
Numerical Weather 


Prediction 

In about a week  
(3 lectures)



A bit of history….

• NWP was born at the 
Institute for Advanced 
Study in Princeton in 
1940’s – first electronic 
computer



• Since then, NWP has 
been one of the 
heaviest users of 
supercomputers.



How far have we come?   
Resolving (sort of) a single storm!

LFM Grid Point (Δx ~ 190 km)!
7 vertical levels

WRF Grid (Δx ~ 4 km)!
50 vertical levels

1975 2005

A ~35,000x increase in CPU due to grid! (really more like ~106 increase with physics changes)!
A typical forecast today (1 hour wallclock) would require > 5 years to run on a 1975 computer!
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Multiscale Nature of 
Atmospheric Dynamics
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these equations support. Some aspects of atmospheric dynamics are strongly nonlin-
ear, and numerical models must handle various nonlinear processes in a satisfactory
way. In this context we will mention Eulerian and Lagrangian timescales for atmo-
spheric dynamics, conservation properties, and turbulent cascades. Conservation
properties and turbulent cascades will be discussed again in Chap. 11. We begin
here by emphasizing the complex and multiscale nature of atmospheric dynamics.

1.2 The Multiscale Nature of Atmospheric Dynamics

Figure 1.1 indicates schematically the time scales and horizontal spatial scales of a
range of atmospheric phenomena. On the largest spatial scales (comparable to the
Earth’s radius) and seasonal timescales are large scale circulations such as that asso-
ciated with the Asian summer monsoon. Undulations in the jet stream and pressure
patterns associated with the largest scale Rossby waves (called planetary waves)
also have length scales of order 104 km. Cyclones and anticyclones have length
scales of a few thousand kilometers and timescales of order 10 days. The transi-
tion zones between relatively warm and cool air masses can collapse in scale to
form fronts with widths a few tens of kilometers. Convection can be organized on a
huge range of different scales, from the tropical intraseasonal oscillation on scales
of thousands of kilometers and a timescale of months, through supercell complexes
and squall lines of order 10 km across with lifetimes of several hours, down to indi-
vidual small cumulus clouds on scales of a few hundred meters and a few minutes.
These small cumulus clouds are formed when the turbulent eddies in the boundary
layer lift and cool air far enough for condensation to occur. The boundary layer is
the lowest few hundred meters of the atmosphere, where the dynamics is dominated
by turbulent transports. The turbulent eddies range in scale from a few hundred
meters (the boundary layer depth) down to the millimeter scale at which molecular
diffusion becomes significant.

Fig. 1.1 Schematic showing
the range of time and
horizontal scales of different
atmospheric phenomena
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What is a Computer 
Model?

• Take the equations of fluid mechanics and 

thermodynamics that describe atmospheric processes.



• Convert them to a form where they can be 

programmed into a large computer.



• Solve them so that this software representation of 

the atmosphere evolves within the computer.



• This is called a “model” of the atmosphere



Scales of Models


Area Coverage and Resolution

• Global models  - span the planet, represent large-scale 

atmospheric processes (dx ~ 20 km)



• Limited-area synoptic scale and mesoscale models – span 

continental, to state, to metro-areas; represent smaller-

scale atmospheric processes (dx ~ 3 km)



• Computational fluid-dynamics (CFD) models – resolve flow 

around buildings, in street canyons, aircraft, etc.  

(dx ~ 1-100 m)



Scales of processes vs models

•Jet streams


•High and low 


 pressure centers


•Troughs and 


 ridges


•Fronts

•Thunderstorms


•Convective complexes


•Tropical storms


•Land/sea breezes


•Mountain/valley breezes


•Downslope wind storms


•Gap flows


•Cold air damming


•Nocturnal low-level jets


•Lake-effect snow bands

Synoptic MesoGlobal

•Planetary waves


•El Nino


•MJO


•AO



•Street-canyon flows


•Channeling around 
buildings, wakes



•Vertical transport on 
upwind and warm faces 
of buildings



•Flow in subway tunnels



Urban



Basic Equations
•Apply to many different types of 
atmospheric models



 - operational weather prediction models


 - global climate models


 - building-scale urban (CFD) models


 - research atmospheric models


 - models of flow over an airfoil


 


• In all cases, they are the equations of fluid 
dynamics applied to the atmosphere



Governing Equations
• Conservation of momentum (Newton’s 2’d law)



–3 equations for accelerations of 3D winds (F = Ma)


!

• Conservation of mass


–1 equation for conservation of air (mass continuity)


–1 equation for conservation of water 

• Conservation of energy


–1 equation for the first law of thermodynamics


!

• Relationship between p, V, and T


–1 equation of state (ideal gas law)



More on equations…..
• Almost every model uses a slightly different 
set of equations.


!

• Why?


–Application to different parts of the world


–Focus on different atmospheric processes


–Application to different time and spatial 
scales


–Ambiguity and uncertainty in formulations


–Tailoring to different uses



Starting Pt:  Euler Equations

1 Basic Dynamics Relevant to the Design of Dynamical Cores 5

The atmospheric spectrum of horizontal kinetic energy is observed to have a
slope very close to k!3 on large scales and k!5=3 on small scales, where k is the
horizontal wavenumber, with a gradual transition between the two at scales of a few
hundred kilometers (Nastrom and Gage 1985). The dashed line in Fig. 1.1 is con-
sistent with this observed spectrum, re-expressed in terms of length and time scales.
The dynamically important phenomena mentioned above are those that dominate
the atmospheric energy spectrum, and all lie close to this dashed line. Molecular
diffusion, in contrast, is only significant to the left of the continuous line; thus it
is completely negligible for atmospheric dynamics until we reach scales of order
1mm (see Chap. 2).

All of the phenomena along the dashed line in Fig. 1.1 are important for weather
and climate, and so need to be represented in numerical models. Important phe-
nomena occur at all scales – there is no significant spectral gap. Moreover, there are
strong interactions between the phenomena at different scales, and these interactions
need to be represented. However, computer resources are finite and so numerical
models must have a finite resolution. The shaded region in the figure shows the
resolved space and time scales in a typical current day climate model. The important
unresolved processes cannot be neglected and so must be represented by sub-grid
models or parameterizations. The lack of any spectral gap makes this task more
challenging. The emphasis in this series of lectures is on how we model the resolved
dynamics; however, it should be borne in mind that equally important is how we
represent the unresolved processes, and how we represent the interactions between
resolved and unresolved processes. There are significant research challenges in all
three areas.

Also shown in Fig. 1.1 are two dotted curves. These correspond to the disper-
sion relations for internal inertio-gravity waves and internal acoustic waves (see
Sect. 1.4). The fact that the dotted lines lie significantly below the energetically
dominant processes on the dashed line indicate that inertio-gravity waves and
acoustic waves are relatively fast processes. One consequence of this is that inertio-
gravity waves and acoustic waves are energetically weak compared to the dominant
processes along the dashed curve. The fact that these waves are fast puts strong con-
straints on the size of timestep that can be used in numerical models with explicit
time schemes. At the same time, the fact that they are energetically weak means
that we do relatively little damage if we distort their propagation by using a semi-
implicit time scheme in order to avoid the timestep restriction. See Chaps. 5 and 6
for a detailed discussion.

1.3 Governing Equations

The governing equations for a compressible fluid in a frame of reference rotating
with angular velocity ˝ may be written in the form

@!

@t
Cr ! .!u/ D 0; (1.1)
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D!

Dt
D Q; (1.2)

Du
Dt
C 2˝ ! u D "1

"
rp " r˚ C F: (1.3)

Here, " is the fluid density, u is the fluid velocity vector, ! is the potential tem-
perature, p is pressure, and ˚ is the geopotential. D=Dt represents the derivative
following a fluid parcel.Q is the diabatic source term for potential temperature and
F represents any forces not already accounted for, for example molecular viscosity.

Equation (1.1) describes conservation of mass of the fluid. For simplicity, here we
restrict attention to a single phase fluid of fixed composition. The real atmosphere
contains varying amounts of water vapor and condensed water, and this complicates
the governing equations.

Equation (1.2) is one form of the thermodynamic equation; ! is related to the
other thermodynamic variables through

! D T
!
p0

p

"!
; (1.4)

(T is temperature, p0 is a constant reference pressure, often taken to be 105 Pa,
# D R=Cp where R is the gas constant for dry air and Cp is the specify heat
capacity at constant pressure), along with the equation of state for an ideal gas

p D RT": (1.5)

In adiabatic flow the source term Q vanishes, so that the ! of an air parcel is con-
served. If an air parcel of potential temperature ! were moved adiabatically from
its current pressure p to the reference pressure p0 its final temperature would be
T D ! . The potential temperature is closely related to the specific entropy $:

$ D Cp ln ! C const: (1.6)

Equation (1.3) is the momentum equation; it expresses Newton’s second law of
motion for a fluid. Because we are in a rotating frame, two new terms with the
appearance of ‘virtual’ forces enter the equation of motion. One is the Coriolis term
2˝!u. The other is the centrifugal term ˝!.˝!u/. However, the centrifugal term
may be written as the gradient of a certain potential; this potential is then combined
with the gravitational potential to obtain the geopotential ˚ . The centrifugal term,
therefore, does not appear explicitly.

For the flow regime of the Earth’s atmosphere, rotation is extremely important.
On synoptic scales, the Coriolis term is one of the dominant terms in the horizontal
components of the momentum equation. Along with stratification effects, rotation
gives atmospheric flow a distinctive character that is qualitatively quite different
from other flows.

louiswicker@me.com
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from other flows.
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Solving an equation 
example…..

The equations describe how 
the atmosphere changes 
with time.  For example, 
one equation would be:



 


∂Temp
∂t

= −u ⋅∇Temp + !Qshort + !Qlong

+ !Qconduction + !Qconvection + !Qlongwave + !Qevap + !Qcond



Solving an equation 
example…..

The equations describe how 
the atmosphere changes 
with time.  For example, 
one equation would be:



 

 Change in Temp at a point = advection


+ shortwave radiation +longwave radiation


+ conduction + convection


+ evaporation + condensation 



How the Model Forecasts 

Time  ! 
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T now 
(observed)         

X 
X 

Model-calculated 
T changes 

X 
X 

X 
X 



How a Model “Forecasts”
This equation is solved for a three-
dimensional “matrix” of points (or a 
grid) that covers the atmosphere 
from the surface to some level 
near the top of the atmosphere.



Here is a 2-dimensional slice 
through the grid in the X-Z plane 
(west-2-east, sfc-2-trop)
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Approximate Eq. Sets
Spherical geoid:  assume the earth is a perfect sphere, so gravity is parallel to radius 
direction from earth’s center.  Often used.



fastest wave speed:  U(100) + Sound waves (350) ~ 450 m/s



(Quasi) Hydrostatic approximation:  Dw/Dt=0  Good for horizontal scales > 10 km.



fastest wave speed:  U(100) + Lamb (surface) wave (350) ~ 450 m/s



Anelastic approximation:  form of incompressibility - filters out sound waves from system.  
Good approximation for meso- and storm-scale (maybe not planetary scales).



fastest wave speed:  U(100) + Gravity waves (50) ~ 150 m/s



Shallow atmosphere:  



assume 1/r in equations ~ 1/a (neglect distance above ground)



Coriolis acts only in vertical



a few other small terms associated with spherical metrics neglected
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impose less of a restriction on the time step. Many past and present climate mod-
els make the hydrostatic and shallow atmosphere approximations (leading to the
so-called hydrostatic primitive equations). Many models of small-scale dynamics
use some form of anelastic equations. Unfortunately neither the hydrostatic nor
the anelastic approximation is valid on all horizontal scales. Consequently, sev-
eral recently developed atmospheric models, designed to work from global scales
down to kilometer scales, use the fully compressible equations. (Very recently,
some progress has been made towards acoustically filtered equation sets valid on
all horizontal scales: Durran 2008; Arakawa and Konor 2009).

The different approximate equation sets can be arranged systematically into a
hierarchy. Figure 1.2 shows part of that hierarchy. Some of these approximate
equation sets have been discussed already above. The quasigeostrophic, plane-
tary geostrophic, and semi-geostrophic equation sets filter inertio-gravity waves as
well as acoustic waves. The quasigeostrophic equations will be introduced briefly

Quasigeostrophic
equations Planetary

geostrophic

Spherical
geoid

Compressible
Euler
equations

Quasi−
hydrostatic

Shallow
atmosphere

Hydrostatic
shallow
atmosphere

Anelastic

Boussinesq

Quasigeostrophic
shallow water
equations

Barotropic
vorticity
equation

Semi−
geostrophic

Shallow
water
equations

Fig. 1.2 Part of the hierarchy of frequently used approximate equation sets for atmospheric
dynamics
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Mesoscale models


Storm-scale models

“Global” models

1990-2005



Global, mesoscale


and storm-scale models
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Today….2020….



3D Equations
Requirements? (George Bryan talk)



non-hydrostatic & compressible



minimum number of approximations



solver should conserve mass



Energy Conservation?



small scales and short integrations:  desired



global scale (climate):  REQUIRED



3D Equations
Why mass?



transport/dispersion applications



longer integration times



certain convective applications (hurricane) this makes a big difference



Why not energy conservation?



Its hard!  Complexity 



Dissipative heating



sub-grid turbulence



higher-order diffusion



PBL parameterization



Moist processes



sedimentation of hydrometeors



dissipative heating around falling hydrometeors



no agreement about exact form of equations with mixtures of ice and water



Equation Set 1


(Giraldo and Restelli JCP 2009)

this paper allow for arbitrarily high-order spatial operators to be constructed by an input parameter; all the
results presented in Section 6 use either 8th or 10th order polynomials per element.

It should be mentioned that there are other numerical methods in the literature that have much to offer
nonhydrostatic mesoscale atmospheric modeling. Most notably are the weighted essentially non-oscillatory
(WENO) [15,27,45], spectral finite volume (SFV) [56], and spectral difference (SD) [36] methods. These meth-
ods possess many of the best features of the DG method (such as high-order accuracy, conservation, and the
promise of monotonicity). The reason we have chosen SE and DG methods for our study is that they can be
constructed to high-order on unstructured grids (either with quadrilateral or triangular elements). WENO,
SFV, and SD methods do not offer the same level of geometric flexibility to use unstructured grids in combi-
nation with high-order accuracy. There are triangular WENO schemes but only for very specific stencils (see
[27] for unstructured WENO methods up to fourth order); this is true also for the SD method although this
method is still in its infancy and higher order stencils will undoubtedly be constructed in the future. The SFV
method, unfortunately, requires the elements to be planar which is of little use in our future work. In this
paper we only consider x–z models but for the three-dimensional model, we envision using curved triangular
prisms in order to take advantage of unstructured grids in the horizontal (x–y) direction; this will be most eas-
ily achieved with either SE or DG methods.

The remainder of the paper is organized as follows. Section 2 describes the three forms of the Euler and
Navier–Stokes equations that we study in this work. In Section 3 we discuss the seven test cases used to com-
pare our numerical models. Section 4 describes the spectral element and discontinuous Galerkin formulation
of the governing equations including the basis functions, numerical fluxes, and boundary conditions. In Sec-
tion 5 we describe the explicit third order Runge–Kutta method we use to march the equations in time and the
filters for maintaining stability. In Section 6 we present the results of the SE and DG models using all seven
test cases. Finally, in Section 7 we summarize the key findings of this research and propose future directions.

2. Governing equations

In this paperwe study three different forms of the equations that govern the dynamics of nonhydrostatic atmo-
spheric processes. These three equation sets are the Euler equations that have been used for many years in com-
putational fluid dynamics (CFD). One of the sets that we explore is the complete compressible Navier–Stokes
equations with the physical viscosity defined by the Stokes hypothesis. It should be pointed out, however, that
we use viscosity for the Navier–Stokes equations only for comparing with other previously published model
results (see the density current test in Section 6); the main focus of this work is on the inviscid form of the equa-
tions (i.e. the Euler equations). Specifically, we study the following three equation sets:

1. (set 1) the non-conservative form using Exner pressure, momentum, and potential temperature,
2. (set 2) the conservative form using density, momentum, and potential temperature, and
3. (set 3) the conservative form using density, momentum, and total energy.

For the purposes of this study we restrict ourselves to two dimensions (x–z) and omit the Coriolis terms.

2.1. Equation set 1

Equation set 1, which has been used extensively in mesoscale modeling, reads

op
ot

þ u " $pþ R
cv
p$ " u ¼ 0;

ou
ot

þ u " $uþ cph$p ¼ $gkþ lr2u;

oh
ot

þ u " $h ¼ lr2h;

ð1Þ

where the solution vector is ðp; uT ; hÞT , p ¼ P
P 0

! "R=cp
is the Exner pressure, u ¼ ðu;wÞT is the velocity field,

h ¼ T
p is the potential temperature, and T denotes the transpose operator. In these equations P is the pressure,
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a.ka., Klemp-Wilhelmson/MM5 equations 


(K&W JAS, 1978)



Equation Set 2


(Giraldo and Restelli JCP 2009)

a.ka., WRF/MPASS equations 


(Klemp et al. 2007 MWR)

P 0 is the pressure at the surface (P 0 ¼ 1" 105 Pa) and T is the temperature. Other variables and symbols
requiring definition are the gradient operator $ ¼ ð o

ox ;
o
oz Þ

T , the gravitational constant g, the gas constant
R ¼ cp % cv, the specific heats for constant pressure and volume, cp and cv, the dynamic viscosity l, and the
directional vector along the vertical (z) direction k ¼ ð0; 1ÞT . The viscosity, l, is zero for all tests except for
the density current.

The advantage that set 1 has over the other two sets is that it is completely self-contained, that is, it can be
solved with only four equations defining the four unknowns (five in three-dimensions). The only disadvantage
is that a model based on these equations cannot conserve either mass or energy. Note that the mass equation is
defined by a conservation-like law for the Exner pressure which cannot be formally conserved. Existing meso-
scale models based on similar equations to set 1 include (but are not limited to) ARPS [60] (University of
Oklahoma), COAMPS [26] (US Navy), LM [17] (German Weather Service), MM5 [25] (Penn State/NCAR),
and NMM [29] (NCEP).

Introducing the following splitting of the Exner pressure and potential temperature pðx; tÞ ¼ !pðzÞ þ p0ðx; tÞ
and hðx; tÞ ¼ !hðzÞ þ h0ðx; tÞ where the mean values are in hydrostatic balance:

cp!h
d!p
dz

¼ %g ð2Þ

allows us to rewrite Eq. (1) as

op0

ot
þ u ' $p0 þ w

d!p
dz

þ R
cv
ðp0 þ !pÞ$ ' u ¼ 0;

ou
ot

þ u ' $uþ cph$p0 ¼ g
h0

!h
kþ lr2u;

oh0

ot
þ u ' $h0 þ w

d!h
dz

¼ lr2h;

ð3Þ

which has been expanded and simplified in order to enforce hydrostasis; Eq. (3) is the form used for all the test
cases in Section 6.

2.2. Equation set 2

Equation set 2 is gaining popularity in the literature because it is not too dissimilar from set 1 and is in
conservation form (for the inviscid case only). These equations are written as follows:

oq
ot

þ $ ' ðquÞ ¼ 0;

oqu
ot

þ $ ' ðqu( uþ PI 2Þ ¼ %qgkþ $ ' ðlq$uÞ;

oqh
ot

þ $ ' ðqhuÞ ¼ $ ' ðlq$hÞ;

ð4Þ

where the conserved variables are ðq; quT ; qhÞT , q is the density, u ¼ ðu;wÞT is the velocity field, and h is the
potential temperature which we have defined previously. The pressure P which appears in the momentum
equation is obtained by the equation of state

P ¼ P 0
qRh
P 0

! "cp
cv

ð5Þ

and is required in order to close the system. Additional terms requiring definition are the tensor product ( and
the rank-2 identity matrix I 2; this term essentially converts the pressure (which is a scalar) into a tensor.

The advantage that set 2 has over set 1 is that it is in conservation form, which when using methods that are
formally conservative, allows the model to conserve all quantities. Note, however, that if the discretization
method is not formally conservative, then this set should have little or no advantage over set 1. Existing meso-
scale models based on this equation set includes WRF [48] and the model by Ahmad and Lindeman [1].
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Equation Set 3


(Giraldo and Restelli JCP 2009)

CFD equations


Total energy is thermodynamic variable

Upon splitting of the density and potential temperature as qðx; tÞ ¼ !qðzÞ þ q0ðx; tÞ and
hðx; tÞ ¼ !hðzÞ þ h0ðx; tÞ where the mean values are in hydrostatic balance, Eq. (4) can be written as

oq0

ot
þ $ % ðquÞ ¼ 0;

oqu
ot

þ $ % ðqu& uþ P 0I 2Þ ¼ 'q0gkþ $ % ðlq$uÞ;

oqh0

ot
þ $ % ðqhuÞ ¼ $ % lq$hð Þ;

ð6Þ

where P 0 ¼ P ' P and P ¼ P ð!q; !hÞ; Eq. (6) is the form used for all the test cases in Section 6.

2.3. Equation set 3

Equation set 3 is the form used in computational fluid dynamics (CFD, e.g. [18]) and has not been used in
atmospheric studies because the energy equation uses total energy rather than potential temperature which
then requires an additional step to compute potential temperature in order to use existing (moist) sub-grid
scale physical parameterizations. However, as we show in this paper, this equation set has some advantages
that may be worth considering for the development of future mesoscale numerical weather prediction
(NWP) models.

These equations are written as follows:

oq
ot

þ $ % ðquÞ ¼ 0;

oqu
ot

þ $ % ðqu& uþ PI 2Þ ¼ 'qgkþ $ % Fvisc
u ;

oqe
ot

þ $ % ½ðqeþ P Þu) ¼ $ % Fvisc
e ;

ð7Þ

where the conserved variables are ðq; quT ; qeÞT , q is the density, u ¼ ðu;wÞT is the velocity field,
e ¼ cvT þ 1

2 u % uþ u is the total energy, and u ¼ gz is the geopotential height. The pressure P is obtained
by the equation of state which, in terms of the solution variables, is written as

P ¼ R
cv
q e' 1

2
u % u' u

! "
: ð8Þ

Note that the pressure, Eq. (8), for set 3 is less expensive to compute than the pressure for set 2 (Eq. (5)). This
will be shown to have repercussions in the relative computational costs of these two equation sets.

The viscous fluxes Fvisc are defined as follows:

Fvisc
u ¼ l½$uþ ð$uÞT þ kð$ % uÞI 2) ð9Þ

and

Fvisc
e ¼ u % Fvisc

u þ lcp
Pr

$T ; ð10Þ

where c ¼ cp
cv
is the specific heat ratio, k ¼ ' 2

3 comes from the Stokes hypothesis, and Pr is the Prandtl number.
This equation set directly represents the fundamental principles of conservation of mass, momentum and
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Viscous heating!


Dissipation adds heat to system!



Important in hurricanes BL!


Most atmospheric models 


DO NOT account for this


(especially cloud models!)



NWP Basics:  


Important Choices…

What are you trying to predict?



T/Wind/Visibility/Rainfall/Precip Type



Severe storms?  Hurricanes?



What resolution do you need to predict it?



How accurate is your model predicting it?



How fast can it run on your computer?



(When do your users need the output?)



What’s important?

What are you trying to predict?



What resolution do you need to predict it?



How fast can it run on your computer?



How accurate is your model predicting it?



Factors controlling model 
efficiency….

Length of forecast



Size of numerical grid (resolution needed)



Time step needed for stable integration



Time step needed for accurate integration



Cost of dynamical core



Cost of physics (usually >> dynamical core)



How well model “scales” on your operational computer



End Lecture 1



Begin Lecture 2

Notes are available at


http://www.nssl.noaa.gov/users/lwicker/public_html/

NWP_5004.pdf



Solution Basics
An example of one momentum equation:  
1-d wind accelerated by only the pressure 
gradient force



� 

Du
Dt

= − 1
ρ
∂p
∂x

Computers cannot analytically solve even this 
very simple equation!



Why?



Solution Basics
•  The problem:  computers can perform 

arithmetic but not calculus 

•  The solution:  numerical methods � 

+

� 

d f( )
dx

� 

f( )dx∫

� 

−

� 

÷

� 

×



1-D Advection of a parcel (analytical)

U > 0

Solution Basics



1-D in space grid


1-D in time grid

The simplest model grid?

Solution Basics



Solution Basics
use knowledge of 
analytical PDE 

solution to


approximate 
solution……

Tj
n+1 −Tj

n

Δt
= −Uo

Tj
n −Tj−1

n

Δt

U > 0



U > 0

Solution Basics
use knowledge of 
analytical PDE 

solution to


approximate 
solution……

Tj
n+1 −Tj

n

Δt
= −Uo

Tj
n −Tj−1

n

Δt



Example:  Upwind scheme
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Δx

Tj
n+1

Tj
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n −UoΔt
Δx

Tj
n −Tj−1

n( )

Tj
nTj−1

nTj−2
n

Tj−1
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UoΔt
Δx

UoΔt

UoΔt ≤ Δx

Stable!

Δt

Δt

Δt

Δx Δx Δx
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Δx Δx Δx

Example:  Upwind scheme
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Dependence



for FDA
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U1Δt ≥ Δx

Example:  Upwind scheme



Tj
n+1

Tj
nTj−1

nTj−2
n

Tj−1
n+1

UoΔt

STABLE!

UΔt
Δx

<1
Needed for Stability!

CFL condition

UNSTABLE!


dt too large

UoΔt

UoΔt
Δx

Δt

Δt

Δt

Δx Δx Δx

Domain of 


Dependence



for FDA
UoΔt ≤ Δx

U1Δt ≥ Δx

Example:  Upwind scheme



Tj
n+1

Tj
nTj−1

n
Tj−2

n

Tj−1
n+1

Still


STABLE!

New Domain of 


Dependence

UΔt
Δx

<1
New time step does not violate

CFL condition for either U

Now 


STABLE!

Δx Δx Δx

U1
Δt
2

≤ Δx

Uo
Δt
2

≤ ΔxΔt 2

Δt 2

Δt 2

Δt 2

Example:  Upwind scheme



Solution Basics
In NWP:



dt is set to 
maintain CFL 

stability


for a given



dx


and fastest 
flow/wave 
speeds



Approximate Eq. Sets
Spherical geoid:  assume the earth is a perfect sphere, so gravity is parallel to radius 
direction from earth’s center.  Often used.



fastest wave speed:  U(100) + Sound waves (350) ~ 450 m/s



(Quasi) Hydrostatic approximation:  Dw/Dt=0  Good for horizontal scales > 10 km.



fastest wave speed:  U(100) + Lamb (surface) wave (350) ~ 450 m/s



Anelastic approximation:  form of incompressibility - filters out sound waves from system.  
Good approximation for meso- and storm-scale (maybe not planetary scales).



fastest wave speed:  U(100) + Gravity waves (50) ~ 150 m/s



Shallow atmosphere:  



assume 1/r in equations ~ 1/a (neglect distance above ground)



Coriolis acts only in vertical



a few other small terms associated with spherical metrics neglected



What do the PDEs look like? 

                                                                                                                             

 

 

                                                                                                

 

 

                                                                   

 

 

Equations of motion (ECWMF model) 

East-west wind 

North-south wind 

Temperature 

Humidity 

Continuity of mass 

Surface pressure 



Got Grids?
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Domains

� Number of dimensions

From Josh Hacker

1D: Single-column model

2D: Simulation of density current

3D: Simulation of thunderstorm

From Joe Klemp

From Joe Klemp



Domains
Number of dimensions



Degrees of freedom and complexity of grid 
structure



Shape (global, hemispheric, limited area)



Vertical coordinate



resolution



Typical Horizontal Grids
Global Model 



points



volumes (squares, hexagons, triangles, pentagons)



spherical harmonics



Limited area



grid points



grid volumes (squares, hexagons, triangles, pentagons)



element based methods (spectral elements and DG)



Each has various approximation methods (numerical methods)



grid points/grid volumes:  local methods, easy to use distributed memory 
computers



spherical harmonics/element based methods:  “global” methods, more communication 
needed (DG is an exception)



Structured Finite Diff grids
Lat/Lon Grid



grid lines follow lat/lon


what happens to dx at pole?


Flow is same at pole as mid-lat..


NWP trick:  filtering of fields 
along longitudes at high-lats 
makes dx effectively larger…
CFL stability is then maintained



!
 

These models


going out of 


production:



too inefficient



Structured Finite Vol grids

Simple data structures


non-adaptive



run FAST

NICAM


(Japan)

FV-Core  GFDL

Yin-Yang 


Japan



UnStructured Finite 
Element grids

complicated data structure


Fully adaptive



more difficult to run fast

OMEGA


Model



UnStructured Finite Volume 
grids

moderately cmplx data structure


non-time dependent adaptive



runs fast!

MPAS


(NCAR)

ICON


(DWD)



Spectral Grids

East-West:  Fourier Series


North-South:  Legendre Polynomials

T λ,µ,t( ) = T t( )
n=m

N (m )

∑
m=−M

M

∑ Pn
m µ( )eimλ

λ = longitude
µ = sin φ( )

Predicting amplitudes


T(t)



Limited Area Models

3 Grids


One large domain


2 smaller domains



Limited Area Models

Need initial 
conditions 
AND


Boundary 
conditions!



Limited Area Models

Nested grid 
boundary 
conditions are 
tricky between 
grids


Abrupt changes in 
resolution create 
jumps in solution - 
generate noise!



Staggered Grids


A = unstaggered


B = U/V in corner


C = U/V on edges


D = V/U on edges


E = 45 deg B-grid

Most models stagger the velocity variables


Used to increase the computational accuracy of derivatives 
associated with the divergence and PGF terms


Staggering is also used in the vertical


While inconvenient, staggered grids INCREASE the 
accuracy of the numerical solution (so much so you really 
cannot get away from it….) for almost no cost



Vertical Coordinate 
Systems

Height 

Pressure 

Sigma 

ETA 

Isentropic 

Hybrids
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Domains

� Vertical coordinate

From Pielke (2002)



Height as a Vertical 
Coordinate

Advantages 

easy, intuitive 

Disadvantages 

topography hard to deal with…

6

MET 171A

Spectral Model

Advantages
� Derivates are exact
� Improve calculation efficiency since we have continuous functions 

(PDE)
� Represent winds, temperature, topography as a continuous function 

of the form as opposed to discrete form

Disadvantages
� Cost in transforming between real and spectral space
� More physics = slower runs.
� Can not use restricted domains

MET 171A

Increases grid resolution in regions of complex interaction 
(topography or synoptic based)

From Boybeyi et al. (2001)

Unstructured Adaptive Grid: Omega

MET 171A

Vertical Coordinate Systems

� Pressure

� Sigma

� ETA

Unlike the horizontal model structure (grid point or spectral), virtually all 
operational models use discrete vertical structures.

MET 171A

Height as a Vertical Coordinate

Advantages – intuitive, easy to construct equations

Disadvantage – difficult to represent surface of Earth because 
different places are at different heights. Topographic holes.

topography

MET 171A

Pressure as a Vertical Coordinate

Advantages – easy to represent the top of the atmosphere (i.e. p=0) 
and easy to incorporate rawinsonde data.

Disadvantage – difficult to represent the surface of the Earth 
because the pressure changes from one point to another on 
the surface. Topographic “holes”

topography

MET 171A

Sigma as a Vertical Coordinate

Advantages – easy to represent the top and bottom of the atmosphere.

Disadvantage – errors can result in calculation of the horizontal pressure 
gradient force in areas with steep slopes. Eq’s become more complicated.

•Terrain following vertical coordinate. 
•Sigma = Pressure/Surface Pressure
•ı = 0 at the top of the atmosphere.
•ı = 1 at the Earth’s surface.

sfcp
p

 V

Used in many NWP models



Pressure as a Vertical 
Coordinate

Advantages 

top of atmosphere is easy (p=0) 

observations often in terms of pressure (rawinsonde, 
satellite) 

Disadvantages 

pressure has same problems as height.

6

MET 171A

Spectral Model

Advantages
� Derivates are exact
� Improve calculation efficiency since we have continuous functions 

(PDE)
� Represent winds, temperature, topography as a continuous function 

of the form as opposed to discrete form

Disadvantages
� Cost in transforming between real and spectral space
� More physics = slower runs.
� Can not use restricted domains

MET 171A

Increases grid resolution in regions of complex interaction 
(topography or synoptic based)

From Boybeyi et al. (2001)
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Disadvantage – difficult to represent the surface of the Earth 
because the pressure changes from one point to another on 
the surface. Topographic “holes”

topography

MET 171A

Sigma as a Vertical Coordinate

Advantages – easy to represent the top and bottom of the atmosphere.

Disadvantage – errors can result in calculation of the horizontal pressure 
gradient force in areas with steep slopes. Eq’s become more complicated.

•Terrain following vertical coordinate. 
•Sigma = Pressure/Surface Pressure
•ı = 0 at the top of the atmosphere.
•ı = 1 at the Earth’s surface.

sfcp
p

 V

Used in many NWP models



Sigma as a Vertical 
Coordinate

Advantages:  easy to represent top and 
bottom of atmosphere 

Disadvantages:  equations need to be 
transformed, errors in horizontal PGF when 
terrain slope is steep

6

MET 171A

Spectral Model

Advantages
� Derivates are exact
� Improve calculation efficiency since we have continuous functions 

(PDE)
� Represent winds, temperature, topography as a continuous function 

of the form as opposed to discrete form

Disadvantages
� Cost in transforming between real and spectral space
� More physics = slower runs.
� Can not use restricted domains

MET 171A

Increases grid resolution in regions of complex interaction 
(topography or synoptic based)

From Boybeyi et al. (2001)

Unstructured Adaptive Grid: Omega

MET 171A

Vertical Coordinate Systems

� Pressure

� Sigma

� ETA

Unlike the horizontal model structure (grid point or spectral), virtually all 
operational models use discrete vertical structures.

MET 171A

Height as a Vertical Coordinate

Advantages – intuitive, easy to construct equations

Disadvantage – difficult to represent surface of Earth because 
different places are at different heights. Topographic holes.

topography

MET 171A

Pressure as a Vertical Coordinate

Advantages – easy to represent the top of the atmosphere (i.e. p=0) 
and easy to incorporate rawinsonde data.

Disadvantage – difficult to represent the surface of the Earth 
because the pressure changes from one point to another on 
the surface. Topographic “holes”

topography

MET 171A

Sigma as a Vertical Coordinate

Advantages – easy to represent the top and bottom of the atmosphere.

Disadvantage – errors can result in calculation of the horizontal pressure 
gradient force in areas with steep slopes. Eq’s become more complicated.

•Terrain following vertical coordinate. 
•Sigma = Pressure/Surface Pressure
•ı = 0 at the top of the atmosphere.
•ı = 1 at the Earth’s surface.

sfcp
p

 V

Used in many NWP models



A brief foray into


Coordinate Transformations
A(x, y, z,t)= A(x, y,ζ (x, y, z,t),t)

∂A
∂ζ

= ∂z
∂ζ

∂A
∂z

∂A
∂z

= ∂ζ
∂z

∂A
∂ζ

s→ x, y,t

∂A
∂s ζ

= ∂A
∂s z

+ ∂A
∂ζ

∂ζ
∂z

∂A
∂ζ ζ

∇zA = ∇ζA − ∂A
∂ζ

∂ζ
∂z

∇ζ z

∇z i
!
A = ∇ζ i

!
A − ∂

!
A

∂ζ
∂ζ
∂z

∇ζ z

w = Dtz =
∂z
∂t ζ

+ ∂z
∂x ζ

Dtx +
∂z
∂y ζ

Dty +
∂z
∂ζ ζ

Dtζ

w = ∂z
∂t ζ

+ !vh i∇ζ z +ω
∂z
∂ζ ζ

w = ∂z
∂t ζ

+ !vh i∇ζ z +ω
∂z
∂ζ ζ

= !vh i∇ζ z +ω
∂z
∂ζ ζ

let

vert


trans

grad


div

vert velo



Coord Trans Example

Flow along ground  (u > 0)

z3
z2
z1



Flow along ground  (u > 0)

σ 1

σ 2

σ 3

z3
z2
z1

Coord Trans Example



Example
At ground omega = 0

w = !vh i∇ζ z +ω
∂z
∂ζ ζ

ω = 0

ω = 0
ω = 0

Flow along ground  (u > 0)



Example
At ground omega = 0

w = !vh i∇ζ z +ω
∂z
∂ζ ζ

ω = 0

ω = 0
ω = 0

Flow along ground  (u > 0)

grad(Z) ne 0!

∇ζ z = 0

∇ζ z ≥ 0
∇ζ z < 0

∇ζ z = 0



Example
At ground omega = 0

w = !vh i∇ζ z +ω
∂z
∂ζ ζ

ω = 0

ω = 0
ω = 0

Flow along ground  (u > 0)

grad(Z) ne 0!

∇ζ z = 0

∇ζ z ≥ 0
∇ζ z < 0

∇ζ z = 0

W=F(x)

w = 0

w > 0
w < 0

w = 0



Problems with Coord 
Transformations!

All horizontal differences are transformed!



U & V are NOT NOT transformed!



Therefore PGF for U & V must be 
“transformed back” -> not in the plane of the 
transformed coordinate….



results in PGF corr. term error especially near 
ground.



σ 1

σ 2

σ 3

z3
z2
z1

PGF Errors
∇z p = ∇ζ p −

∂p
∂ζ

∂ζ
∂z

∇ζ z

?



σ 1

σ 2

σ 3

z3
z2
z1

∇z p = ∇ζ p −
∂p
∂ζ

∂ζ
∂z

∇ζ z

?
equal mag



opposite sign!

PGF Errors



ETA Coordinate
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MET 171A

Eta as a Vertical Coordinate

Eta is also called the stepped 

mountain coordinate.  No holes in 

topography. Tries to reduce the 

PGF errors using sigma. 

tr

tsr
s pzp

pzp
� 

�
 

)0(
)(K

MSL

P
�

1 K

1�K
ground

•pr(zs) is the pressure in the 

standard atmosphere at height zs
•pt is the pressure at the top of the 

atmosphere

•pr(z=0) is the pressure at sea level 

in the standard atmosphere

Advantage – improves calculation of 

horizontal pressure gradient force. 

Performs much better in regions of 

strong terrain influences

Disadvantage – does not accurately 

represent the surface topography.

(example NAM 218)

Hybrid pressure/sigma system

MET 171A

MET 171A

Vertical Resolution

Increased resolution near PBL

To better resolve processes

MET 171A

Part III: Parameterizations and Model Physics

MET 171A

Why: NWP models cannot resolve weather features and/or processes that 
occur within a single model grid box. 

� This example shows complex flow around a variety of surface features:

� Friction is large over tall trees 

� Turbulent eddies created around buildings or other obstacles 

� Much less surface friction over open areas 

Part III: Parameterizations and Model Physics

MET 171A

What: Simplification of processes in terms of simpler equations with 

physically or empirically derived parameters. 

Instead of complicated physics, let’s use simple statistics…

There are three basic types of parameterization

1. Processes taking place on scales smaller than the grid-scale, 

not explicitly represented by the resolved motion

**Convection, friction, vertical flux of heat/momentum, tracers 

2. Processes that contribute to non-adiabatic processes 

**radiative transfer, clouds

3. Processes that involve additional variables 

** land surface processes (conduction, evaporation, 

evapotranspiration)

Parameterizations are performed in real space between time steps

Parameterization…



Shaved Cell Coordinate172 H. Yamazaki and T. Satomura

(a) (b) (c)

Figure 1. Three z-coordinate topography representations: (a) a box cell method, (b) a partial cell method, and (c) a shaved cell
method. Solid lines and dashed lines describe the coordinates and real topography, respectively. Shaded regions describe the
topographic representations in each model.

thin-wall approximation (Bonaventura, 2000) to avoid
impractically small-time increments, we use another
approach in which small cells are combined with upper
cells to maintain the volume of cells larger than half
a regular cell. This approach has been used in hydro-
dynamic models in the engineering field (e.g. Quirk,
1994), but is applied in this article to an atmospheric
model to maintain reasonable conservation character-
istics and computer resource consumption.

Quasi-flux form fully compressible dynamical equa-
tions developed by Satomura and Akiba (2003) are
employed, because flux form equations are well suited
to the finite-volume method in view of the conser-
vation characteristics. Combining the vertically com-
bined shaved cell (V-CSC) method and the quasi-flux
form equation should result in high-resolution and
highly precise simulations over complex terrain.

To verify the performance of the modified shaved
cell method, the results of two-dimensional numer-
ical simulations of flow over a mountain using the
developed model will be compared to those from a
terrain-following model. The model will be integrated
not only over gentle slopes, but also steep slopes
where terrain-following models induce large trunca-
tion errors.

2. Model description

The quasi-flux form fully compressible equations used
in the present study are

∂ρu
∂t

= −∂ρuu
∂x

− ∂ρuw
∂z

− ∂p ′

∂x
(1)

∂ρw
∂t

= −∂ρwu
∂x

− ∂ρww
∂z

− ∂p ′

∂z
− ρ ′g (2)

∂p ′

∂t
= − cpR

cv p0

(
p
p0

)R/cp
(

∂ρuθ

∂x
+ ∂ρwθ

∂z

)
(3)

∂ρ ′

∂t
= −∂ρu

∂x
− ∂ρw

∂z
(4)

p = p(x ,z ) + p ′
(x ,z ,t) (5)

ρ = ρ(x ,z ) + ρ ′
(x ,z ,t) (6)

∂p
∂z

= −ρg (7)

where the variables are the standard definitions. This
form was determined by Satomura and Akiba (2003),
and has an advantage in that it does not suffer
from the cancellation error because of subtracting
the hydrostatic variable (p or ρ) from the nearly
hydrostatic total variable (p or ρ).

The shaved cell method approximates the topogra-
phy by piecewise linear slopes as shown in Figure 2(a)
where the scalar variables (p ′ and ρ ′) are defined at the
scalar cells denoted by thick lines, while momenta (ρu
and ρw ) are defined at staggered cells. Descretized
forms of Equations (1)–(4) are given using the nota-
tion of Arakawa and Lamb (1977):

∂ρu
∂t

= −δx (Lxρu
x
ux )

Vρu
− δz (Lz ρw

x
uz )

Vρu
− δx p ′

%x
(8)

∂ρw
∂t

= −δx (Lxρu
z
wx )

Vρw
− δz (Lz ρw

z
w z )

Vρw

− δz p ′

%z
− ρ ′z g (9)

∂p ′

∂t
= − cpR

cv p0

(
p
p0

)R/cp

{
δx (Lxρuθ

x
)

Vp′
+ δz (Lz ρwθ

z
)

Vp′

}

(10)

∂ρ ′

∂t
= −δx (Lxρu)

Vp′
− δz (Lz ρw)

Vp′
(11)

where

φ
x ≡ (φi−1/2 + φi+1/2)

2
(12)

φ
z ≡ (φk−1/2 + φk+1/2)

2
(13)

δxφ ≡ φi+1/2 − φi−1/2 (14)

δz φ ≡ φk+1/2 − φk−1/2 (15)

Here, Lz and Lx are the horizontal and vertical
lengths of cell boundaries, respectively. Vp′ , Vρu , and
Vρw are areas of the scalar cells, ρu cells and ρw cells,
respectively. When the cells are not cut by slopes,
Lz and Lx are equal to the horizontal and vertical
resolutions of the model, %x and %z , respectively,

Copyright © 2008 Royal Meteorological Society Atmos. Sci. Let. 9: 171–175 (2008)
DOI: 10.1002/asl
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(a) (b)

Figure 2. Combination of small cells. Thick lines describe the boundaries of the scalar cells. Shaded regions represent topography
in the model. (a) Scalar cells before combination. Scalar cell C exchanges flux with the cells, A, B, D, and E. (b) Scalar cells after
combining cells C and D. Combined cell C′ exchanges flux with cells A, B, E, and F.

and the cell area is equal to !x!z . The boundary
lengths Lx , Lz , and the cell area are zero when the cell
is completely below the slope. The leap-frog scheme
with the Asselin filter (Asselin, 1972) is used for time
integration.

Shaved cells such as cell D in Figure 2(a) have
small areas and require small-time steps to satisfy
the CFL condition. To avoid a significant increase in
the computation time, cells with areas smaller than
!x!z/2 are combined with the upper cells. In case of
Figure 2(a), scalar cell D is combined with the upper
cell C, and Figure 2(b) defines the new cell C′. The
ρu cell and the ρw cell are also combined with each
upper cell. The new cell C′ exchanges flux with scalar
cells A, B, E, and F. This combination process does
not alter the model conservation characteristics. After
the combinations, we can use time steps up to half
the size of the full time step for a regular cell. For
example, some cells have areas less than !x!z/20 in
the test of flow over a bell-shaped mountain in the next
section, if the vertical combinations are not applied.
Therefore, the vertical combinations make it possible
to use about ten times larger time steps than those
without the vertical combinations.

3. Results

Two-dimensional numerical simulations of flow over a
bell-shaped mountain and a semicircular mountain are
performed using the model with the V-CSC method
as well as the model using the terrain-following
coordinates (Satomura, 1989). Both mountains are
located at the center of the domain, x0. A sponge layer
is placed higher than 15 km to avoid the gravity wave
reflection at the rigid top boundary of the domain.
The lower and lateral boundary conditions are free-
slip and cyclic, respectively. The constant horizontal
velocity, U = 10 m s−1, is initially imposed on the

entire domain. The constant Brunt–Väisälä frequency
is N = 0.01 s−1.

The surface height of the bell-shaped mountain is
described as

zs = h

1 + (x − x0)
2/a2 (16)

where h is the height of the mountain and a is the
half-width of the mountain. Here, h = 100 m and a =
5 km are used. The horizontal resolution is 1 km and
the vertical resolution is 50 m. The domain consists
of 2000 and 500 cells in the horizontal and vertical
directions, respectively.

The radius of the semicircular mountain is 1 km.
In this case, the horizontal resolution is 250 m and
the vertical resolution is 500 m. The domain consists
of 2000 and 50 cells in the horizontal and vertical
directions, respectively.

Figure 3(a) and (c) shows the vertical velocity fields
over the bell-shaped mountain calculated by V-CSC
and the terrain-following model, respectively. The
vertical velocity calculated by V-CSC agrees well
with that by the terrain-following model. Figure 3(b)
and (d) shows the momentum flux in V-CSC and
in the terrain-following model normalized by that
in the linear theory, respectively. The momentum
fluxes in V-CSC and in the terrain-following model
are nearly unity, and agree well with that of the
linear theoretical value. Figure 4(a) and (b) depicts the
vertical velocity fields in the case of the semicircular
mountain calculated by V-CSC and by the terrain-
following model, respectively. Referring to the smooth
streamlines of the analytical solution for flow over a
semicircular mountain (Miles and Huppert, 1968), it is
clear that mountain waves reproduced by V-CSC are
more accurate than those reproduced by the terrain-
following model, because the vertical velocity fields in
V-CSC are clearly less noisy than those in the terrain-
following model.

Copyright © 2008 Royal Meteorological Society Atmos. Sci. Let. 9: 171–175 (2008)
DOI: 10.1002/asl



Sleve Coords

shown) with a vertically stretched grid (about an order
of magnitude increase in the grid size from the surface to
the model top) exhibited similar relative reductions in
the resting-atmosphere perturbations using the pressure-
gradient formulation (15)–(16). Further testing with this
simplified Mahrer approach suggests that for steeper ter-
rain, it allows somewhat larger time steps for the acoustic
terms in a split-explicit time integration scheme than the
restricted stability limit using (13) to evaluate the horizontal
pressure gradients (see Steppeler 1995 and Dudhia 1995).

5. Summary

The terrain-following coordinate proposed here is
intended to provide additional flexibility in reducing the
influence of the terrain (particularly steep terrain) on
the coordinate surfaces. With this approach the form
of the coordinate transform is similar to those of basic
and hybrid terrain-following coordinates, but includes
smoothing of the coordinate surfaces that progressively
removes smaller-scale structure with increasing height
above the terrain. This direct smoothing of coordinate
surfaces represents a significant difference from the
SLEVE coordinate proposed by Schär et al. (2002), in
which the terrain h is separated into a large-scale profile
h1 and a residual that contains much of the smaller-scale
structure h2. Following this decomposition, the SLEVE
approach attenuates the influence of all scales in the h1

profile at the same rate with increasing height (through
the hybrid parameter s1) while all scales in the h2 portion
are attenuated at the same rate (regulated by s2). For
s2 , s1, the h2 contribution to the coordinate surfaces is
removed more rapidly with height than the h1 portion,
but within each of the two profiles there is no selective
scale removal. Thus, the STF coordinate appears to pro-
vide more flexibility in providing scale-selective attenua-
tion of terrain influences on the coordinate surfaces across

FIG. 2. Time series of the maximum vertical velocity for the
resting-atmosphere simulations in Fig. 1 for the BTF coordinate
(black), the HTF coordinate (red), the STF coordinate (turquoise),
and the SLEVE coordinate (green).

FIG. 3. Schematic illustrating the interpolation of pressure to
constant height in computing the horizontal pressure gradient with
sloping coordinate surfaces.

FIG. 4. As in Fig. 2, but using a simplified version of Mahrer’s
technique for computing the horizontal pressure gradient, as ex-
pressed in (16).
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WRF Vertical Coordinate
Based on Laprise (1992) 



non-hydrostatic pressure coordinate



coordinate surfaces “move” up and down locally in 
response to changes in thickness of layers



Nice in theory - pain in practice



MPAS (Skamarock’s next model) is Sigma-Z coordinate



Easier for ensemble data assimilation…..



WRF Vertical Coordinate



End Lecture 2



Begin Lecture 3

Numerical Methods



Representing PDEs 
An example of from momentum equation: 

U-wind accelerated by only the pressure gradient 
force........

Du
Dt

= − 1
ρ
∂p
∂x

∂u
∂t

= −u ∂u
∂x

− v ∂u
∂y

−w ∂u
∂z

− 1
ρ
∂p
∂x

How do you represent these on a computer?



Computers do arithmetic... 
NOT Calculus! 

• Numerical methods 
•  represents the continuous with discrete approximations 
•  vector calculus 
•  integration 
•  interpolation 

• Goal: convert spatial and temporal derivatives into algebraic 
equations that computers can solve using addition, subtraction, 
multiplication, and division (and a few others operations) 

• Classes of numerical methods 
• Finite difference and finite volume 
•  basis functions are Taylor series 

• Spectral and Galerkin methods (finite element, DG, SE) 
• based on fourier series or local polynomials



For now, lets focus on 
Finite Difference approximations 
(closely related to FV methods)

j j+1 j+2 j+3j+1j+2

F(x)



For now, lets focus on 
Finite Difference approximations 
(closely related to FV methods)

j j+1 j+2 j+3j-1j-2

F(x)’s represent a set of discrete values

F(x j−2 )

F(x j−1) F(x j )

F(x j+1)

F(x j+2 )



How to take a derivative?

j j+1 j+2 j+3j-1j-2

F(x j−2 )

F(x j−1) F(x j )

F(x j+1)

F(x j+2 )

forward difference: ∂F
∂x xj

=
F(x j+1)− F(x j )

Δx

white line is correct slope



How to take a derivative?

j j+1 j+2 j+3j-1j-2

F(x j−2 )

F(x j−1) F(x j )

F(x j+1)

F(x j+2 )

backward difference: ∂F
∂x xj

=
F(x j )− F(x j−1)

Δx

white line is correct slope



How to take a derivative?

j j+1 j+2 j+3j-1j-2

F(x j−2 )

F(x j−1) F(x j )

F(x j+1)

F(x j+2 )

centered difference: ∂F
∂x xj

=
F(x j+1)− F(x j−1)

2Δx

white line is correct slope



How do we know what is 
the best approximation?
In some sense - we don’t, but we can perform a Talyor 
series analysis to estimate the errors associated with 
a particular scheme



 Talyor series analysis is also used to determine 
whether as dx ~ 0, does the discrete FDA approximate 
the PDE (sometimes it does not if you are not careful).



It is also used, as a first step with a stability analysis 
method, to determine what the largest time step is 
permissible for the discrete version of the PDE.



Example:  Finite Differences 
How to do calculus on a computer?   
 
 
 
Classic Taylor series expansion about “x” 
 
To create a derivative... 
 
 

f (x ± Δx) = f (x)± Δx ∂ f
∂x x

+ Δx2

2!
∂2 f
∂x2 x

± ...+ Δxn

n!
∂n f
∂xn x

f (x + Δx)− f (x − Δx) = 2Δx ∂ f
∂x x

+ 2Δx
2

2!
∂3 f
∂x3 x

+ ...+ Δx2(n+1)

(n +1)!
∂2(n+1) f
∂x2(n+1) x

∂ f
∂x x

= f (x + Δx)− f (x − Δx)
2Δx

= Δx2 ∂
3 f
∂x3 x

+ ...+ Δx2n+1

2n +1( )!
∂2n+1 f
∂x2n+1 x

rearranging...



Example:  Finite Differences 
•What to do with those extra higher-order derivatives? 
 
 
 

•We TRUNCATE!  E.g., approximate…here one neglects 
the terms associated with the third-derivative of function 
(f).   
 
 

•  
 
 
 

∂ f
∂x

⎛
⎝⎜

⎞
⎠⎟ i
= f (x + Δx)− f (x − Δx)

2Δx
= fi−1 − fi+1

2Δx
+O Δx2( )

∂ f
∂x x

= f (x + Δx)− f (x − Δx)
2Δx

= Δx2 ∂
3 f
∂x3 x

+ ...+ Δx2n+1

2n +1( )!
∂2n+1 f
∂x2n+1 x



Example:  Finite Differences 
•What to do with those extra higher-order derivatives? 
 
 
 

•We TRUNCATE!  E.g., approximate…here one neglects the terms 
associated with the third-derivative of function (f).   
 
 
 

•“2nd-order” implies that as dx is reduced, the truncation error reduces 
quadratically (if F is smooth!).  This is called convergence. 

•Truncation is always necessary (finite difference, spectral, etc). 
•Truncation is one of the underlying approximation errors for the 
underlying PDEs 
 
 

∂ f
∂x

⎛
⎝⎜

⎞
⎠⎟ i
= f (x + Δx)− f (x − Δx)

2Δx
= fi−1 − fi+1

2Δx
+O Δx2( )

∂ f
∂x x

= f (x + Δx)− f (x − Δx)
2Δx

= Δx2 ∂
3 f
∂x3 x

+ ...+ Δx2n+1

2n +1( )!
∂2n+1 f
∂x2n+1 x

“2nd order”


approximation



Derivation of spatial errors

F(x) = Ane
ikx = eikx

∂F
∂x

= ik eikx

k = 2π
L

kΔx = 2πΔx
L

kΔx = 0 kΔx = π
2

kΔx = π

L = ∞ L = 4Δx L = 2Δx

F(x j ) = e
ikx

∂F
∂x

= eik x+Δx( ) − eik x−Δx( )

2Δx
⎡

⎣
⎢

⎤

⎦
⎥

= eikx eikΔx − e− ikΔx

2Δx
⎡

⎣
⎢

⎤

⎦
⎥

∂F
∂x

=
isin kΔx( )

Δx
eikx

′k
k
=
sin kΔx( )
kΔx

as kdx -> 0    => 1 (L’Hopital’s rule)


as kdx -> 3.14 => 0!

Analytical Finite Difference

Useful things



Errors from spatial 
approx..cont.

2nd order approx

4th order approx
k’/k=1

When L >> dx:  derivatives are accurate


When L = 4dx:  large errors


When L = 2 dx:  100% error

4Δx8Δx 2Δx



What about approximating 
temporal derivatives?

Similar procedure as for FDA



Lots of rich theory due to approximations for 
ODE’s 



Two classes of schemes most often used….



Runge Kutta (multistep)



Adams methods (multistage)



Atmos NWP

Leapfrog scheme (MM5, GFS)



Runge Kutta (WRF, COSMO, NICAM, MPAS)



Adams (NAM)



LeapFrog Scheme


with advection equation

∂T
∂t

= −U ∂T
∂x

∂T
∂x

⎛
⎝⎜

⎞
⎠⎟ i
= T (x + Δx)−T (x − Δx)

2Δx
= Ti−1 −Ti+1

2Δx
+O Δx2( )

∂T
∂t

⎛
⎝⎜

⎞
⎠⎟ n

= T (t + Δt)−T (t − Δt)
2Δt

= T
n+1 −T n−1

2Δt
+O Δt 2( )

Tj
n+1 −Tj

n−1

2Δt
= −U

Tj+1
n −Tj−1

n

2Δx
Tj

n+1 = Tj
n−1 −UΔt

Δx
Tj+1

n −Tj−1
n( )

2nd order in time & space
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Numerical methods

� MM5: leapfrog (t) and 2nd-order centered (x)

From George Bryan

∂T
∂t

= −u ∂T
∂x

Approximating 1D advection



RK3 Scheme


with advection equation

∂T
∂t

= −U ∂T
∂x

Tj
1 = Tj

n − Δt
3
2
3
Tj+1

n −Tj−1
n( )− 112 Tj+2

n −Tj−2
n( )⎡

⎣⎢
⎤
⎦⎥

Tj
2 = Tj

n − Δt
2

2
3
Tj+1
1 −Tj−1

1( )− 112 Tj+2
1 −Tj−2

1( )⎡
⎣⎢

⎤
⎦⎥

Tj
n+1 = Tj

n − Δt 2
3
Tj+1
2 −Tj−1

2( )− 112 Tj+2
2 −Tj−2

2( )⎡
⎣⎢

⎤
⎦⎥

3rd order in time & 4th order space

RK-> Multistep scheme


do multiple passes



from t to t+dt

t t + Δt
3

t + Δt
2

t + Δt

Costs more (3 RHS)


But more accurate
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Numerical methods

� WRF: Runge-Kutta (t) and 6th-order centered (x)

From George Bryan

∂T
∂t

= −u ∂T
∂x

Approximating 1D advection



Stability of numerical 
schemes….

Numerical schemes need to have the same behavior as 
they PDEs they represent.



For hyperbolic PDES - stuff or waves should propagate 
at approximately right speeds



For parabolic PDEs (diffusion), the highest wave numbers 
in the initial solution should dampen the quickest.



We have talked about about truncation error



Lets talk about stability of FDAs



Example:  Upwind scheme

Tj
n+1 −Tj

n

Δt
= −Uo

Tj
n −Tj−1

n

Δx

Tj
n+1

Tj
n+1 = Tj

n −UoΔt
Δx

Tj
n −Tj−1

n( )

Tj
nTj−1

nTj−2
n

Tj−1
n+1

UoΔt
Δx

UoΔt

UoΔt ≤ Δx

Stable!

Δt

Δt

Δt

Δx Δx Δx



Tj
n+1

Tj
nTj−1

nTj−2
n

Tj−1
n+1

UoΔt

STABLE!

UΔt
Δx

<1
Needed for Stability!

CFL condition

UNSTABLE!


dt too large

UoΔt

UoΔt
Δx

Δt

Δt

Δt

Δx Δx Δx

Domain of 


Dependence



for FDA
UoΔt ≤ Δx

U1Δt ≥ Δx

Example:  Upwind scheme



Tj
n+1

Tj
nTj−1

n
Tj−2

n

Tj−1
n+1

Still


STABLE!

New Domain of 


Dependence

UΔt
Δx

<1
Can we derive this formally?
Yes - using von Neuman analysis

Now 


STABLE!

Δx Δx Δx

U1
Δt
2

≤ Δx

Uo
Δt
2

≤ ΔxΔt 2

Δt 2

Δt 2

Δt 2

Upwind scheme



Stability analysis

f j
n = Ane

ikjΔx

∂ f
∂t

= −U ∂ f
∂x

Advection:  IC moves, but does not grow or damp!
f j
n+1

f j
n = An+1e

ikjΔx

Ane
ikjΔx = An+1

An
= λ

λ Is amplification factor



Stability analysis

λ <1
λ = 1
λ >1

For advection eq, which is the


correct behavior?

We can derive what lamba is by plugging in the 


discrete waveform for each approximation and



derive under what conditions lamba <= 1



Upstream scheme


stability analysis

f j
n = Ane

ikjΔx∂ f
∂t

= −U ∂ f
∂x

f j
n+1 = f jn −

UΔt
Δx

f j
n − f j−1

n( )
An+1eikjΔx = AneikjΔx −UΔt

Δx
AneikjΔx 1− e− ikΔx( )

An+1

An = 1−UΔt
Δx

1− e− ikΔx( ) = 1− cr 1− e− ikΔx( )
An+1

An = 1− cr 1− e− ikΔx( ) = λ Now have an expression 


for the amplification factor!



Upstream scheme


stability analysis

λ = 1− cr 1− e− ikΔx( )
λ = 1− cr 1− cos kΔx( )+ isin kΔx( )( )
λ = Re2+ Im2( )12 = 1− cr + cr cos kΔx( )( )2 + sin2 kΔx( )( )12
λ = 1− 2cr 1− cos kΔx( )( ) 1− cr( )( )12

Time for some trig!

magical trig…..



Stability Analysis:  
Amplitude Errors….

λ = 1− 2cr 1− cos kΔx( )( ) 1− cr( )( )12



Stability Analysis:  
Phase Errors….

c = U

λ = 1− cr 1− cos kΔx( )+ isin kΔx( )( )characteristic!



Stability Analysis:  
Phase Errors….

λ = 1− cr 1− cos kΔx( )+ isin kΔx( )( )

c = U

define ω a = kc



Stability Analysis:  
Phase Errors….

speeds are exact



Summary for Approximations 
• Numerical methods do really matter! 

•  approximation errors are largest when features are smallest 
•  approximations with higher-order truncation (e.g., 6th versus 2nd) have lower phase 

and amplitude errors for linear advection.   
• How you approximate the temporal derivatives is also important for motions.... 

• “Effective resolutions” for spatial finite differences approximations...... 
• 2nd order FDAs:  features < 16 dx are poorly represented 
• 4th order FDAs:  features < 10 dx are poorly represented 
• 6th order FDAs:  features < 6-7 dx are poorly represented 

•  Spectral models are much more accurate per “dx”, but also cost much more than finite 
differences.  BC’s can be more complicated, especially if model is limited area. 

•  Nearly all original limited area NWP models used 2nd order approximations - despite 
the limits of that approximation - they still made useful predictions. 

•  Numerics is only part of the story - PHYSICS is also important to NWP!



End Lecture 3

Numerical Methods



Begin Lecture 4

Parameterizations



Parameterizations
Parameterizations approximate the bulk effects of 

physical processes that are too small, too complex, or 
too poorly understood to be explicitly represented in  

the set of algebraic equations that integrate the PDEs



What do we mean by “Physics" 
• Physics:  Two “categories” 

• Inputs of momentum, heat and moisture from the boundaries of 
the domain (earth and space) 
• friction 
• sea surface fluxes 
• solar radiation 

• processes that are too small to be resolved on a numerical grid 
• ice nucleation on CCN 
• melting of graupel into rain 
• vertical transport of heat, momentum and moisture from 

convective plumes in the boundary layer 
• Both require PARAMETERIZATION:  represent the integrated effects 
• How do we formally represent this?



Physics -> Parameterizations 
• Parameterizations approximate the bulk effects of physical 

processes too small, too brief, too complex, or too poorly 
understood to be explicitly represented 

• In most modern models, the following parameterizations are 
used to represent processes to fast or small or even not well 
known enough…. 

• cumulus convection 
• microphysical processes 
• radiation (short wave, long wave) 
• turbulence and diffusive processes 
• boundary layer and surface fluxes 
• interactions with earth’s surface (mountain drag effects) 

• Many of the biggest improvements in model forecasts will come 
from improving these parameterizations



Reynolds Averaging 
•  Integrating the governing differential equations in a limited area 

numerically will limit the explicit representation of atmospheric motions 
and processes at a scale smaller than the grid interval, truncated 
wavelength, or finite element 

•  The subgrid-scale disturbances may be inappropriately represented by 
the grid point values, which may cause nonlinear aliasing and 
nonlinear numerical instability  

• One way to resolve the problem is to explicitly simulate any significant 
small-scale motions and processes. This is called direct numerical 
simulation (DNS).  This would require  grids where        ~ 0.1 - 1 m. 

• DNS is impractical for NWP.  Models now simulate large turbulent 
eddies explicitly. This is called large-eddy simulations (LES). 

• Reynolds averaging is the formalism which separates out the 
resolvable and unresolvable scales of motion in the equations 
themselves. 

• We do so by splitting our dependent variables (u, T, q, etc.) into mean 
(resolved) and turbulent (perturbation/unresolved) components, e.g.,

Δx



Reynolds Averaging 
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where '' wu and ''Tw  are called a vertical turbulent flux of 
horizontal momentum and a vertical turbulent heat flux, 
respectively.   

 
¾ In statistical terms, these fluxes, as an average of the 

product of deviation components, are also called 
covariances.   

 
 Fig. 14.1.1 shows the subgrid scale covariance ''Tw .   
 

 
 

Fig. 14.1.1: Schematic illustration of subgrid scale values of vertical 
velocity w, potential temperature T, and the subgrid scale correlation 
w’T’. In this example, the grid averaged value of vertical motion is 
required to be approximately 0 (i.e. 0 w , and K5.299 T  is used.  Both 
grid value averages are assumed to be constant over x' .  The grid-
averaged subgrid-scale correlation ''Tw is equal to 19.6 �s K cm . (Adapted 
from Pielke 2002) 

 
 
 

Figure

w = w + ′w θ = θ + ′θ

wθ = wθ + ′w ′θ + w ′θ + ′w θ



Reynolds Averaging for Bnd Layer 
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¾ In this example, the grid-averaged value of the vertical 

velocity is approximately zero, 0'  w , and 0'  T .  Both 
grid-averaged values are assumed to be constant over the 
grid interval, x' .  

 
However, the covariance or the vertical turbulent heat 
flux, ''Tw , is not 0. 

 
¾ If we apply the Reynolds averaging to a grid volume of a 

numerical model, then the Reynolds-averaged value of a 
variable I�represents, 

 
 ³ ³ ³ ³
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dtdxdydz

tzyx
          

   
1 II . (14.1.2) 

 
This is called grid-volume averaging.  Thus, 'I  is the 
fluctuation or perturbation across the grid intervals,  

 tzyx ''''  interval  timeand , , ,  from I .   
 
¾ Applying the Reynolds averaging to the grid volume of 

the mesoscale model system of Eqs. (15.5.6)-(15.5.10) 
with anelastic approximation leads to 
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 � � ,0 �� VoU     ),,( wvuV  , (14.1.8) 
 
 TRp dU ,   (14.1.9) 
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¾ In the above, ''Tv , and ''Tw  are turbulent heat fluxes, 
'' wu and ''wv are vertical turbulent fluxes of zonal 

momentum, and ''vu is the horizontal turbulent flux of 
zonal momentum.   

 
¾ In order to "close" the system (closure problem), the flux 

terms need to be represented (parameterized) by the grid-
volume averaged terms (terms with "upper bar"s).  

 
 
¾ Different averaging methods  

Time averaging: a variable I�may be employed for a 
sensor located at a certain location ( ooo zyx  , , ),  

 
 ³�fo
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II . (14.1.13) 

 
 Space averaging: 
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II . (14.1.14) 

 
 Ensemble averaging: (for a data set measured discretely)  
 
 ¦

 fo
 

N

k
ooooe tzyx

NN 1
, ),,(1lim

II . (14.1.15) 

 
 Grid-volume averaging: defined in (14.1.2).   
 

1 ' '

1 ' '
o

o

U U U U P u w
U V W fV

t x y z x z

V V V V P v w
U V W fU

t x y z y z

ρ

ρ

∂ ∂ ∂ ∂ ∂ ∂+ + + − = − −
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂+ + + + = − −
∂ ∂ ∂ ∂ ∂ ∂

Reynolds equations 

Boundary layer approximation 
(horizontal scales >> vertical scales), e.g. : 
 
 
High Reynolds number approximation  
(molecular diffusion << turbulent transports), e.g.: 
 

z
wu

x
uu

∂
∂<<

∂
∂ ''''

z
wuU

∂
∂<<∇ ''2ν

Reynolds Stress 



Closure Problem
Estimating those Reynolds stress terms is called the closure 
problem 

to close the system of equations to be solved we need to 
decide how to formulate those fluxes IN TERM OF THE MEAN 
VARIABLES! 

Various levels of “closure” 

1st order (diagnostic closures) 

2nd order (prognostic closures) 

3rd and higher (here be dragons….) 

For all closures, you end up with “picking” some coefficients or 
choosing an approach which approximates some process (often 
poorly)



Here comes complexity!

Planetary Boundary Layer 

contact layer 

surface layer 

boundary layer

Typical boundary layer evolution over land 

Reynolds fluxes must 
account for…. 

nocturnal effect 

stable BL boundary layer 

neutral BL 

convective BL 

capping inversion 

residual layers 

?????



Closure Methods
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14.2.1 Modeling the Surface Layer 
 
K theory:  
 
 The subgrid scale fluxes may be represented by 
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w
w

� ''    ;''     ; ''     ;'' TT , (14.2.1) 

where mK is called the exchange coefficient of momentum 
or simply eddy viscosity, and qh KK  and , are called the 
exchange coefficients or eddy diffusivities of heat and 
water vapor, respectively.   

 
14.2.2 Modeling the PBL above the Surface Layer 
 
a. Bulk Aerodynamic Parameterization 
  

The boundary layer is treated as a single slab and assume 
the wind speed and potential temperature are 
independent of height, and the turbulence is horizontally 
homogeneous.   
 
 
 Pcos '' 2VCwu d� ;    Psin ''

2
VCwv d� ;     > @ozhVCw TTT �� 

2
'' , 

 
 (14.2.15) 
where dC  and hC  are nondimensional drag and heat 
transfer coefficients, respectively,  

 
b. K-theory parameterization  
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In this approach, the turbulent flux terms in (14.1.3)-
(14.1.7) are written as,   
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          (4/27/10)  
  
 
If the gradient terms of (14.2.1) (e.g., zu ww / ) are calculated 
based on local gradients, it is call local closure; otherwise it 
is called non-local closure.  Normally, a non-local closure 
would do a better job for a convective boundary layer.   
       
 
c. Turbulent  kinetic energy (TKE or 1 1/2) closure scheme  
 

The TKE, 2/)'''( 222 wvu �� , is predicted, while the other 
subgrid scale turbulent flux terms are diagnosed and 
related to the TKE and to the grid-scale mean values.   
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14.2.1 Modeling the Surface Layer 
 
K theory:  
 
 The subgrid scale fluxes may be represented by 
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� ''    ;''     ; ''     ;'' TT , (14.2.1) 

where mK is called the exchange coefficient of momentum 
or simply eddy viscosity, and qh KK  and , are called the 
exchange coefficients or eddy diffusivities of heat and 
water vapor, respectively.   

 
14.2.2 Modeling the PBL above the Surface Layer 
 
a. Bulk Aerodynamic Parameterization 
  

The boundary layer is treated as a single slab and assume 
the wind speed and potential temperature are 
independent of height, and the turbulence is horizontally 
homogeneous.   
 
 
 Pcos '' 2VCwu d� ;    Psin ''

2
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2
'' , 

 
 (14.2.15) 
where dC  and hC  are nondimensional drag and heat 
transfer coefficients, respectively,  

 
b. K-theory parameterization 
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In this approach, the turbulent flux terms in (14.1.3)-
(14.1.7) are written as,   
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          (4/27/10)  
  
 
If the gradient terms of (14.2.1) (e.g., zu ww / ) are calculated 
based on local gradients, it is call local closure; otherwise it 
is called non-local closure.  Normally, a non-local closure 
would do a better job for a convective boundary layer.   
       
 
c. Turbulent  kinetic energy (TKE or 1 1/2) closure scheme  
 

The TKE, 2/)'''( 222 wvu �� , is predicted, while the other 
subgrid scale turbulent flux terms are diagnosed and 
related to the TKE and to the grid-scale mean values.   
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(14.2.31) 

 

Cd, Ch now need to be specified!

Km, Kh now need to be specified!

Km ~ cmL
2 ∂
!
V
∂z

Km ~ cmL
2 Ri

c − Ri
Ri

⎛
⎝⎜

⎞
⎠⎟
∂V
∂z

Km ~ cmL e



TKE Closure

Shear production   Turbulent 
transport 

Buoyancy   

Mean flow TKE advection 

Turbulent Kinetic Energy equation 

2 2 2' 1/ 2( ' ' ' )E u v w≡ + +local TKE: 

Derive equation for E by combining equations of          
total velocity components and mean velocity components: 

Dissipation   

Storage 

)'''(2/1 222 wvuE ++≡mean TKE: 

Pressure 
correlation   

' '   ' ' ' ' ' ' ' '
o

E E E E
U V W

t x y z

U V g p w
E w u w v w w
z z z z

ρ ε
ρ ρ

∂ ∂ ∂ ∂+ + + =
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂− − − − + −
∂ ∂ ∂ ∂

You still have to close buoyancy (include effects of 
moisture), pressure and TKE dissipation terms!



Parameterization of Moist Processes
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14.3 Parameterization of Moist Processes  

 

¾ In most mesoscale and NWP models, the majority of 
clouds, especially convective clouds, cannot be resolved 
by grid mesh and the moist variables need to be 
parameterized by the grid-volume mean variables.   
 

¾ Although in cloud models, the resolution is fine enough 
to roughly represent the clouds, the microphysical 
processes still need to be parameterized or properly 
represented.   

 
¾ The treatments of moist processes in a mesoscale model 

into two categories: (1) parameterization of 
microphysical processes, and (2) cumulus 
parameterization.   

 
¾ For parameterization of microphysical processes, two 

approaches have been taken: (a) explicit representation, 
and (b) bulk parameterization (normally referred to grid 
explicit microphysics, which is different from (a)).  

 

 



Cumulus Parameterization
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14.3.2 Cumulus Parameterization 
  
¾ The collective effects of cumulus clouds at subgrid scale, such 

as the convective condensation and transport of heat, moisture, 
and momentum, on the larger scale environment are essential 
and need to be represented by grid-scale variables.   
 

¾ On the other hand, the large-scale forcing tends to modulate the  
 cumulus convection, which in turn determines the total rainfall  
 rate. 
 
¾ The representation of these processes is carried out by the  
 cumulus parameterization schemes.   
 
¾ To parameterize the interaction between cumulus clouds and 
 their environment, we must determine the relationship between  
 cumulus convection and its larger-scale environment. 
 
¾ Cumulus parameterization schemes may be divided into 

schemes for large-scale models ( (min);50 Ot kmx !'!' ) and 
schemes for mesoscale models ( (min);5010 Ot kmxkm �'�'� ).  

 
¾ For models having grid spacing less than 10 km, microphysics  
 parameterization schemes are more appropriate and often  
 employed. 
 
> Schemes developed for large-scale models include  
(1) convective adjustment schemes (e.g. Manabe et al. 1965; 
  Betts and Miller, 1986),  
(2) Kuo (1965; 1974) schemes,  
(3) Arakawa-Schubert scheme (1974), and  
(4) Anthes-Kuo scheme (1977). 
 
> Schemes developed for mesoscale models include  



Explicit Microphysics
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 AUTOP : condensation from water vapor,  
 DIFFP : vapor diffusion (condensation or evaporation),  
 ACCRP : accretion,  
 BREKP : drop breakup,  
 FALLP : fallout.   
 
The continuity equation for water vapor is  
 

 v

k

i
iDIFFAUTOi

v qmPPm
Dt
Dq 2

1

)(1
��'�� ¦

 

N
U , (14.3.4) 

 

b. Bulk parameterization of microphysical processes 

In the bulk parameterization approach, each category of the 
water substance is governed by its own continuity equation.   
 
The shape and size distributions are assumed a priori and 
the basic microphysical processes are parameterized.  
 
The water substance may be divided into six categories: (1) 
water vapor, (2) cloud water, (3) cloud ice, (4) rain, (5) 
snow, and (6) grauple/hail (Orville 1980; Lin, Farley, and 
Orville 1983 - LFO scheme or Lin et al. scheme).  
 
Some basic microphysical processes: 
 
Accretion: Any larger precipitation particle overtakes and 
captures a smaller one. 
 
 
 
 

 
 
 

17 

Coalescence: The capture of small cloud droplets by larger 
cloud droplets or raindrops.  
 
Autoconversion: The initial stage of the collision–
coalescence process whereby cloud droplets collide and 
coalesce to form drizzle drops.  
 
Aggregation: The clumping together of ice crystals to form 
snowflakes. 
 
Riming: Droplets freeze immediately on contact of ice 
crystal will form rimed crystal or graupel.  If freezing is 
not immediate, it may form hail.   
 

 
 
 

 
 
 

19 

¾ Simple example of bulk parameterization 
 
Consider water vapor (qv) and cloud water (qc), then the 
water-continuity equations can be written 
 

 C
Dt

Dqv � ;  C
Dt

Dqc  , 
 
where C is the condensation of water vapor ( 0!C ) or 
evaporation ( 0�C ). 
 
¾ Warm-rain bulk parameterization:  Adding the rain water 

in the above system will lead to the warm rain bulk 

parameterization, such as Kessler (1969).   

 

¾ A cold-cloud (ice) bulk parameterization (Lin-Orville-

Farley scheme) 

 

The LFO (Lin et al.) scheme is based on Orville's model 

and Kessler's (1969) warm-rain bulk parameterization. 
 

The size distributions of rain ( rq ), snow ( sq ), and graupel 

or hail ( gq ) are hypothesized as 
 
 )exp()( kkokk DNDN O� ,  (14.3.6) 
 
where gor  srk ,, , okN is based on observations,  

kD is the diameter of the water substance, and  
pO is the slope parameter of the size distribution.    
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This type of distribution is called the Marshall-Palmer 
distribution (Marshall and Palmer 1948). 
 
The slope parameters are given by 
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where kU is the density of water, snow or graupel.   
 

In general, the size distribution (14.3.6) includes the shape 
factor and is written as  
 
 )exp()( kkkokk DDNDN OD � ,  k = r, s, or g, (14.3.10) 
 
where D is called the shape parameter.  Thus, there are 3 
parameters or moments, DO ,, kokN , to be determined. 
 
Following Kessler’s (1969) warm-rain scheme, the LFO 
scheme ((14.3.6) and Fig. 14.6) assumes spherical precipitation 
particles ( 0D  ) and that okN is a contant, which yields a one-
moment scheme.  If two of these parameters, such as okN  and 

kO , are prognostic, and the third parameter (D ) is held constant, 
the scheme is called two-moment scheme (e.g., Ferrier 1994; 
Meyers et al. 1997; Reisner et al. 1998; Morrison and Pinto 
2005; Seifert and Beheng 2006).  If all of these three 
parameters are prognostic, then it is called three-moment 
scheme (e.g., Milbrandt and Yau 2005).     
 
 
* The intercept and slope parameters are based on 
observations (Marshall and Palmer 1948; Gunn and 



Microphysical Schemes
Various levels of complexity 

Single moment 

predict mixing ratio (lambda) 

Fix N0, alpha (impacts reflectivity factor Z) 

Double moment 

predict mixing ratio, N0 

alpha is fixed 

“2.5” scheme:  diagnose alpha from mean variables and type of particle 

3 moment - predict q, N0 and Z. 

Bin models 

break distribution into “bins” (like 100-200 bins) 

prediction of interactions between all bins 

just now feasible for water and ice in 3D cloud models (Ted Manselll)



Examples
Microphysics schemes can be broadly 
categorized into two types:

N(D)

Diameter (D)

N(D)

Diameter (D)

Detailed (bin) bulk

Representation of particle size distribution

Size distribution 
assumed to follow 
functional form

Size distribution 
discretized  into 
bins



1 Mom. Microphysical Parameterizations 
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The microphysical processes are very complicated, which 
are summarized in Fig. 14.6.  (From Lin et al. 1983 – the 
Lin-Farley-Orville Scheme; MM5 Goddard scheme and 
several other schemes are based on LFO scheme) 
 

 
 
 
Fig. 14.6: A sketch of cloud microphysical processes in a bulk microphysics 
parameterization (LFO) scheme including ice phase.  Meanings of the production terms 
(i.e., P terms) can be found in Table 14.1.  (Adapted after Lin, Farley, and Orville 1983; 
Orville and Kopp 1977) (Lin 2007) 

 
  



2 Mom. Microphysical Parameterizations

Ferrier JAS 1994



NWP in a week…summary…
- Basic equations 

- 3 forms of compressible equations 
- various approximations to equations (fully compressible, hydrostatic, anelastic) 

- Horizontal grids 
- global, local 
- grid point, finite volume, structured FV, unstructured FV, spectral 

- Vertical grids 
- types (z, p, sigma) 
- coordinate transforms 
- errors associated with coordinate transform:  e.g., PGF 

- Choices driving model choices: (problem to be solved, efficiency versus accuracy, 
etc) 

- Numerical Methods 
- CFL criteria 
- Taylor series analysis 
- stability analysis 

- Parameterizations 
- radiation 
- microphysics 
- land surface



The end….


for now….

Thanks for the opportunity to teach!


