, these 
values are too high.  The “apparent” volume from the disdrometer could be too small either due 
to missed smaller particles or bias in estimates of individual particle volumes.  The issue is being 
investigated. 
 Visibility data available from a HSS VPF-730 sensor can be compared to the disdrometer 
measurements.  The optical distance measured by the sensor (Fig. 6d) exceeded 30 km prior to 
the onset of mixed-phase precipitation.  Visibility rapidly decreased to an average of ~2.3 km 
during the mixed-phase precipitation stage.  A significant further decrease in visibility from 2 km 
to 0.5 km began at 0440 UTC—roughly coinciding with the change to all snow.  Temporal 
variations in snowfall rate and one-minute total snow volumes are correlated with visibility 
during the snow period.  Rasmussen et al. (1999) previously studied the relationship between the 
(liquid equivalent) snowfall rate and visibility and concluded that visibility is dependent not only 
on cross-sectional area (or “apparent” volume) of snowflakes but also on crystal type, fall speed, 
degree of aggregation and riming, and time of day.  Typically, for a given snowfall rate, the 
visibility increased when rimed and compact particles (e.g., graupel) were present due to their 
small cross-sectional areas and larger fall speeds.  On the other hand, dry snowflakes are loosely 
packed and fall at a much slower rate (~1 m s–1), causing reduced visibility.  Yet another factor 
appears to be the relative humidity, which can be inferred from Fig. 6a.  This suggests a multiple 
sensor approach may be needed to "predict" visibility.  
 
4. Concluding remarks 
 
 The hope is that success achieved in improving the quantification of rainfall and 
retrieving drop-size distribution information from polarimetric radar measurements can be 
extended to winter storms.  Current efforts seek to establish the shape and fall velocities of the 
various hydrometeor types and to determine disdrometer capabilities to retrieve this information.  
If particle distributions in winter storms are indeed close to exponential, the retrieval of the 
governing parameters that define the distribution from polarimetric measurements should be 
facilitated.  Plans call for placing the disdrometer near NCAR's polarimetric radar as part of the 
WISP04 field program.  As a first step, radar measurements and radar parameters computed from 
the disdrometer observations are to be compared. 
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FIG. 1: Sample hydrometeor images (front and side views) for indicated particle types. 
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a) 

b) 

FIG. 2: Observed raindrop axis ratios (panel a) and terminal velocities (b) plotted versus 
equivalent-volume diameter.   Size and air density corrections have been applied.  Curves show 
expected relations from Brandes et al. (2002). 
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FIG. 3: Surface temperature and dew point (panel a) in oC, wind speed (b) in m s–1, and liquid-
equivalent accumulative snow amount (c) in mm from 2100 UTC 17 March to 0800 UTC 18 
March 2003.  Characteristic precipitation types are indicated. 
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FIG. 4: Terminal velocity versus diameter from the video disdrometer display software for 0220-
0250 UTC on 18 March 2003.  The curves are terminal velocity–diameter relations from Atlas et 
al. (1973) [red] and Gunn and Kinzer (1949) [yellow]. 

 

 
Fig. 5:  Five-minute averaged snowflake distributions for 0700–0705 UTC (a) and 2200–2205 
UTC (b) on 18 March 2003. 
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FIG. 6:  Surface temperature and dew point (a) in oC, liquid equivalent precipitation rate in mm 
h−1 and one-minute averaged hydrometeor bulk density in g cm–3 (b), one-minute total 
hydrometeor volume in mm3 min–1 and particle number count in min–1 (c), and optical distance 
in km (d) from a visibility sensor.  The change from mixed-phase to snow is indicated.  (6 April 
2003) 
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1. Introduction 
 
 Algorithms to detect hail with polarimetric measurements are based largely on the 
departure of measurements from the “rain-only” case.1  Detection is, for example, readily 
accomplished with the radar reflectivity at horizontal polarization (ZH) and differential 
reflectivity (ZDR) measurement pair.  The presence of hail causes reflectivity to become large 
because of the 6th power dependency on the size of hydrometeors illuminated by the radar beam.  
Differential reflectivity (in dB) is defined as 10×log(ZH/ZV) where ZV is the reflectivity at 
vertical polarization and ZH and ZV have units of mm&6 m&3.  Raindrops tend to flatten in the 
horizontal as they fall causing ZDR to have positive values, generally in the range 0.3 to 3 dB, 
depending on the reflectivity magnitude.  Hail tends to tumble as it falls creating a random 
distribution of axis orientations.  For tumbling hail, ZH and ZV are similar in value; and 
differential reflectivity becomes small compared to the rain case. 
 The linear depolarization ratio (LDR) and co-polar correlation coefficient (DHV) also hold 
promise for hail detection.  LDR (in dB) is defined as 10×log(ZVH/ZH), where ZVH is the cross-
polar return measured in the vertical for a transmitted horizontally polarized signal.  The LDR 
signal arises from aspherical particles that are canted with respect to the transmitted energy or 
tumble as they fall.  Magnitudes for hail and mixed-phase precipitation typically are >!25 dB but 
can approach !10 dB for large hail.  The signal for rain is <!25 dB.  The presence of hail 
reduces DHV for precipitation media composed of rain from ~0.99 to about 0.90.  Also, the 
differential propagation phase (MDP) can be used for hail detection.  The parameter is insensitive 
to the presence of small hail that tumbles, but it is sensitive to hail in the Mie scattering range 
through a backscattering phase shift. 
 Hail detection with polarimetric radar has distinct advantages over techniques based on 
radar reflectivity.   Reflectivity-based techniques typically assume a threshold value (e.g., 55 
dBZ) that if exceeded indicates hail.  Experience has shown that the threshold varies for different 
climatological regions and that the threshold for specific days is determined by meteorological 
conditions.  Further, the current WSR-88D algorithm (Witt et al. 1998) makes designations based 

 
1Additional reviews of polarimetric radar techniques for detecting hail are given by Balakrishnan and Zrniƒ, 1990) and Smyth et 
al. (1999). 
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on storm structure and environmental factors which are difficult to quantify.  The algorithm 
predicts the probability of hail (any size) and the probability of severe hail (hail with diameters 
>19 mm).  Designations are made for storms—the hail location is not specified.  In contrast, hail 
designations with polarimetric measurements are based on hydrometeor geometry.  The precise 
hail location can be specified, and size can be estimated from radar measurements rather than 
inferred from environmental factors. 
 
2. Hail differential reflectivity 
 
 A simple hail-detection algorithm was proposed by Aydin et al. (1986) who defined a 
hail differential reflectivity parameter (HDR) given by 
 
  HDR = ZH & f(ZDR) 
 
where 
 
  f(ZDR) = 27 dB   ZDR # 0 dB 
  f(ZDR) = 19*ZDR + 27 dB  0 # ZDR # 1.74 dB 
  f(ZDR) = 60 dB   ZDR > 1.74 dB   . 
 
The units of ZH and ZDR are dBZ and dB, respectively.  The segmented line f(ZDR) attempts to 
separate rain-only and hail-contaminated polarimetric measurements when plotted in ZH–ZDR 
space.  The line was determined with disdrometer observations from rainstorms observed in 
Illinois and Colorado.  A positive value of HDR indicates hail.  The magnitude of HDR provides an 
estimate of hail size (Brandes and Vivekanandan 1998).  Although the boundary accounts for 
measurement errors in ZH and ZDR and allows for drop oscillations, Aydin et al. assumed that 
drop shapes were determined primarily by forces of surface tension and hydrostatic pressure 
(Green 1975). 
 Subsequent studies have shown that radar-apparent mean drop shapes are more spherical 
in the mean than the shapes of Green.  A relation that approximates these shapes is (Brandes et 
al. 2002) 
 
  R = 0.9951 % 0.02510D & 0.03644D2 % 0.005030D3 & 0.000249D4   , (1) 
 
where R is the drop axis ratio (vertical dimension divided by the horizontal dimension) and D (in 
mm) is the drop equivalent-volume diameter.   Figure 1 shows a plot of reflectivity and 
differential reflectivity as computed from disdrometer observations obtained in Florida.  The 
discriminator of Aydin et al. results in a number of false hail designations in the 30–50 dBZ 
range.  The curved line represents the lower boundary of the rain regime.  The equation for the 
line, determined experimentally, with ZH in dBZ is 
 
  ZDR = exp(3.12*10&4ZH

2 % 6.48*10&2ZH&3.87)   .    (2) 
 
This curve better captures the shape of the ZH–ZDR distribution and represents an improvement 
over the boundary of Aydin et al.—particularly for reducing false alarms at moderate reflectivity 
values.  Hail-contaminated radar measurements, particularly when large hail is present, would 
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normally lie to the right of and below the curve.  Application to a severe hailstorm is shown in 
Fig. 2.  Data points to the right of the curve result from the negative correlation between ZH and 
ZDR that occurs when hail is present, whereby hail increases ZH because of its size and reduces 
ZDR because it tumbles. 
 Raindrop measurements close to the boundary given by (2) tend to be characterized by 
drop-size distributions (DSDs) that are essentially in equilibrium, that is, a rough balance exists 
between drop breakup and accretion.  These measurements have a minimum median drop 
diameter (D0) and maximum number concentration for a given reflectivity value.  Radar data 
points to the right of the curve not contaminated by ground clutter or influenced by side lobes 
almost certainly associate with hail. 
 There is a potential problem with the above approach.  Unfortunately, little rain falls with 
an equilibrium drop distribution.  Indeed, the variability among data points in Fig. 1 attests to the 
large spatial and temporal fluctuations in DSDs.  The leading edge of strong convection is often 
characterized by DSDs with small numbers of large drops that can result in observations well 
above the rain–hail boundary in Fig. 2.  For example, consider a reflectivity measurement of 50 
dBZ paired with a differential reflectivity of 2.5 dB.  If hail were added to the measurement 
volume, ZH would increase and ZDR would decrease.  The hail-contaminated measurement would 
move downward and to the right on the figure but would not necessarily be displaced across the 
rain–hail boundary.   Hence, some hail-contaminated data points may reside above the boundary. 
 
3. Differential propagation phase and radar reflectivity  
 
 For raindrops a differential phase shift (MDP) occurs between propagating horizontally 
and vertically polarized waves that at a distance r is given by 
 

 3

r dr   0
0

( ) ( ) ( )
r

DP DPr r Kφ δΦ = + + ∫
 
where N0 is the radar hardware offset between signals at the two polarizations, * is the 
backscatter differential phase shift, and KDP is the two-way specific differential phase due to 
propagation.  KDP is the range derivative of MDP, which in the absence of backscatter phase shifts 
generally increases monotonically with range.  Hail that is spherical or tumbling will not 
contribute to KDP.  Oriented hail will have little impact if it is dry because of its small refractive 
index.  Wetted hail in the Mie scattering range (hail with a diameter greater than 0.07 times the 
radar wavelength) typically produce negative values of * and can cause MDP to decrease with 
range. 
 Balakrishnan and Zrniƒ (1990) proposed to identify hail with departures in ZH and KDP 
measurement pairs from the rain-only case.  The presence of hail increases ZH because of the D6 
dependence.  If the hail tumbles or is dry, it makes negligible contribution to KDP.  Thus, the KDP 
value calculated from the radar measurements of MDP will be smaller than that expected for the 
measured ZH if only rain were present.  This approach was examined by Ryzhkov and Zrniƒ 
(1994).  Their Fig. 6, which has many of the characteristics seen in Fig. 2, shows that 
observations from the rainy regions within a storm did not agree very well with the theoretical 
rain-only relation.  They cite potential problems with radar calibration and speculate that the 
measurements were influenced by the presence of ice cores.  A contributor to the problem could 
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be the use of a Marshall-Palmer DSD with Green’s (1975) axis ratios. 
 
4. Fuzzy logic approach 
 
 Recognizing that polarimetric signatures for hail are not always unique and overlap those 
for other hydrometeors, fuzzy logic approaches using the full suite of polarimetric measurements 
have been proposed (e.g., Vivekanandan et al. 1999).  Membership functions are employed to 
determine the degree to which a particular measurement represents the likelihood of hail.  For 
example, the membership function for reflectivity may assign a membership value of 0 for a 
reflectivity value less than 45 dBZ essentially indicating that hail is unlikely.  The value may be 
1 for a reflectivity greater than 50 dBZ.  The membership function might increase linearly for 
intermediate values.  Membership values for differential reflectivity are determined according to 
the magnitude of the observed reflectivity.  Small ZDR at low reflectivity would be an indication 
of small drops, but the same value at high reflectivity would be indicative of tumbling hail.  Each 
radar parameter is weighed and the most likely hydrometeor type selected. 
 The current NCAR hydrometeor classification algorithm (HCA) attempts to make 
designations for hail and rain–hail, graupel–hail, and graupel–rain mixtures.  An example of hail 
detection is presented in Fig. 3.  The various panels show the radar measurements and present a 
detailed "prediction" of hydrometeor types.  Regions of hail, rain–hail, graupel–hail, and 
graupel–rain are indicated.  Hail regions are surrounded by rain–hail regions.  There are 
significant areas of graupel–hail at the periphery of the general hail region.  Finally, a few 
designations indicate a graupel–rain mixture.  The designations seem plausible.  However, 
verification of the various categories will require a focused effort.  For aviation purposes a 
simple designation for hail—perhaps with a size estimate—may be more appropriate. 
 
5. Consistency method 
 
 This method is a variation of that using radar reflectivity and specific differential 
propagation phase.   Consistency among ZH, ZDR, and KDP dictates that any two of these 
parameters can be used to determine the third parameter (Goddard et al. 1994).  For example, 
KDP can be calculated from ZH and ZDR with (Vivekanandan et al. 2003) 
 
  KDP = 3.32×10&5ZHZDR

&2.053   ,       (3) 
 
where the units of terms are linear and drop axis ratios given by (1) are used.  Calculated values 
of KDP can be compared with the measured values, and a hail parameter (HP) determined as 
 
  HP = KDP,m ! KDP,c   , 
 
where KDP,m is the radar determined specific differential phase based on measurements of MDP 
and KDP,c is the estimated value computed with (3) from radial distributions of  ZH and ZDR.  The 
presence of hail will generally reduce KDP,m relative to KDP,c.  HP should be close to 0o km!1 for 
rain.  Significant departures of HP from 0o km!1, beyond that expected from statistical error, 
would indicate hail. 
 Figure 4 presents a radial segment of measurements obtained for the storm in Fig. 3.  The 
dips in the ZDR trace between 40 and 41.5 km and between 42 and 47 km and the coincident 
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large values of ZH are suggestive of hail.  Note the large spatial variance in the radar 
measurements and the absence of distinct hail signatures in DHV and LDR.  Hail and graupel 
designations with the NCAR HCA and HP values along the radial are shown in Fig. 5. Negative 
HPs are truncated at !50o km!1.  These large negative values are due to the slightly negative 
ZDRs that often characterize large hail.  Rain rates computed from the ZH–ZDR measurement pairs 
are astronomical. 
 The HP parameter essentially predicts hail in the same locations as the fuzzy logic and 
HDR methods.  However, ambiguities about whether or not the measurement represents simply 
hail or mixtures of hail and other hydrometeors are avoided, and rain-only and hail contaminated 
regions are clearly separated.  The approach is simpler than the fuzzy logic method in that it has 
fewer tuneable parameters.  Moreover, the magnitude of HP is an indicator of hail size.  A caveat 
with this method concerns the high noise level in radar-derived values of KDP.  To reduce the 
error considerable filtering of the measured MDP is required.  Filtering reduces the magnitude of 
peak KDP values and spreads the signal into surrounding areas of smaller KDP.  Hence, the first 
signs of a hailfall may be missed.  On the other hand, the size of the hail region may be 
overestimated resulting in a buffer zone about the hail shaft. 
 
6. Planned research 
 
 Fortunately, the suite of polarimetric measurements provides redundant information 
regarding hailfalls.  While all polarimetric parameters afford improvement when combined with 
radar reflectivity, the optimum parameter mix in an algorithm is yet to be determined.  Existing 
radar datasets and in situ verification from field programs conducted in Florida, Colorado, and 
Oklahoma are available for analysis.  A plan for testing candidate algorithms is being developed.  
The polarimetric measurements should also support the development of an algorithm component 
for estimating hailstone size. 
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FIG. 1: Disdrometer calculations of radar reflectivity and differential reflectivity for Florida 
thunderstorms.  The segmented green line is the rain–hail discrimination boundary of Aydin et 
al. (1986).  The smooth curve [Eq. (2)] represents the limits of the rain measurements. 
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FIG. 2: Radar measurements of reflectivity and differential reflectivity for a severe hail storm that 
occurred in eastern Colorado. 
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Fig. 3: Polarimetric radar measurements from NCAR’s S-Pol radar and hydrometeor 
designations for the hailstorm in Fig.2. 
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Fig. 4: Radial distributions of radar measurements at an azimuth of 97.2o and an antenna 
elevation angle of 0.5o for the hailstorm in Fig. 3. 
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Fig. 5: The hydrometeor designations and distribution of HP for the ray in Fig. 4.  Specific 
designations are for graupel–rain (GRRN), graupel–hail (GRHL), rain–hail (RNHL), hail, heavy 
rain (HVYR), moderate rain (MODR), and light rain (LGTR). 
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1.  Introduction 
 

An automated method for estimating freezing-level heights would have several 
benefits.  Alerts could be provided for those engaged in snow removal and aircraft 
deicing operations.  Freezing-level heights are required for designating potential icing 
layers in storms and for verifying predictions of 0oC levels with numerical models.  
Knowing whether or not a melting layer exists is important to ascertain if radar-observed 
precipitation is rain or snow and for its quantification.  The freezing level is also a 
component of polarimetric algorithms for general hydrometeor classification.  If the 0oC 
level can be obtained from radar measurements, dependence on pilot reports and 
infrequent and widely-spaced atmospheric soundings would be lessened. 
 
2.  Background 
 
 Polarimetric radar measurements are particularly sensitive to the large wetted 
hydrometeors that characterize melting layers.  Moreover, measurements of linear 
depolarization ratio (LDR) and co-polar correlation coefficient (ρHV) often provide 
definitive melting-layer signatures when hydrometeor types may preclude a signature in 
radar reflectivity (ZH) measurements (e.g., when small graupel are present) or when 
hydrometeor advection alters the reflectivity profile.  A freezing-level algorithm that 
combines the information from ZH, LDR, and ρHV measurements has been under 
development (Brandes and Ikeda 2003).  The algorithm finds the height at which the 
maximum melting-layer signatures appear in vertical profiles of these parameters and 
compares the profiles to an idealized melting-layer model in order to determine the 
goodness of fit.  The freezing level is estimated with each parameter profile that matches 
the idealized profile.  Final designations are based upon knowing the statistical relation 
between the depression of the maximum signature and the true 0oC level and weighing 
each parameter according to how well it matches the model profile.  Typically, numerous 
estimates can be made in a region of widespread precipitation, and the variance among 
the estimates is a measure of the confidence that can be placed in the retrieval.  The 
spatial distribution of the 0oC level is readily obtained which should be useful in frontal 
situations.  Designations can generally be made to radar distances of 60 km or more and 
are believed accurate to within 100-200 m. 
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 Early versions of the algorithm assumed that the offset (depression) of the 
maximum melting-layer signature for each parameter from the 0oC level was fixed.  
Mean offsets had been found with soundings and in situ measurements from research 
aircraft.  However, the depressions tend to increase as precipitation intensity increases. 
 
3.  Algorithm upgrade 
 
 To determine the relationship between the depression of the brightband 
reflectivity maximum from the 0oC level and precipitation intensity, summary profiles of 
Fabry and Zawadzki (1995) were used.  They constructed reflectivity profiles for various 
precipitation intensities from 350 h of measurements obtained with a vertically pointing 
radar having a height resolution of 15 m.  It was assumed that the upper break point in the 
profiles occurred at the 0oC level.  Depressions for their profiles are plotted in Fig. 1.  A 
least-squares fit gave 
 
 2

1 0.0886 0.000400 0.000112H Hd Z= − + Z     (1) 
 
where d1 in km is the depression of the reflectivity maximum from the estimated 0oC 
level and ZH is in dBZ.  A sampling of depressions from field experiments conducted in 
Florida and Brazil, for which sounding data were available, is also shown.  The unedited 
depressions agree quite well in the mean with the observations of Fabry and Zawadzki. 
 Depressions for LDR and ρHV melting-layer signature maxima are also functions 
of precipitation intensity.  The depressions tend to be slightly larger than those for radar 
reflectivity.  Unfortunately, a comparable dataset of high-resolution measurements at 
zenith for these parameters is not available.  Instead, tilt measurements from NCAR's S-
Pol radar were used to compute the depressions of LDR and ρHV melting-layer extremes 
from that for reflectivity.  The distribution is shown in Fig. 2.  A polynomial fit was 
applied to the data and the result added to (1).  The derived relation is 
 
 2

2,3 0.121 0.00445 0.000200H Hd Z= + + Z    .    (2) 
 
The variables d2 and d3 are the depressions of LDR and ρHV melting-layer signature 
maxima from the 0oC level, respectively.  Expressions (1) and (2) are valid for brightband 
reflectivity maxima of 20 to 50 dBZ.  Plans call for further testing of the freezing-level 
algorithm on an independent dataset to be collected during the upcoming WISP04 field 
program. 

 
4.  Application to a polarimetric WSR-88D 
 
 The freezing-level algorithm was applied to a dataset obtained with the WSR-88D 
(KOUN) modified by the National Severe Storms Laboratory for polarimetric 
measurements.  The observations were from the trailing portions of a mesoscale 
convective system.  Parameters available for analysis were radar reflectivity, differential 
reflectivity, co-polar correlation coefficient, and differential propagation phase.  [The 
linear depolarization ratio is not available under the current proposed WSR-88D 
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upgrade.]  Each tilt sequence consisted of 15 constant antenna elevation scans from 0 to 
19.5o.  The measurement range resolution is 267 m. 
 Rather than construct vertical profiles of the measurements at specific locations 
on a rectangular grid, height profiles were made from the distribution of measurements 
along radial rays at antenna elevations ≥ 4.5o.  All measurements depict the melting layer 
(e.g., Fig. 4).  Figure 5 presents measurement profiles averaged over the azimuthal sector 
between 50 and 60o.  Pronounced melting-layer signature maxima for reflectivity and co-
polar correlation coefficient are clearly seen.  Signatures for differential reflectivity and 
differential propagation phase are also evident.  Generally, greater meteorological 
variability makes it more difficult to retrieve the 0oC level with the latter parameters.  
Hence, freezing-level designations in Fig. 3 are based on ZH and ρHV measurements 
alone.  Designations, shown only for elevation angles of 4.5, 6.5, 8.7, and 12.0, are 
plotted at the range where the radar beam intersected the freezing level.  Unfortunately, in 
situ measurements corresponding to the analysis time are not available.  The KOUN 
sounding for 0000 UTC detected the freezing level at 4.18 km.  In summary, the 
algorithm should work well with measurements from a polarimetric WSR-88D. 
 
Acknowledgment.  The KOUN data used in this report were graciously provided by 
Alexander Ryzhkov of the National Severe Storms Laboratory. 
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FIG.1:  Height depressions of maximum brightband reflectivity from the 0oC level. 
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FIG. 2:  Height depressions of maximum melting-layer signatures for linear 
depolarization ratio and co-polar correlation coefficient from the radar reflectivity 
brightband maximum. 
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FIG. 3:  Radar reflectivity measurements made from the NSSL polarimetric WSR-88D 
(KOUN) at 1.5o antenna elevation for a scan beginning at 030845 UTC on 11 June 2003.  
Freezing-level detections based on radar reflectivity and co-polar correlation coefficient 
measurements are over laid. 
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FIG. 4: The distribution of polarimetric measurements radar reflectivity (ZH), correlation 
coefficient (ρHV), differential reflectivity (ZDR), and differential propagation phase (ФDP) 
for the 6.5o elevation scan beginning at 031031 UTC.  Note the ring-like melting-layer 
signatures at a range of 30 km. 
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FIG. 5:  Parameter profiles obtained with the NSSL polarimetric WSR-88D at 031031 
UTC.  The observed 0oC level, determined from the KOUN 0000 UTC sounding, was 
4.18 km MSL (horizontal line).  The algorithm estimated freezing-level height for the 
data shown is 4.25 km. 
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Multiscale Storm Identification and Forecast

V Lakshmanan1, R. Rabin2, V. DeBrunner3∗

Abstract

We describe a recently developed hierarchical K-Means clustering method for weather
images. that can be employed to identify storms at different scales. We describe an
error-minimization technique to identify movement between successive frames of a
sequence and show that we can use the K-Means clusters as the minimization kernel.
A Kalman filter is used to provide smooth estimates of velocity at a pixel through time.
Using this technique in combination with the K-Means clusters, we can identify storm
motion at different scales and choose different scales to forecast based on the time scale
of interest.

The motion estimator has been applied both to reflectivity data obtained from the
National Weather Service Radar (WSR-88D) and to cloud-top infrared temperatures
obtained from GOES satellites. We demonstrate results on both these sensors.

1. Introduction

The segmentation of weather imagery is a fundamental problem to automated weather
analysis, as has been pointed out in Peak and Tag (1994); Lakshmanan et al. (2000);
Johnson et al. (1998). There are numerous pattern recognition algorithms that have
been developed on weather images, such as for rainfall estimates (Lai et al. 2000), and
cloud classification (Lee et al. 1990), but segmentation techniques for weather images
have not been addressed. This is true even of work that attempts to factor out weather-
related effects in satellite imagery of land (Markus and Cavalieri 2000; Narasimhan
and Nayar 2000).

In the meteorological community, the importance of multiscale segmentation has
been often noted (Johnson et al. 1998; Wolfson et al. 1999; Lakshmanan et al. 2000).
In (Peak and Tag 1994), the authors detail the difficulties that traditional segmentation
algorithms have with satellite weather images because of the textural nature of clouds.
As a result, a complex technique consisting of a sequence of fixed thresholds, followed
by a neural network that decides how and when to prune or merge the resulting regions

∗1Corresponding author address: lakshman@ou.edu. V Lakshmanan is at the Cooperative Institute of
Mesoscale Meteorological Studies, U. Oklahoma (OU) and is also affiliated with NOAA/OAR/National
Severe Storms Laboratory (NSSL).2Robert Rabin is with NSSL and the Cooperative Institute of Meteoro-
logical Satellite Studies (CIMSS) at the University of Wisconsin, Madison.3Victor DeBrunner is with the
Department of Electrical and Computer Engineering at OU.
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is proposed (Peak and Tag 1994). We show here that using a hierarchical technique
in combination with a texture segmentation algorithm makes segmentation of satellite
weather images possible such that even small cloud features can be identified.

The textural nature of weather imagery makes robust segmentation for storm track-
ing purposes very difficult. For storm tracking to be useful, the identification and track-
ing algorithm should be completely automated. The identification algorithm should not
require training, i.e. the algorithm should not expect to see examples of all the “objects”
it must identify. Storm “cells” (small scale features) should be capable of being identi-
fied. Because the notion of scale is natural in the storm tracking context, we would like
to add the requirement that storms at various scales be identified, with their hierarchical
structure intact. A multiscale tracking algorithm would be a significant improvement
over current tracking schemes which concentrate either on small scales(e.g: (Johnson
et al. 1998)) or on large scales (e.g: (Wolfson et al. 1999)).

In the United States, the operational way to identify storms from radar images
involves the use of multiple thresholds and counting runs of values above a threshold
along a radial. The centroids are then used as a proxy for the storms (Johnson et al.
1998) and tracked either on the basis of proximity to expected position or through a
linear programming approach (Dixon 1994). The change in position is extrapolated.

Identification and tracking algorithms for satellite weather imagery have been im-
plemented for mesoscale convective systems (Morel et al. 1997) – where the features
of interest (storm anvils colder than 240K) are on the scale of about 10,000km2. Our
goal, however, is to identify storm scale features, features on the scale of about 10km2.

Another technique (French et al. 1992) is to use neural networks to model input
reflectivity fields as a set of nodes and to forecast reflectivity locations in the future
based on the evolution of the nodes required to model successive frames. The problems
with this technique are that it requires training a neural neural network in real-time,
and that a trained neural network can not be used to forecast fields which have not been
tracked.

A third technique is to use rectangular sub-grids and to find the maximum corre-
lation within a search radius (Rinehart and Garvey 1978; Tuttle and Gall 1999). A
modification of this technique is to pre-filter the data so as to track only the larger
scales (Wolfson et al. 1999; Lakshmanan 2000). It is also possible to use sub-grids
ranging in size from that of the entire image to small (say, 16km x 16km) grids, and to
compute motion estimates at each of these scales. Smoothness criteria can be used to
constrain these estimates at different scales.

Identifying, matching and extrapolating storm core locations is suitable for small
scale storms. The large scale features and cross-correlation technique is suitable for
longer forecasts, but with loss of detailed motion estimates. An assumption here is
that the storms are of the scale of the sub-grid, not larger. The multiscale estimation is
suitable also for large scale forecasts, but with less precise detailed motion estimates.

When used for advection, all the correlation techniques rely on reverse projection,
so there needs to be wind speed at the spot where the storm is moving to. Methods rely
on correlation estimates of rectangular templates also assume that all pixels within that
rectangular template are moving together.

We use a hybrid approach where motion estimates are made for groups of storms
(rather than for sub-grids of the image), but at various scales. The motion estimate



for a storm cell is the movement that minimizes the mean-absolute-error between the
current frame and corresponding pixels in the previous frame, except that the template
is not a rectangular sub-grid of the image, but is instead the actual shape of the storm
cell.

Instead of simply matching storm cells across frames, motion estimates are made
by finding the best match for the storm-template. Thus, the major steps in the technique
are:

1. Find storms at different scales.

2. Estimate motion at the various scales.

3. Forecast for different periods using motion at different scales.

Because the motion estimates are made for storms, it is possible to interpolate be-
tween storm boundaries to obtain motion estimates at every part of the domain.

2. Hierarchical texture segmentation to identify storms

A K-Means clustering technique from Lakshmanan (2001); Lakshmanan et al. (2002) is
used to identify components in vector fields. The technique provides nested partitions,
i.e. the identified storms structures are strictly hierarchical. The technique works by
clustering image values (reflectivity/infrared temperature, etc.) in the neighborhood of
a pixel on two opposing criteria:

• Belong to same cluster as your neighbors.

• Belong to cluster whose mean is closest to your value.

Hierarchical segmentation is incorporated into the K-Means clustering technique by
steadily relaxing inter-cluster distances.

The technique works by iteratively moving pixels between clusters minimizing

E(k) = λdm(k) + (1− λ)dc(k) 0 ≤ λ ≤ 1 (1)

where the distance in the measurement space is:

dm(k) =‖ µn
k − Txy ‖ (2)

and the discontiguity measure is::

dc(k) =
∑

ijεNxy

(1− δ(Sn
ij − k)) (3)

A region growing algorithm is employed to build a set of connected regions, where
each region consists of 8-connected pixels that belong to the same K-Means cluster. If
a connected region is too small, then its cluster mean (the mean of the texture vectors
at each pixel in the region) is compared to the cluster means of the adjoining regions
and the small region is merged with the closest mean. The result of the K-Means



segmentation, region growing and region merge steps is the most detailed segmentation
of the image.

The inter-cluster distances of all adjacent clusters (or regions) in the image are
computed. A threshold is set such that half the pairs fall below this threshold. If a pair
of clusters differs by less than this threshold, the clusters are merged and cluster means
updated. This process is continued until no two adjacent regions are closer in cluster
space than the threshold. When this process is complete, we have the next coarser scale
of the segmentation. This process is repeated until no changes happen.

a. Weather Radar Images

Texture segmentation using Markov Random Field (MRF) models has been utilized
to segment synthetic aperture radar (SAR) images, mainly because SAR images are
characterized by a lot of speckle (Dong et al. 2001; Schroder et al. 1998; Smits and
Dellepine 1999), a problem which is resolved through the use of neighborhood statis-
tics. Another reason for using texture segmentation on SAR imagery is that the same
MRF model used for segmentation can also be used for classifying the identified seg-
ments (Dong et al. 2001).

Texture segmentation has not been applied to weather radar data before. In weather
radar data, especially in cases where there is significant precipitation, the problem of
speckle does not arise except in the immediate vicinity of the radar. Hence, traditional
texture segmentation provides no significant advantage. In fact, as shown in Figure 1e,
even a scalar segmentation approach works quite well. What neither the scalar segmen-
tation approaches, for example (Johnson et al. 1998), nor standard texture segmentation
approaches (Blum and Rosenblat 1972; Hofmann et al. 1996; Ma and Manjunath 1997)
can provide is a nested partition of identified segments. The watershed segmentation
approach of Najman and Schmitt (1996) can provide a nested partition, but does not
segment weather data well (See Figure 1f). As shown in Lakshmanan et al. (2002);
Lakshmanan (2001), multiscale segmentation can be achieved by agglomerative K-
Means clustering of texture vectors and slow relaxation of the allowed inter-cluster
distance.

We wish to segment the reflectivity moment of radar elevation scans obtained from
a Doppler Weather Service Radar (WSR-88D). The data have been mapped from polar
coordinates into a Cartesian grid tangential to the earth’s surface at the radar location
where each pixel is a square area of one kilometer on each side. The pixel values,
in dBZ, range from about−7dBZ to about64dBZ, with the reflectivity values for
some pixels missing. Missing values and all reflectivity values less than0dBZ were
thresholded to be0dBZ before the segmentation process.

The radar elevations scans in this study were collected every 5-6 minutes. The
weather surveillance radars used by the National Weather Service scan through thun-
derstorms starting at a low elevation angle,0.5o for Volume Coverage Pattern (VCP)
21, and after completing a full360o azimuthal sweep, progressively increase the eleva-
tion angle until an upper limit is reached (19.5o in VCP 21). See Figure 2 (Crum and
Alberty 1993; Smith 1995). The data were remapped to a Cartesian plane and were
then segmented using the K-Means clustering technique.
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Figure 1: Segmenting a radar reflectivity image. (a) A radar reflectivity image, from
Fort Worth May 5, 1995. (b) The result of segmenting the radar reflectivity image
using the Markov Random Field (MRF) approach of Blum and Rosenblat (1972). (c)
The result of segmenting the image using the method of this paper, tweaked to process
the reflectivity range of interest. The most detailed scale is shown. (d) The next higher
scale of segmentation using the method of this paper. (e) Simply separating the image
into contiguous bands of10dBZ. (f) Using the watershed approach of Najman and
Schmitt (1996).



Figure 2: Volume Coverage Pattern (VCP) 21 of the WSR-88D, a weather surveil-
lance radar used by the National Weather Service. The volume coverage is shown.
The beamwidth is 0.95 degrees and there are 9 elevation scans in this VCP. Figure
from Smith (1995).

b. Satellite Infrared Images

We demonstrate results of segmenting the infrared window channel (11µ) of GOES
satellite imager data. The images are 200x300 with each pixel representing a4km ×
4km. The images are projected onto a plane tangential to the surface of the earth.
The satellite data were collected over the continental United States using GOES-11 on
March 29, 1998. The pixel values were also mapped from radiance values to equivalent
black body temperature in degrees Kelvin before the segmentation. Images of the
sequence are available at eight minute intervals.

The sequence of satellite images captures a day of significant thunderstorm activity.
Several thunderstorms grow and decay during the day. The temperatures and sizes of
the cloud tops in the images show relate in a bulk sense to the magnitude and extent
of clusters of storm updrafts within the anvil clouds. Segmentation of this sequence
should be able to consistently identify the thunderstorm cloud tops in the images. Ide-
ally, when cloud tops appear to split or merge, the corresponding segmented regions
should do the same. A very important requirement is that small changes in the storm
structure should be reflected as small changes in the segmented region corresponding
to the storm.

Studies (Browning 1979; Bellon and Zawadzki 1994) have shown that a single
storm cell grows and decays in under an hour. Therefore, a storm cell can be expected
to stay for no more than seven frames of the satellite sequence. However, a line of
thunderstorms within which these cells crop up can be expected (Browning 1979) to
persist for up to six hours. Also, the cloud top (anvil) may persist after the cell on
radar decays. Therefore, the segmentation should lend itself to segmenting regions
corresponding to larger scale features while identifying small scale features that are
contained within the large scale feature but have shorter life-times.



A single infrared image was segmented using various segmentation methods in
the literature. The results are shown in Figure 3c and d. The results of segmentation
using the other approaches (Figure 3b,e and f. are poor in terms of the scale of the
resulting regions. This is not surprising because the infrared satellite weather imagery
has several characteristics that make it hard to segment: very low dynamic range (from
about 225K to 240K) for the regions of interest, poor resolution as compared to the
scale of the phenomena of interest, and high pixel value variance, even in the absence
of edges. It is instructive to compare the poor performance of these algorithms on the
satellite image (see Figure 3) with the performance of the same algorithms on radar
reflectivity images in Section a.

The poor spatial resolution of the satellite image affects our algorithm also, in the
scale of features that we can detect. Although we can detect features as small as 10
pixels in the image, this translates to about 40km2, a mid-size storm cell (although
significantly more detailed than what could be obtained using earlier approaches). The
pruning threshold of 10 pixels was set in the algorithm so that any statistics collected
are somewhat reliable. One possible way to relax this threshold is by creating a pseudo-
high resolution form of the original image, thus getting less square kilometers in the
10-pixel threshold. Unfortunately, on satellite weather images, even a pseudo-high res-
olution technique (Yao 1999) introduces unacceptable smoothing (Lakshmanan 2001),
resulting in worse performance. A second possibility, one that we have not yet looked
into because of the prohibitive cost for a continuously running system, is to obtain
weather satellite data that has higher spatial resolution. A third possibility is to use the
multi-channel nature of satellite weather information to form the pixel representation
(instead of using a texture vector based on neighborhood statistics).

Instead of using only texture measurements from only the infrared channel, we used
texture measurements (mean and variance) computed on four channels corresponding
to 3.9, 6.7, 11 and 12 microns (near infrared, water vapor, window and “dirty window”
respectively (Menzel and Purdom 1994)). Since every pixel of the segmented out-
put actually corresponds to four relatively independent measurements (rather than just
one), the minimum pruning size in the algorithm can be reduced from about 10 pixels
to about 3. The result of using multi-channel information and a lower size threshold is
shown in Figure 5 where it is compared to the segmented result if only the 11 micron
image had been used.

Notice that the result of segmenting using all four channels (Figure 5f) has smaller
regions than the result that uses only the infrared window channel. It is not clear,
however, how significant these smaller features are in the context of thunderstorms.

3. Motion Estimation

Once the storms have been identified from the images, these storms are used as a tem-
plate and the movement that minimizes the absolute-error between two frames is com-
puted. For radar images, we used consecutive (5-6 min) volume scans.

Motion estimation is done by moving a template of the identified region at the
appropriate scale around in the previous image. A matrix of mean absolute error at the
different positions is obtained as shown in Figure 6
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Figure 3: Segmenting an infrared satellite weather image. (a) The infrared image being
segmented. Notice the various storms at the top of the image. The darker areas in the
bottom correspond to ground. (b) The result of segmenting the image using the Markov
Random Field (MRF) approach of Blum and Rosenblat (1972). There is no detail – it
is effectively a binary segmentation. (c) The result of segmenting the image using the
method of this paper (the most detailed scale). Notice the fine detail within the clouds.
(d) The next higher scale of segmentation using the method of this paper. The strong
storm cells being significantly colder are retained – the large cloud masses are merged.
(e) Simply separating the image into contiguous bands of1Kelvin. There is a lot of
detail, but no organization. This is what you get using hierarchical thresholds. (f) Using
the watershed segmentation approach of Najman and Schmitt (1996). Because of the
textural nature of the data, the watershed algorithm has very poor performance.
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Figure 4: A close-in look at the results shown in Figure 3.. (a) The infrared image
being segmented (same as Figure 3a). (b) A close-in look at the input satellite infrared
image of (a). (c) A close-in look at the result of segmenting the image using the method
of this paper (the most detailed scale). Notice the fine detail within the clouds. (d) A
close-in look at the next higher scale of segmentation using the method of this paper.
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Figure 5: Using multi-channel satellite data for segmentation. (a) 3.9 micron infrared
(b) 6.7 micron water vapor (c) 11 micron window (d) 12 micron dirty window chan-
nels of data. (e) Most detailed segmentation using only the 11 micron image (f) Most
detailed segmentation using all four channels. The segmentation is more detailed than
the segmentation that was achieved in (e), but whether these extra details are useful is
yet to be determined.

Figure 6: Matrix of mean absolute error by position. Larger errors are “warmer”. Two
different locations are shown.



Instead of simply finding the absolute minimum, a smoother minimum of the abso-
lute error field is sought. The field of absolute errors is minimized by weighting each
value by how much it differs from the absolute minimum and finding the centroid.

For each storm template, we also get a growth/decay estimate. This is based on
how much the average value inside the template changes based on the template at the
best match.

Given the motion estimates for each of the regions in the image, the motion estimate
at each pixel is determined through interpolation. At the pixelxy, the motion estimate
uxy is given by

uxy =
Σiuiwixy

Σiwixy
(4)

whereui is the motion estimate for theith region and the weight of the this estimate at
the pointxy is given by:

wixy =
Ni

‖ xy − ci ‖2
(5)

Ni is the number of pixels in theith region,ci its centroid and‖ denotes the Euclidean
distance between the two points.

This motion estimate is for the pair of frames that were used in the comparison. We
do temporal smoothing of these estimates by running a Kalman filter Kalman (1960)
at each pixel of the motion estimate. The Kalman estimator is built around a con-
stant acceleration model with the standard Kalman update equations Brown and Hwang
(1997).

a. Short-term Forecast

The forecast of the fields is done based on the motion estimates, growth and decay
heuristic and the current data. Forecasts can be made on fields other than the tracked
field. For example, motion estimates can be derived from VIL and applied to radar
reflectivity and probability fields of lightning and hail.

The forecast is done by first project data forward in time to a spatial location given
by the motion estimate at their current location and the elapsed time. Locations not
filled by this forward projection are filled by interpolating using an inverse square-
distance metric of nearby filled locations.

The skill of this technique is quantititavely measured by comparing, for example,
the 30 minute forecast against the actual field closest to 30 minutes ahead. For the
mean absolute error results, the actual values are used. For the critical success index
(CSI) results, the best match with a 5x5 window is used. Comparisions are made with
a plain persistence, and with motion estimates derived by minimizing the correlation
of a 5x5 template between the frames.

Results over a 60minute period on reflectivity from the Fort Worth radar on April
201995 are shown in Figures 7 and 8.

The CSI and MAE measure different aspects of the forecast accuracy. The MAE
takes into account actual reflectivity values and is, therefore, a measure of how good
the growth-and-decay aspect is. The CSI is a measure of predicting storm location. We
are good at predicting storm location, but not so good at growth/decay.
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Figure 7: Skill at forecasting a radar reflectivity field compared to a persistence forecast
and to a local correlation approach. (a) Values 30dBZ and above for 15 minutes (b)
Values 30dBZ and above for 30 minutes (c) Values 30dBZ and above for 60 minutes
(d) Mean absolute error in 60 minute forecast



A forecast based on satellite infrared temperature is shown in Figure 9. The data are
taken from GOES-12 imagery on Oct. 9, 2001. The data provided were 100 seconds
apart; we used every 4th frame of the sequence to compute motion estimates. Work to
compute skill scores on satellite data is underway.

A version of this paper with color illustrations is available online at

http://www.cimms.ou.edu/˜lakshman/Papers/kmeans_motion.pdf

4. Conclusions

It is possible to use a K-Means clustering to provide hierarchical identification of
storms. The clusters can then be used to estimate the movement of the storm cores.
A forecast that projects the movement of the storm cores linearly possesses some skill.
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Figure 8: (a) Reflectivity data from KFWS, April 1995. (b) Most detailed scale of
segmentation, used in forecasting under 30 minutes. (c) Coarse segmentation, used in
forecasting more than 90 minutes. (d) Motion estimate (red is eastward motion) (e)
15min forecast (f) 60min forecast



Figure 9: The original (left) and a 30 minute forecast of infrared temperature from Oct.
9, 2001.
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Quality Control of Weather Radar Data Using
Texture Features and a Neural Network

V Lakshmanan1, Kurt Hondl2, Gregory Stumpf1, Travis Smith1

Abstract—Weather radar data is subject to many
contaminants, mainly due to non-precipitating tar-
gets (such as insects and wind-borne particles) and
due to anamalous propagation (AP) or ground clut-
ter. Although weather forecasters can usually iden-
tify, and account for, the presence of such con-
tamination, automated weather algorithms are af-
fected drastically. We discuss several local texture
features and image processing steps that can be
used to discriminate some of these types of con-
taminants. None of these features by themselves
can discriminate between precipitating and non-
precipitating areas. A neural network is used for
this purpose. We discuss training this neural net-
work using a million-point data set, and accounting
for the fact that even this data set is necessarily in-
complete.

I. Introduction

From the point of view of automated applications
operating on weather data, echoes in radar reflec-
tivity may be contaminated. These applications re-
quire that echoes in the radar reflectivity moment
correspond, broadly, to “weather”. By removing
ground clutter contamination, estimates of rainfall
from the radar data using the National Weather
Service (NWS) Weather Surveillance Radar-Doppler
1998 (WSR-88D) can be improved [1], [2]. A large
number of false positives for the Mesocyclone Detec-
tion Algorithm [3] are caused in regions of clear-air re-
turn [4]. A hierarchical motion estimation technique
segments and forecasts poorly in regions of ground
clutter [5], [6]. Hence, a completely automated al-
gorithm that can remove regions of ground clutter,
anamalous propagation and clear-air returns from the
radar reflectivity field would be very useful in improv-
ing the performance of other automated weather al-
gorithms.

For a good review of the literature on ground clut-
ter contamination, the interested reader is refered

1V Lakshmanan, Gregory Stumpf and Travis Smith are with
the Cooperative Institute of Mesoscale Meteorological Studies
(CIMMS), University of Oklahoma. 2Kurt Hondl is with the
National Severe Storms Laboratory, Norman, OK

to [7]. Local neighborhoods in the vicinity of ev-
ery pixel in the three weather radar moments were
examined by [2] and used for automated removal of
non-precipitating echoes. They achieved success by
examining some local statistical features (the mean,
median, and standard deviation within a local neigh-
borhood of each gate in the moment fields) and a few
heuristic features. [7] introduced the “SPIN” which is
the fraction of gate-to-gate differences in a 11x21 local
neighborhood that exceed a certain threshold (2dBZ
in practice) to the total number of such differences. [2]
introduced the “SIGN”, the average of the signs of the
gate-to-gate difference field within the local neighbor-
hood. [7] used a decision tree to classify pixels into
two categories – precipitation and non-precipitating
while [2] used a fuzzy rule base using features that
included the SPIN feature introduced by [7]. In addi-
tion to these elevation-based features, some vertical-
profile features were also used – the maximum height
of a 5dBZ echo was used by [7]. [2] discussed the use of
vertical differences between the two lowest reflectivity
scans.

Neural networks (NNs) have been utilized in a vari-
ety of meteorological applications. For example, NNs
have been used for prediction of rainfall amounts by [8]
and for identification of tornados by [9]. In fact, [10]
attempted to solve the radar quality problem using
neural networks. However, the performance of the
neural network was no better than a fuzzy logic clas-
sifier (Kessigner, personal correspondence), and the
neural network attempt was dropped in favor of the
much more transparent fuzzy logic approach described
in [2]. We propose some rationale for why our neural
network approach achieves significantly better results
than the network developed by [10] in Section III-A.

II. The Neural Networks

A. Inputs

Based on the extensive literature on descriptions
of AP and ground clutter [7], we chose as inputs to
the neural network the following: the data value, the
mean, the median and the variance of each of the
three moments (reflectivity, velocity, spectrum width)
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at the lowest tilt of the radar. In addition, we took
the same four values for the second lowest tilt of the
radar. Finally, we computed some of the textural fea-
tures that have been found to be useful in discrimi-
nating between precipitation and AP/GC. These were
the SPIN [7], the gate-to-gate average square differ-
ence [2] and the SIGN [2]. We included the vertical
gradient (difference between the reflectivities at the
two lowest scans) as a separate input to the neural
network.

In addition to these discriminants described in the
literature, we considered a few others:
1. The maximum vertical reflectivity, over all the el-
evations.
2. The maximum reflectivity in the local neighbor-
hood.
3. A weighted average of the reflectivity values over all
the elevations where the weight of each data point is
given by the height of that pixel above the radar. This
takes into account the entire vertical profile instead of
just the first two elevations.
4. The sum of all the heights at which an echo exists
(reflectivity value greater than 0 dBZ) at the pixel.
5. The homogeneity of the reflectivity field defined as:

homxy =

∑
iεNxy

1

1+(
Ixy−Ii

Ixy
)2

card(Nxy)− 1
(1)

where Nxy is the set of valid pixels (Ii) in the neigh-
borhood, Nxy, of the pixel at (x, y) in the image, Ixy

is the pixel value and card(Nxy is the number of such
neighbors.
6. Echo-size defined as the fraction of neighbors whose
values are within 10dBZ of this pixel’s reflectivity
value.
7. Fraction of inflection points with inflections at 5,10
and 15dBZ thresholds. An inflection point is defined
similar to the SPIN [7] except that the inflection is
defined not in a polar neighborhood, but along the
entire radial until that point.
8. Echo-top height defined as the maximum height of
reflectivity above a certain threshold. We used both
5dBZ and 10dBZ thresholds.
9. To decorrelate the data value from the mean and
median, the difference between the data value and the
local mean was used.

B. Computation of Inputs

Velocity data can be range-folded (aliased). In the
WSR-88D, at the lowest tilt, the velocity scan has

a shorter range than the reflectivity one. We there-
fore divided the training pixels into two groups – one
where velocity data were available and another where
there was no Doppler velocity (or spectrum width) in-
formation. Thus, two separate neural networks were
trained. In real-time operation, the appropriate net-
work was invoked for each pixel depending on whether
there were velocity data at that point. All the neural
network inputs were scaled such that each feature in
the training data exhibited a zero mean and a unit
variance when the mean and variance are computed
across all patterns.

Histograms of a few selected features are shown in
Figure 1. It should be noted that these features are
not linear discriminants by any means – it is the com-
bination of features that gives the neural network its
discriminating ability. The histogram of Figure 1d il-
lustrates the result of several strategies we adopt dur-
ing the training, so that higher reflectivities are not
automatically accepted.

C. Network Architecture

We used a resilient backpropagation neural network
(RPROP) as described in [11]. There was one hidden
layer. Every input unit was connected to every hidden
unit, and every hidden unit to the output unit. In ad-
dition, there was a short-circuit connection from the
input units directly to the output unit, to capture any
linear relationships i.e. the network was ”fully con-
nected” and completely ”feed-forward”. Every hid-
den node had a “tanh” activation function, chosen
because of its signed range. The output unit had a
sigmoidal activation function: g(a) = (1 + e−a)−1 so
that the outputs of the networks could be interpreted
as posterior probabilities [12]. Each non-input node
had, associated with it, a bias value which was also
part of the training.

The error function that was minimized was a
weighted sum of the cross-entropy (which [12] sug-
gests is the best measure of error in binary classifica-
tion problems) and the squared sum of all the weights
in the network:

E = Ee + λΣw2
ij (2)

The first term is a variation of the cross-entropy error
suggested by [12] and is defined as:

Ee = −
N∑

n=1

cn(tnlnyn + (1− tn)ln(1− yn)) (3)

where tn is the target value of the nth training pattern
(0 if non-precipitating and 1 if precipitating) while yn
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Fig. 1. Histograms of selected features on the training data set, after the features have been normalized to be of zero
mean and unit variance. (a)Homogeneity (b) Radial inflections (c) Mean spectrum width (d) Mean reflectivity (e) SPIN.
Note in (d) that, as a result of careful construction of the training set and selective emphasis, that the mean reflectivity
histograms are nearly identical – this is not the apriori distribution of the two classes since AP is rare, and clear-air
return tends to be smaller reflectivity values.

is the actual output of the neural network for that
pattern input. N is the total number of patterns.
The cost, cn, captures the importance of that pattern.
The second, square weights, term attempts to reduce
the size of the weights, and thus improves generaliza-
tion [13]. The relative weight, λ, of the two measures
is computed every 50 epochs within a Bayesian frame-
work with the assumption that the weights and the
errors have Gaussian distributions, such that the ra-
tio of their variances gives a measure of how much to
decay the weights [14], [12]. We started by weighing
the sum-of-weights twice as much as the cross-entropy
term (λ = 2), updated λ based on the distribution of
the weights and errors every 50 epochs and stopped
the learning process at 800 epochs. We chose the fi-
nal weights of the network from the epoch at which
the validation entropy error was minimum, as will be
discussed shortly.

The with-velocity network had 22 inputs, 5 hidden
nodes and one output while the reflectivity-only net-
work had 16 inputs, 4 hidden nodes and one output.

C.1 Validation

A validation set can ensure a network’s general-
ization, typically through the use of early stopping
methods [12]. In the neural network literature, a val-
idation set is also utilized to select the architecture of
the neural network [15]. We used a validation set that
consisted of features derived from three volume scans
that exhibited AP, convection and clear-air return.

We trained each network with three different num-
bers of hidden nodes. For each training run, we picked
the result of training at the epoch that the validation
error was at its minimum (See Figure 2). Thus, we
used the validation set, both to determine when to
stop, and to pick the final architecture of the neural
network. Other than to choose the number of hid-
den nodes, we did not consider any alternate network
topologies since, in theory at least, a single hidden
layer is enough to interpolate any continuous function

to arbitrary accuracy [12].
We used a testing set, independent of the training

and validation sets, as decribed in Section III, and it
is this independent set that the results are reported
on.

D. Training

Eight volumes of WSR-88D data were selected.
They covered a wide variety of weather and no-
weather scenarios. A human interpreter examined
these volume scans and drew polygons using the
WDSS-II display [16] to select “bad” echo regions.
An automated procedure used these human-generated
polygons to classify every pixel into the two categories
(precipitating and non-precipitating).

The data we have is not representative of true apri-
ori probabilities, since each of the scenarios is a rare
event. Patterns are assigned different importance fac-
tors cn (See Equation 3). It is easy to see that if
the cost factors are positive integers, the cost factor
can be moved out of the error equation, by simply
repeating the nth pattern cn − 1 times. In addition
to assigning different costs, we also wished to train
the network with approximately the same number of
patterns in both classes. Because our dataset is nec-
essarily incomplete, we repeat the patterns so as to
have a balanced distribution of patterns at every re-
flectivity value. In the velocity network (a proxy for
pixels close to the radar), precipitating echoes are re-
peated d/20 times while non-precipitating echoes are
repeated d/10 times where d is the reflectivity value.
Thus, AP with high-reflectivity (examples of which
are hard to find when training with very few radar vol-
umes) is emphasized as are strong reflectivity cores.
In the no-velocity network, non-precipitating echoes
are repeated 3d/5 times. As can be seen from Equa-
tion 3, the repeating of patterns has the same effect
as imposing a cost factor to each pattern. We are,
in essence, assigning a higher cost to misclassifying
high-dBZ pixels than to misclassifying low-dBZ pix-
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Fig. 2. Using a validation set to decide when to stop the training, and to decide on the number of hidden nodes. The
y-axis is Ee/N – see Equation 3. (a) Validation error when training the without-velocity neural network. Final choice
was 4 hidden nodes and the weights from the 310th epoch. (b) Validation error when training the with-velocity neural
network. Final choice was 5 hidden nodes and the weights from the 210th epoch. (c) Training error vs Validation error
for the final choices of hidden nodes. Note that the training error continues to decrease but the validation error starts
to increase after a while, showing that the training is becoming counter-productive.

els. The histogram in Figure 1d shows the effect of
this selective emphasis.

Some input vectors can be classified very easily be-
cause they are obvious. To avoid CPU cycles both
in the training stage, and in the running stage, we
pre-classify such pixels. Such pixels are not pre-
sented to the neural network in training, and pixels
that match these criteria are pre-classified the same
way in run-time as well. We discard shallow, low-
reflectivity echoes and accept fast-moving and high-
topped echoes.

In addition to emphasizing some pixels and pre-
classifying others, we remove a third set of pixels from
training altogether. In effect, we move them to an
“ignore” category. These pixels are not presented to
the network. The ignored pixels are those pixels for
which the echo size is less than 0.2. Because of the
way the echo size is defined, small echo sizes are points
associated with speckle and are at the boundaries of
storms where spatial statistics such as the mean and
variance break down. To avoid the network expending
cycles on these pixels, whose correct classification is
not of paramount interest, these pixels are not part of
the training at all.

In the process of training the networks, some of
the computed inputs were removed and the neu-
ral network re-optimized. The probability of detec-
tion of precipitating echoes and the false alarm rates
for both networks (with-velocity and reflectivity-only)
were noted. If removing the input had no significant
negative effect on the four statistics, the input was
permanently removed.

Using this process, it was found that retaining just
the mean and variance in the local neighborhood was
enough – use of the median did not improve the ca-

pability of the neural network to learn the data, as
measured by the probability of detection of precipita-
tion, and the false alarm rate. We also found that the
use of the maximum in the local neighborhood hurt
trainability.

This pruning was not done in a rigorous manner.
In particular, the numerous textural features were not
pruned. We did not experiment with varying the set of
features used for each moment – it is likely that we can
use a different subset of features for the velocity than
for the spectrum width, for example. Examination
of the histograms did not yield many insights, since
it is likely that it is a combination of features that
possesses actual discrimination ability.

The final set of features used in the network for
which results are reported were:
1. Lowest scan of velocity, spectrum width and the
second lowest scan of reflectivity: local mean, local
variance, difference between the data value and the
mean
2. The lowest scan of reflectivity: local mean, local
variance, difference between the data value and the
local mean, REC Texture [2], homogeneity, SPIN [7],
number of inflections at a 2dBZ threshold, SIGN [2],
echo size.
3. Vertical profile of reflectivity: maximum value,
weighted average, difference between data values at
the two lowest scans, echo top height at a 5dBZ
threshold.

During the process of training, we also discovered
that one of the training cases was essentially untrain-
able. Rather than increase the complexity of the net-
work, and risk a poor generalization, we chose to omit
part of this data case from the training. The original
reflectivity data, and the trained network’s output on
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Fig. 3. Lowest scan of reflectivity from the KFWS radar
at 1995/04/19 03:58:51UTC and the resulting classification
of a network that included this data set in its training regi-
men. The network can learn to distinguish the AP, but not
the clear-air return to the south-east of the radar. The un-
learnable part of this volume scan (shown by the polygon)
was removed from the training of the neural network.

the data, are shown in Figure 3.
Finally, to improve the robustness of the local

statistics being computed, we set all pixels in the re-
flectivity fields which could conceivably have had a
radar return (those pixels with a height below 12km)
which had a radar return below the noise threshold
(and was therefore set to missing) to be zero. Thus,
the only missing data values correspond to atmo-
spheric regions which are not sensed by the radar at
all.

Although the neural network computes the poste-
rior probability that given the input vector, the pixel
corresponds to precipitating echoes, adjacent pixels
are not truly independent. Hence, the final 2D polar
grid of posterior probabilities are mean filtered, and
it is this mean-field that is used to perform quality
control on the radar data. If the mean-field value is
greater than 0.5, the pixel is assumed to have good
precipitating data, and all elevations at that location
are accepted. Bad data values are wiped out en-
masse, although some researchers (e.g: [7]) use data
from higher elevations in such cases.

III. Results and Conclusions

A diverse set of volume scans of weather data were
chosen and bad echoes marked on these volume scans
by a human observer. The volume scans were pro-
cessed using the trained neural network and using the
Radar Echo Classifier [2]. Comparisions were made on
a pixel-by-pixel basis of all pixels for which at least one
of the elevations had a reflectivity value greater than
zero dBZ. Performance is evaluated using the Receiver
Operating Characteristics (ROC) curve [15], shown in
Figure 4. In the ROC curve, the area under the curve
can be taken as a measure of classifier skill (with areas
above 0.5 showing considerable skill). Several thresh-

Fig. 4. A ROC curve showing the performance of the
neural network on the training and testing data sets. Also
shown, for comparision, is the performance of the Radar
Echo Classifier. Three thresholds are marked on each of
the curves – a indicates a 0.25 threshold, x a 0.5 threshold
and c a 0.75 threshold. Classifiers with curves above the
dashed diagonal can be considered skilled. The closer a
classifier is squashed to the left and top boundaries of the
graph, the better it is.

olds are marked , so the sensitivity of classifier perfor-
mance to the choice of threshold, as well as the effect
of different thresholds may be gauged immediately.

A. Comparision with Cornelius

As mentioned in the introduction, [10] utilized a
neural network to solve the same radar quality prob-
lem. The network developed in this paper has a sig-
nificantly better performance. The reasons probably
include:
1. The choice of error function: we minimized
a combination of cross-entropy and square-weights
whereas [10] minimized the mean absolute error, us-
ing the cross-entropy only for stopping criteria. The
cross-entropy is a better measure of performance for
a classifier [12] and the use of a weight-decay allows
greater generalization [13].
2. Our use of a separate validation set to determine
stopping criteria, whereas [10] did not, relying instead
on two measures of performance on the same data set.
3. We used 4 or 5 hidden nodes, whereas [10] with
a lesser number of inputs than our network used 15
hidden nodes.
4. Our use of nearly all pixels (other than the pre-
classified ones) in our data cases for training, whereas
the pixels were chosen by hand or by random sampling
by [10]. While a smaller selection improves training
speed, the network is not trained on the full diversity
of the data.
5. Our use of costs, (cn in Equation 3) to direct the
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Fig. 5. Testing cases: (a) A data case with significant AP (b) Edited using the neural network (c) Edited using REC.
Note that some very high-reflectivity AP values remain. (d) Typical spring precipitation (e) Edited using the neural
network (f) Edited using REC. Note that quite a few good echoes have been removed from the stratiform rain region.

network to expend its training where the errors are
less tolerable.
In contrast, the additional local neighborhood and
vertical profile features we used provide only a small,
incrementatal benefit.

As can be readily seen, the neural network out-
performs the fuzzy logic automated technique of [2],
one of a a number of algorithms that perform simi-
larly [17]. The first three images of Figure 5 show a
case of significant AP/GC while the last three show a
significant precipitation event. Looking at these im-
ages, it is possible to put the quantitative measures in
context. We see that a lot of good data is misclassified
by the Radar Echo Classifier. At the same time, the
neural network makes its mistakes on lower reflectiv-
ity values, but gets higher reflectivity values (whether
AP/GC or good data) correct more often. This is a
consequence of how the network was trained.
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