Numerical Weather
Prediction

In about a week
(3 lectures)



A bit of history....

e NWP was born at the
Institute for Advanced
Study in Princeton in
19405 - first electronic
computer

e Since then, NWP has
been one of the
heaviest users of
supercomputers.

Figure 3: The ENIAC computer in 1948. The operators are chang-

ing the plug-in wiring. (PLATZMAN, 1979).




How far have we come?

Resolving (sort of) a single storm!
1975 2005

."
NP\
b

A ~35,000x increase in CPU due to grid! (really more like ~10¢ increase with physics changes)
A typical forecast today (1 hour wallclock) would require > 5 years to run on a 1975 computer!
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Begin Lecture 1
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What Is a Computer
Model?

e Take the equations of fluid mechanics and
thermodynamics that describe atmospheric processes.

e Convert them to a form where they can be
programmed into a large computer.

e Solve them so that this software representation of
the atmosphere evolves within the compufter.

e This is called a "model” of the atmosphere



Scales of Models

Area Coverage and Resolution

® Global models - span the planet, represent large-scale
atmospheric processes (dx ~ 20 km)

e Limited-area synoptic scale and mesoscale models - span
continental, to state, to metro-areas; represent smaller-
scale atmospheric processes (dx ~ 3 km)

e Computational fluid-dynamics (CFD) models - resolve flow
around buildings, in street canyons, aircraft, etc.

(dx ~ 1-100 m)



Scales of processes vs models

Global

ePlanetary waves
oE| Nino

eMJO

*AQO

Synoptic

oJet streams

eHigh and low
pressure centers

eTroughs and
ridges

eFronts

Meso

eThunderstorms
eConvective complexes
eTropical storms
eLand/sea breezes
eMountain/valley breezes
eDownslope wind storms
eGap flows

eCold air damming
eNocturnal low-level jets
ol ake-effect snow bands

Urban

eStreet-canyon flows

eChanneling around
buildings, wakes

eVertical transport on
upwind and warm faces
of buildings

oFlow in subway tunnels



Basic Equations

e Apply to many different types of
atmospheric models

- operational weather prediction models
- global climate models

- building-scale urban (CFD) models

- research atmospheric models

- models of flow over an airfoil

oIn all cases, they are the equations of fluid
dynamics applied to the atmosphere



Governing Equations

e Conservation of momentum (Newtons 2d law)
-3 equations for accelerations of 3D winds (F = Ma)

e Conservation of mass
-1 equation for conservation of air (mass continuity)
-1 equation for conservation of water

e Conservation of energy
-1 equation for the first law of thermodynamics

e Relationship between p, V, and T
-1 equation of state (ideal gas law)



More on equations.....

e Almost every model uses a slightly different
set of equations.

® Why?
-Application to different parts of the world
—Focus on different atmospheric processes

-Application to different time and spatial
scales

-Ambiguity and uncertainty in formulations
-Tailoring to different uses



Starting Pt: Euler Equations

cons. of mass

,/ cons. of energy

D 1
= +22 xu=--Vp-Vo+F. momen. eq (3D)

Dt 0 r\

Eq. of State




Solving an equation

example.....

The equations describe how
the atmosphere changes
with time. For example,
one equation would be:

doTemp
ot

— VTemp -1 Qshort T Qlong

+Qconduction i Qconvection 7 Qlongwave 7 Qevap 5 Qcand



Solving an equation

example.....

The equations describe how
the atmosphere changes
with time. For example,
one equation would be:

Change in Temp at a point = advection
+ Shortwave radiation +longwave radiation
+ conduction + convection
+ evaporation + condensation



How the Model Forecasts

Temperature

Time =



How a Model "Forecasts”

@ This equation is solved for a three-
dimensional "matrix” of points (or a
grid) that covers the atmosphere
from the surface fo some level
near the top of the atmosphere.

@ Here is a 2-dimensional slice
through the grid in the X-Z plane
(west-2-east, sfc-2-trop)




2D Model Grid

Grid points

Sub-surface
grid points



Approximate Eq. Sets

Spherical geoid: assume the earth is a perfect sphere, so gravity is parallel fo radius
direction from earths center. Often used.

o fastest wave speed: U(100) + Sound waves (350) ~ 450 m/s
(Quasi) Hydrostatic approximation: Dw/Dt=0 Good for horizontal scales > 10 km.
o fastest wave speed: U(100) + Lamb (surface) wave (350) ~ 450 m/s

Anelastic approximation: form of incompressibility - filters out sound waves from system.
Good approximation for meso- and storm-scale (maybe not planetary scales).

o fastest wave speed: U(100) + Gravity waves (50) ~ 150 m/s
Shallow atmosphere:

@ assume 1/r in equations ~ 1/a (neglect distance above ground)

@ Coriolis acts only in vertical

@ a few other small ferms associated with spherical metrics neglected



Compressible
Euler
equations

Spherical
geoid

Shallow

Quasi— atmosphere
hydrostatic

Hydrostatic
shallow Anelastic

atmosphere

Boussinesq

Shallow
water Quasigeostrophic

equations equations Planetary

Semi—
geostrophic

geostrophic

Quasigeostrophic
shallow water
equations

Barotropic

Loty 1990-2005




Global, mesoscale
and storm-scale models

Quasi—
hydrostatic
Hydrostatic
shallow
atmosphere
Boussinesq
Shallow
water Quasigeostrophic
equations equations Planctary '
troohi Semi—
geostrophic geostrophic
Quasigeostrophic
shallow water
equations
I
Barotropic

o Today....2020....




3D Equations

@ Requirements? (George Bryan talk)
@ non-hydrostatic & compressible
@ minimum number of approximations
@ solver should conserve mass
@ Energy Conservation?
@ small scales and short integrations: desired

@ global scale (climate): REQUIRED



3D Equations

@ transport/dispersion applications

@ Why mass?

@ longer infegration times
@ certain convective applications (hurricane) this makes a big difference
@ Why not energy conservation?
@ Its hard! Complexity
o Dissipative heating
@ sub-grid turbulence
@ higher-order diffusion
@ PBL parameterization
& Moist processes
@ sedimentation of hydrometeors
o dissipative heating around falling hydrometeors

@ no agreement about exact form of equations with mixtures of ice and water



Equation Set 1

(Giraldo and Restelli JCP 2009)

Equation set 1, which has been used extensively in mesoscale modeling, reads

0 R

—n—l—u-Vn—l——nV-u:O,

Ot C,

Ou 5 |
a+u-Vu+cp0Vn:—gk+uVu, (1)
00

—+u-V0=puVv30

6t+u uV->o,

R/cp .

- is the Exner pressure, # = (u,w)’ is the velocity field,

Py
0 = L1is the potential temperature, and 7 denotes the transpose operator. In these equations P is the pressure,

where the solution vector is (,u”,0)”, n =

a.ka., Klemp-Wilhelmson/MM5 equations
(K&W JAS, 1978)



Equation Set 2

(Giraldo and Restelli JCP 2009)

Equation set 2 is gaining popularity in the literature because it i1s not too dissimilar from set 1 and is in
conservation form (for the inviscid case only). These equations are written as follows:

op

Fy. —0

Opu

-, TV (pu@u+PLy) = —pgk+V-(upVu), (4)
op0

2 (pOu) =V - (upV0),

where the conserved variables are (p, pu’, p@)T, p is the density, u = (u, W)T is the velocity field, and 0 is the
potential temperature which we have defined previously. The pressure P which appears in the momentum
equation 1s obtained by the equation of state

r=n(") (5)

a.ka., WRF/MPASS equations
(Klemp et al. 2007 MWR)



Equation Set 3

(Giraldo and Restelli JCP 2009)

These equations are written as follows:

°Ply. —0

a .

L=+ (pu@u+PLy) = —pgh + V- F, (7)
0 .

Sy s

where the conserved variables are (p,pu”, pe)T, p 1s the density, u = (u,w)T is the velocity field,
e=c,T+1u-u+ ¢ is the total energy, and ¢ = gz is the geopotential height. The pressure P is obtained
by the equation of state which, in terms of the solution variables, is written as

R 1
P=_ —Cu-u—o).
Cvp(e Su - 90) (8)

CFD equations
Total energy is thermodynamic variable



Equation Set 3

(Giraldo and Restelli JCP 2009)

op

Py, — 0

5, TV (pu) =0,

opu -
%—I—V (pu@u+ PIL,) = —pgk+V-F™,
O :
T

The viscous fluxes F** are defined as follows:
F'™ = u[Vu+ (Vu)" + AV - u)T,)]
and

Hey

FVisc — . FVisc VT
e u u —I_ PI’ )



Equation Set 3

(Giraldo and Restelli JCP 2009)

op

Py, — 0

5, TV (pu) =0,

Opu -
%—I—V-(pu@u—l—PIz):—pgk+V-FlVllSC,
Ope

P4V - [(pe + Pyu) = V- FI,

The viscous fluxes F'™° are defined as follows:
Viscous heating!

F'™ = u[Vu+ (Vu)" + AV - u)T,)] Dissipation adds heat to system!
— Important in hurricanes BL!

and
<« Most atmospheric models

Fisc — . FYs | %VT, DO NOT account for this
(especially cloud models!)



NWP Basics:
Important Choices...

What are you trying to predict?

o T/Wind/Visibility/Rainfall/Precip Type
@ Severe storms? Hurricanes?

What resolution do you need to predict it?
How accurate is your model predicting it?
How fast can it run on your computer?

' (When do your users need the output?)



Whats important?

- What are you trying to predict?
' What resolution do you need to predict it?
How fast can it run on your computer?

How accurate is your model predicting it?



Factors controlling model
efficiency....

@ Length of forecast
@ Size of numerical grid (resolution needed)

@ Time step needed for stable integration

@ Time step needed for accurate integration

@ Cost of dynamical core
@ Cost of physics (usually >> dynamical core)

@ How well model “scales” on your operational computer






Begin Lecture 2

Notes are available at
http://www.nssl.noaa.gov/users/lwicker/public_html/
NWP_5004.pdf



Solution Basics

An example of one momentum equation:
1-d wind accelerated by only the pressure
gradient force

Du

Dt

Computers cannot analytically solve even this
very simple equation!
Why?



Solution Basics

* The problem: computers can perform
arithmetic but not calculus

he = R

r

 The solution: numerical methods




Solution Basics

1-D Advection of a parcel (analytical)

x—c¢l = const = X,
u = const = u (x,, 0)

X
Xn

Figure 4.1 One of the characteristics of the linear advection
equation (4.1).

U>O0



Solution Basics

The simplest model grid?

Figure 4.2 A finite difference grid for finding an approximate
solution of (4.1).

1-D in space grid
1-D in time grid



Solution Basics

use knowledge of
analytical PDE
solution to

approximate
solution......
Figure 4.2 SAD ]E:;E.: gtl_ﬂ’(f:-‘rei'l}ce grid for finding an approximate
n+l n
3 I Lok,

AV .



Solution Basics

use knowledge of
analytical PDE
solution to
approximate
solution...... x

(J—Ddx jax (j+1)4x

Figure 4.2 A finite difference grid for finding an approximate

solution of (4.1).

n+1 n
T].+—T.
At .

Figure 4.1 One of the characteristics of the linear advection
equation (4.1).




Example: Upwind scheme




Example: Upwind scheme

At
A

UAt

At

n

]






Example: Upwind scheme
STABLE!

At

UNSTABLE! Ax
dt too large

Needed for Stability!
CFL condition




Example: Upwind scheme

[JA\t+ New ftime step does not violate
Ax 3 CFL condition for either U




Solution Basics

Time Step Criterion At< —

: In NWP:
i dt is set to
Parcel ol maln'l'aln CFL
O—”@ i stability
for a given

Pﬂrcel2 t{\fztz 4 t, is sufficient dx
G e S and fastest
flow/wave
speeds

100-km Model Grid

The COMET Program



Approximate Eq. Sets

Spherical geoid: assume the earth is a perfect sphere, so gravity is parallel fo radius
direction from earths center. Often used.

o fastest wave speed: U(100) + Sound waves (350) ~ 450 m/s
(Quasi) Hydrostatic approximation: Dw/Dt=0 Good for horizontal scales > 10 km.
o fastest wave speed: U(100) + Lamb (surface) wave (350) ~ 450 m/s

Anelastic approximation: form of incompressibility - filters out sound waves from system.
Good approximation for meso- and storm-scale (maybe not planetary scales).

o fastest wave speed: U(100) + Gravity waves (50) ~ 150 m/s
Shallow atmosphere:

@ assume 1/r in equations ~ 1/a (neglect distance above ground)

@ Coriolis acts only in vertical

@ a few other small ferms associated with spherical metrics neglected



What do the PDEs look like?

Equations of motion (ECWMF model)

oU l QU gU|  .dU .
3 acos:e{ Uon +veesg }* "I East-west wind

(—fv) + {g®+RdnT\ aa (lnp)]r = P+ Ky

dV | OV dV . L2 3, .dV .
7 + 5 {b = + VcosB=— e +smB(U +V") }+ na NOrth-SOU.th Wlnd

acos 6

+fU+°‘:9{a° R,,T a(lnp)}zPV+KV

do "0 —

o7 1 [T o ar|. .7 kW
5 acosre{bae”meae N3 - Tieonas - Lzt Er Temperature

| -0g . g
{b 3.V o8 Humidity

acos 9

dp) dp|  d . ~ ..
at(a /! +V. ( Han; o (n 0 COIltlIllllty Of mass

1

ap surf _

= Surface pressure




Got Grids?
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Domains

= Number of dimensions

3D: Simulation of

1D: Single-column model
|IIII|II|IIII'|II_

hour 42

= From Joe Klen
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296 300 E \
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Domains

Number of dimensions

~ Degrees of freedom and complexity of grid
structure

Shape (global, hemispheric, limited area)
Vertical coordinate

. resolution



Typical Horizontal Grids

@ Global Model
@ points
@ volumes (squares, hexagons, triangles, pentagons)
@ spherical harmonics
@ Limited area
@ grid points
@ grid volumes (squares, hexagons, triangles, pentagons)
@ element based methods (spectral elements and DG)
@ Each has various approximation methods (numerical methods)

@ grid points/grid volumes: local methods, easy to use distributed memory
computers

@ spherical harmonics/element based methods: “global” methods, more communication
needed (DG is an exception)



Structured Finite Diff grids

D S ——
o S ,
B\ 7

SN 'I'/ 1
= SEa Lat/Lon Grl
— g
:7“ > v . i\".

@ grid lines follow lat/lon
what happens to dx at pole?
Flow is same at pole as mid-lat..
NWP ftrick: filtering of fields
along longitudes at high-lats
makes dx effectively larger...
CFL stability is then maintained

Q @ @

These models
going out of
production:

too inefficient

——

— —

—



Structured Finite Vol grids

Equator

Core GFDL

FV-

In-Yang
Japan

1§

imple data structures

S

NICAM
(Japan)

non-adaptive
run FAST



UnStructured Finite
Element grid
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UnStructured Finite Volume
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(NCAR) moderately cmplx data structure

runs fast!



Spec’rral Grids

East-West: Fourier Series
~ North-South: Legendre Polynomials

M N(m)

T (AsiLt )= 2 ET

M n=m

A = longitude Predicting amplitudes

p=sin(¢) T()



Limited Area Models

@ 3 Grids

@ One large domain
@ 2 smaller domains




Limited Area Models

@ Need initial
conditions
AND

@ Boundary
conditions!




Limited Area Models

Domain
B

@ Nested grid

boundary

conditions are

tricky between EEEEEEEEEEE
grids '

@ Abrupt changes in
resolution create
Jumps in solution -
generate noise!

Longitude



Staggered Grids
A = unstaggered
B = U/V in corner
C = U/V on edges
D = V/U on edges
E = 45 deg B-grid

@ Most models stagger the velocity variables

@ Used to increase the computational accuracy of derivatives
associated with the divergence and PGF ferms

Staggering is also used in the vertical

While inconvenient, staggered grids INCREASE the
accuracy of the numerical solution (so much so you really
cannot get away from it....) for almost no cost

Q @



Vertical Coordinate
SYRIGCINE

o Height

@ Pressure
@ Sigma

o ETA

@ |sentropic

o Hybrids



Domains

= Vertical coordinate

Fig. 6-2. Schematic illustrations of (a) rectangular, (b) isobaric, (c) isentropic, and (d)
sigma coordinate representations as viewed in a rectangular coordinate framework.

From Pielke (2002)



Height as a Vertical
Coordinate

o Advantages
@ easy, intuitive
o Disadvantages

o topography hard to deal with...

topography




Pressure as a Vertical
Coordinate

o Advantages
o top of atmosphere is easy (p=0)

@ observations often in terms of pressure (rawinsonde,
satellite)

o Disadvantages

@ pressure has same problems as height.

topography




Sigma as a Vertical
Coordinate

o Advantages: easy to represent top and
bottom of atmosphere

o Disadvantages: equations need to be
transformed, errors in horizontal PGF when
terrain slope Is steep

oo P

P sfc

*Terrain following vertical coordinate.
*Sigma = Pressure/Surface Pressure
0 = 0 at the top of the atmosphere.
0 = 1 at the Earth’s surface.




A brief foray into
Coordinate Transformations

A(x,y,z,t)= A(x,y,0 (x,y,2,t),1)

+ BAzazaA
vert 5= a:

trans 04 _od oA
dz dz d¢

le'l' s —> x,y,t

JdA| _0dA +8A8§8A
ds|, ds|. aé'azaé'g




Coord Trans Example

Flow along ground (u > O)



Coord Trans Example
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Flow along ground (u > O)
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Example

At ground omega = O

> >

Flow along ground (u > O)




Example

At ground omega = O
grad(Z) ne O!

V§z=0

> >

Flow along ground (u > O)




Example

At ground omega = O
grad(Z) ne O!

V§z=0

> >

Flow along ground (u > O)




Problems with Coord
Transformations!

All horizontal differences are transformed!
U & V are NOT NOT transformed!

Therefore PGF for U & V must be
“transformed back” -> not in the plane of the
transformed coordinate....

- resulfs in PGF corr. term error especially near
ground.



PGF Errors
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PGF Errors

equal mag
opposite sign!

3
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ETA Coordinate

Eta as a Vertical Coordinate

Hybrid pressure/sigma system
Eta is also called the stepped

mountain coordinate. No holes in —
topography. Tries to reduce the = = = Freeees 77 <
PGF errors using sigma. —

Advantage — improves calculation of = MSL =— =
horizontal pressure gradient force.
Performs much better in regions of pr (ZS) — pt

strong terrain influences 77S —
pr (Z — O) i pt

pr(zs) is the pressure in the
standard atmosphere at height zs
*pt is the pressure at the top of the
atmosphere

pr(z=0) is the pressure at sea level

MET171A in the standard atmosphere



Shaved Cell Coordinate

777 777

topographic representations in each model.
(a)

k+3/2

k+1

k+1/2

k-3/2 k-3/2
i-3/2 i-1 i-1,2 i i+1/2 i+1 i+3/2 i-3/2 i-1 i-1/2 i i+1/2  i+1 i+3/2

Figure 2. Combination of small cells. Thick lines describe the boundaries of the scalar cells. Shaded regions represent topography
in the model. (a) Scalar cells before combination. Scalar cell C exchanges flux with the cells, A, B, D, and E. (b) Scalar cells after
combining cells C and D. Combined cell C" exchanges flux with cells A, B, E, and F.
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WRF Vertical Coordinate

Based on Laprise (1992)
' non-hydrostatic pressure coordinate

coordinate surfaces "move” up and down locally in
response to changes in thickness of layers

Nice in theory - pain in practice
' MPAS (Skamarock's next model) is Sigma-Z coordinate

Easier for ensemble data assimilation.....



WRF Vertical Coordinate

YRF Model Pressure baszed Sigma Coordinate System

Pye T CONSIING

105°W 100°W 85°W

-1 -08 -06 -04 -02 -00 .02 .04 .06 .08 .1







Begin Lecture 3

Numerical Mebhods



Representing PDES

An example of from momentum equation:
U-wind accelerated by only the pressure gradient

Dt p ox
ou Ju  Jdu ou 19dp

— = U— g W

o © 0% oy og™D ox

How do you represent these on a computer?




Computers do arithmetic...
NOT Calculus!

Numerical methods
represents the continuous with discrete approximations
vector calculus
integration
interpolation

Goal: convert spatial and temporal derivatives into algebraic
equations that computers can solve using addition, subtraction,
multiplication, and division (and a few others operations)

Classes of numerical methods
Finite difference and finite volume
basis functions are Taylor series
Spectral and Galerkin methods (finite element, DG, SE)
based on fourier series or local polynomials



For now, lets focus on
Finite Difference approximations
(closely related to FV methods)




For now, lets focus on
Finite Difference approximations
(closely related to FV methods)

it 1)

F(X_1) F(X )

F (xj_z);,' s I (xj+2.’

F(x)s represent a set of discrete values



How to take a derivative?

white line is correct slope
S (xj+1)

forward difference: —| = :




How to take a derivative?

white line is correct slope

backward difference: —| ="/




How to take a derivative?

white line is correct slope
L)
Ex ) g i

centered difference: Al BGoe - (%)
0x DAy




How do we know what is
the best approximation?

@ In some sense - we dont, but we can perform a Talyor
series analysis to estimate the errors associated with
a particular scheme

@ Talyor series analysis is also used to determine
whether as dx =~ O, does the discrete FDA approximate
the PDE (sometimes it does not if you are not careful).

@ It is also used, as a first step with a stability analysis
method, to determine what the largest time step is
permissible for the discrete version of the PDE.



Example: Finite Differences

How to do calculus on a computer? '
| AXZ aZf

FrAD = f(B)+ AR
X

Classic Taylor series expansion about “x

To create a derivative...

f(x+Ax)—f(x—Ax)=2Axaf

X

2L Dk

2Ax O

X

X
rearranging...

ox| 2 Ax

X

o _ fx+AD)-fx-Av) _, ,9f

N dx

ox’

| Ax2n+l aZn—I-l f

n! odx”

e

k6 7

Ax2(n+l) 82(n+1) f

| ) oY

& (2n+1)! e




Example: Finite Differences

What to do with those extra higher-order derivatives?

of| _fo+an=fic-av) |G
ox 2 Ax ox’ (2n+1)!8xz”+1

X X

X

We TRUNCATE! E.qg., approximate...here one neglects
the terms associated with the third-derivative of function

().

(a_f) :f()H'AX)_f(X_AX):fi1_fi+1_|_0(Ax2)
0Xx : 2Ax 2Ax



Example: Finite Differences

What to do with those extra higher-order derivatives?

We TRUNCATE! E.g., approximate...here one neglects the terms
associated with the third-derivative of function (f).

"2nd order”
approximation

“2nd-order” implies that as dx is reduced, the truncation error reduces
quadratically (if F is smooth!). This is called convergence.

Truncation is always necessary (finite difference, spectral, etc).

Truncation is one of the underlying approximation errors for the
underlying PDEs



Derivation of spatial errors

Analytical Finite Difference
F(x)= A" = ¢ F(x;)=e"
oF . gF e Gl
4 Useful things gr : 2Ax
=BT AR _ e
L s 2 A
kAx=0  kAv="  kAv=r7 OF _ isin(kAx) .

L= TR A0 0 ox o

K _sin(kAx) as kdx -> O => 1 (LHopitals rule)

k kA ag kdx -> 3.14 => O!




Errors from spatial
approx..cont.

4th order approx

When L >> dx: derivatives are accurate
When L = 4dx: large errors
When L = 2 dx: 100% error




What about approximating
temporal derivatives?

@ Similar procedure as for FDA

@ Lots of rich theory due to approximations for
ODES

® Two classes of schemes most often used....
® Runge Kutta (multistep)

® Adams methods (multistage)



Atmos NWP

@ Leapfrog scheme (MMS5, GFS)
® Runge Kutta (WRF, COSMO, NICAM, MPAS)

@ Adams (NAM)



LeapFrog Scheme
with advection equation

onit | or
ot ox
i ihi n+1_ n—1
(B_T) AN -T( - A — T —I—O(At2)
ot 2 At 2 At
(B_T) & T(x+Ax)—T(x—Ax) i Ti_l—TiJrl +O(AX2)
ox 2 Ax 2%
U At
n+l __ n—1 n n
T]. P Tj (Tj+1 _Tj—l)

2nd order in time & space



LF2

fluid height (m)

“10T i = 2622739 (analytic = 0.0) AR SR o A
max ;= 105.168 (analytic = 200.0} : : : :

™ % % % & A &% % 1o
X From George Bryan



RK3 Scheme
with advection equation

a_T e —Ua—T RK-> Multistep scheme
ot 0x do multiple passes
; 4 from t fo t+dt
AVA |
ks s rpoitg n n n n
IS4 &'l 3 (Tj+1 = Tj—l)_ E(TJ” i TJ’—Z)_ gi\
At[ 2 1 | aame s ‘
R 1 1 1 1 TRl % i
i 2 _3(TJ+1 _Tj—l)_E(Tﬂz —T]._z)_ e N e
i i - Costs more (3 RHS)
T SO 5(sz+ e 1)_ E(T]?+ = TJ.2_2) But more accurate

3rd order in time & 4th order space



WRF: Runge-Kutta (t) and 6th-order centered (x)

RK3—-UPS5

204
"
=
pa —
=
K=y
1)
£
g,
=
——
“10T i = 2288473 (analytic = 0.0) AR SR o
max ;= 186.835 (analytic = 200.0}) : : : :
_150. ..............................................................................................
~200 R TR R TR 100

X From George Bryan



Stability of numerical
schemes....

Numerical schemes need to have the same behavior as
they PDEs they represent.

 For hyperbolic PDES - stuff or waves should propagate
at approximately right speeds

For parabolic PDEs (diffusion), the highest wave numbers
in the initial solution should dampen the quickest.

We have talked about about truncation error

 Lets talk about stability of FDAs



Example: Upwind scheme




Example: Upwind scheme
STABLE!

At

UNSTABLE! Ax
dt too large

Needed for Stability!
CFL condition




Upwind scheme

U At Can we derive this formally?

Ax Yes - using von Neuman analysis



Stability analysis

of of
SO
ot 0X
]Cjn = Aneiijx

Advection: IC moves, but does not grow or damp!

n+1 ikjAx
f} An+1 € A

A, |
J n

n

| Is amplification factor



Stability analysis

Al <1 : £

For advection eq, which is the
Al=1 correct behavior?
Al >

We can derive what lamba is by plugging in the
discrete waveform for each approximation and
derive under what conditions lamba <=1



Upstream scheme
stability analysis

df df . ikjAx
—=-U—= " =Aue
ot o0x f] i
n+ n UAt n n
f SN
An+leiijx e Aneiijx UAt Aneiijx (1 i e—ikAx)
AXx
n+1
4 T UAt(l—e‘”‘Ax): I-c (1—e™)
A Ax ‘
An+l

—=l1-¢.(1-¢")=|2] Now have an expression
for the amplification factor!



Upstream scheme
stability analysis

A
A

l-c (1— e‘”‘m)‘

r

Time for some ftrig!

1—c, (1—cos(kAx)+ isin(kAx))‘
2 2\ Ay %
A = (Re +Im ) = ((1 ot crcos(kAx)) +sin (kAx))
| . .
4 =(1-2¢, (1-cos(kAx))(1-c,)) magical trig.....
Using this expression, we check conditions which keep | Al < 1. Run through the cases:
(a) ifc, <0, then |Al>1. The “downwind” scheme is absolutely unstable.

(b) ifc,> 1, then |A|> 1 if (1-coskAx) > 0, which is is always the case. Absolutely
unstable again.

(c) if c,< 1, then need to check the cosine term. Run through the kAx possibilities.

if kAx=0,  1-coskAx =0, then 1A1=1
if kAx=n/2, 1l-coskAx=1, then IAl= (1-2¢,(1- cr)_)”2
if kAx=mt,  1l-coskAx =2, then IAl= (1-4c,(1-c,))"

As long as 0 < ¢, <1, then |Al<1. This is called conditional stability, or the CFL
condition. Almost all schemes have this type of stability restriction.




Stability Analysis:
Amplitude Errors....

2| = (1 Blc (1 = cos(kAx))(l - Cr))%

Note that the amplitude of the scheme for some cases is much less than 1. Just as in the
growth case, we can get expodential decay of the solution as well. Let kAx =n/4 and c,

= 0.5. What is the amplitude after 10, 20, and 100 time steps?
A= (1-2xL(1-cosZ)(1-1)) " =.924
A]” = .45
AP = .20

Therefore for an 8Ax wave, no amplitude remain after 100 time steps.



Stability Analysis:
Phase Errors....

h teristic!
characteristic ,1:1_cr(1—cos(kAX)+iSin(kAx))

Phase Errors

We can also use the stability analysis to tell us something about the phase speed of the
each wave component. What should the phase speed be (it should be ‘c’). Lets first find
the phase speed for the analytical solution.

: . __._H—_-__'__,-—-—“*--r__.,

_ | r"!"
- g G AX

7 '

i v D \'."" \
f(x,f) — F(x _ Ct) — F:}ezk{.x_cr} where f(?{, 0) — F;Em :r)IT} ;_f ,_

2 ig
i

Compare the solutions at sucessive time steps

Foutoly Fptreadd
f(x’ t) E}gr‘k(x“c‘t}




Stability Analysis:
Phase Errors....

A=1—c (1 —cos(kAx)+ isin(kAx))

Now the change in phase of the wave per time step will be given by 6,

9{1 o tanﬁl (E = tan_] [ i kCAt j = —kCAf
Re cos kcAt

- This is the analytical phase of the solution. Now the phase speed of a wave is given by
, ®/k. In the expression above,

6, describes the change of phase per time step. Since ® = kg, note that ® /k = ¢, which is

exactly the phase speed you should get! Notice that the phase speed w/k is NOT a
function of k, that means that all the waves travel at the same speed. Thisisa non-dispersive
solution.




Stability Analysis:
Phase Errors....

In a similar way, we can find the numerical phase of the upstream scheme, 7( o /T/EUL/

6. =tan!| ——<r°0 L @ At
1-c,(1—coskAx)

Here, o,/k IS a function of k -> therefore each wavelength travels at a different speed.
The solution is dispersive!

Now to examine how the waves move, we take the ratio of the analytical phases to the
numerical phases.

7}
—~ <1 waves move slower than c

n

“=1 waves speeds are exact

n

i

>1 waves move faster than ¢

n

obviously, the best ratio is where the numerical phase speeds match the analytical
phase speeds. For the upstream scheme, we get

—c, Sin kAx ]
1—-¢.(1—coskAx
. C”E o ) which does not tell you much, so use a computer
—KC

to plot ﬂ;e ratio. You plot the phase speed as a function of ¢, and kAx.




Summary for Approximations

Numerical methods do really matter!
approximation errors are largest when features are smallest

approximations with higher-order truncation (e.g., 6th versus 2nd) have lower phase
and amplitude errors for linear advection.

How you approximate the temporal derivatives is also important for motions....

“Effective resolutions” for spatial finite differences approximations......
2nd order FDAs: features < 16 dx are poorly represented
4th order FDAs: features < 10 dx are poorly represented
6th order FDAs: features < 6-7 dx are poorly represented

Spectral models are much more accurate per “dx”, but also cost much more than finite
differences. BC’s can be more complicated, especially if model is limited area.

Nearly all original limited area NWP models used 2nd order approximations - despite
the limits of that approximation - they still made useful predictions.

Numerics is only part of the story - PHYSICS is also important to NWP!



End Lecture 3

Numerical Mebhods



Begin Lecture 4

Paramweterizabions



Parameterizations

Parameterizations approximate the bulk effects of
physical processes that are too small, too complex, or
too poorly understood to be explicitly represented in
the set of algebraic equations that integrate the PDEs




What do we mean by "Physics”

Physics: Two “categories”

Inputs of momentum, heat and moisture from the boundaries of
the domain (earth and space)

friction
sea surface fluxes
solar radiation
processes that are too small to be resolved on a numerical grid
ice nucleation on CCN
melting of graupel into rain

vertical transport of heat, momentum and moisture from
convective plumes in the boundary layer

Both require PARAMETERIZATION: represent the integrated effects
How do we formally represent this?



Physics -> Parameterizations

Parameterizations approximate the bulk effects of physical
processes too small, too brief, too complex, or too poorly
understood to be explicitly represented

In most modern models, the following parameterizations are
used to represent processes to fast or small or even not well
known enough....

cumulus convection

microphysical processes

radiation (short wave, long wave)

turbulence and diffusive processes

boundary layer and surface fluxes

interactions with earth’s surface (mountain drag effects)

Many of the biggest improvements in model forecasts will come
from improving these parameterizations



Reynolds Averaging

Integrating the governing differential equations in a limited area
numerically will limit the explicit representation of atmospheric motions
and processes at a scale smaller than the grid interval, truncated
wavelength, or finite element

The subgrid-scale disturbances may be inappropriately represented by
the grid point values, which may cause nonlinear aliasing and
nonlinear numerical instability

One way to resolve the problem is to explicitly simulate any significant
small-scale motions and processes. This is called direct numerical
simulation (DNS). This would require grids where = 0.1 -3 m.

DNS is impractical for NWP. Models now simulate large turbulent
eddies explicitly. This is called large-eddy simulations (LES).

Reynolds averaging is the formalism which separates out the
resolvable and unresolvable scales of motion in the equations
themselves.

We do so by splitting our dependent variables (u, T, g, etc.) into mean
(resolved) and turbulent (perturbation/unresolved) components, e.g.,



Reynolds Averaging

In statistical terms, these fluxes, as an average of the
product of deviation components, are also called
covariances.

Figure  shows the subgrid scale covariance wo'.

w"ell O‘*
{cm Ks™")

_20.




Reynolds Averaging for Bnd Layer

In the above, v'@', and w'@' are turbulent heat fluxes,
uwand vware vertical turbulent fluxes of zonal

_ _ - momentum, and u»+vis the horizontal turbulent flux of
6(pgu'v') 6(p0v'v') 8(p0v'w')
+ + zonal momentum.

In order to "close" the system (closure problem), the flux
terms need to be represented (parameterized) by the grid-
volume averaged terms (terms with "upper bar"s).

i), oo d) o wd)]. oo o
Ty T | Boundary layer approximation ou'u' — ou'w'
6= GGG sy (horizontal scales >> vertical scales), e.g. : x Jz

High Reynolds number approximation du'w'

(molecular diffusion << turbulent transports), e.g.:

WU <<
Z

a_U+Ua_U+Va_U+Wa_U_fV:_ 1 aP_au'W'

ot ox dy 0z £, 0x oz

a_V+Ua_V+Va_V+Wa_V+fU:— 1 aP—av w

ot ox dy oz £, Oy 0z

H_J
Reynolds Stress




Closure Problem

o Estimating those Reynolds stress terms is called the closure
problem

o to close the system of equations to be solved we need to
decide how to formulate those fluxes IN TERM OF THE MEAN
VARIABLES!

o Various levels of “closure”
o 1st order (diagnostic closures)
o 2nd order (prognostic closures)
o 3rd and higher (here be dragons....)

o For all closures, you end up with "picking” some coefficients or
choosing an approach which approximates some process (often

poorly)




Here comes complexity!

PBL components

o Reynolds fluxes must
account for....

@ nocturnal effect

Time of day (local)

’ urfacefaye urface laye
- ct T
carth s
e SR tzPu oPw sue s o stable BL boundary layer
Kluwer Academic Publishers

o neutral BL
o Planetary Boundary Layer

@ convective BL
o contact layer

@ capping inversion
o surface layer

o residual layers
@ boundary layer



Closure Methods

Bulk Aerodynamic Parameterization

The boundary layer 1s treated as a single slab and assume K ~ L2
the wind speed and potential temperature aref m Cm
independent of height, and the turbulence is horizontally §

homogeneous. ‘

2
_ K ~c L

W=—Cd? 2coslu; W:-Cdfz sings | Wvg-z_ch?z[g_éza],

Cd, Ch now need to be specified!

where ¢, and ¢, are nondimensional drag and heat Turbulent kinetic energy (TKE or 1 1/2) closure scheme

transfer coefficients, respectively, i
i The TKE, @®+v>+w?)/2, is predicted, while the other
.. ¢ subgrid scale turbulent flux terms are diagnosed and
K-theory parameterization { related to the TKE and to the grid-scale mean values.

In this approach, the turbulent flux terms in (14.1.3)-
(14.1.7) are written as, :
O Y Ne-VVe— (U p )@ ). + (T ), + W p). ) (gl o) o

ot
4 1 2 3 4

e+ wv w5V V) (14.2.31)

5

+ (u'w' wr +V'wwy, +w'w! wy)]+ VVze—v(u'i +v'i + W’ﬁ)

[f the gradient terms of (14.2.1) (e.g., ou / 0z ) are calculated
based on local gradients, it is call local closure; otherwise it

6 7
is called non-local closure. Normally, a non-local closure K ~ C L\ / E
would do a better job for a convective boundary layer. m m




TKE Closure

local TKE: E'=1/2(u"+v">+w'")

mean TKE: EEI/Z(LF+\?+W'2)

Derive equation for E by combining equations of
total velocity components and mean velocity components:

Storage
/ Mean tflow TKE advection

a_E+Ua_E+Va_E+Wa_E— Pressure

ot ox ay 0z N correlation
o dU ——JdV g

——E'w'—u'w' v'w po'w

oz 0z Jdz p, 0z o,

a p'w'

'

E

Turbulent Shear production Buoyancy /
transport Dissipation




Parameterization of Moist Processes

In most mesoscale and NWP models, the majority of
clouds, especially convective clouds, cannot be resolved
by grid mesh and the moist variables need to be
parameterized by the grid-volume mean variables.

Although 1n cloud models, the resolution 1s fine enough
to roughly represent the clouds, the microphysical
processes still need to be parameterized or properly
represented.

The treatments of moist processes in a mesoscale model
into two categories: (1) parameterization of
microphysical processes, and (2) cumulus
parameterization.

For parameterization of microphysical processes, two
approaches have been taken: (a) explicit representation,
and (b) bulk parameterization (normally referred to grid
explicit microphysics, which is different from (a)).




Cumulus Parameterization

The collective effects of cumulus clouds at subgrid scale, such
as the convective condensation and transport of heat, moisture,
and momentum, on the larger scale environment are essential
and need to be represented by grid-scale variables.

On the other hand, the large-scale forcing tends to modulate the
cumulus convection, which in turn determines the total rainfall
rate.

The representation of these processes is carried out by the
cumulus parameterization schemes.

To parameterize the interaction between cumulus clouds and
their environment, we must determine the relationship between
cumulus convection and its larger-scale environment.

Cumulus parameterization schemes may be divided into
schemes for large-scale models (Ax > 50km;At>O(min)) and

schemes for mesoscale models (10km < Ax < 50km; At < O(min)).

For models having grid spacing less than 10 km, microphysics
parameterization schemes are more appropriate and often
employed.




Explicit Microphysics

In the bulk parameterization approach, each category of the
water substance is governed by its own continuity equation.

The shape and size distributions are assumed a priori and
the basic microphysical processes are parameterized.

The water substance may be divided into six categories: (1)
water vapor, (2) cloud water, (3) cloud ice, (4) rain, (5)
snow, and (6) grauple/hail (Orville 1980; Lin, Farley, and
Orville 1983 - LFO scheme or Lin et al. scheme).

Some basic microphysical processes:

Accretion: Any larger precipitation particle overtakes and
captures a smaller one.

Coalescence: The capture of small cloud droplets by larger
cloud droplets or raindrops.

Autoconversion: The 1nitial stage of the collision—
coalescence process whereby cloud droplets collide and
coalesce to form drizzle drops.

Aggregation: The clumping together of ice crystals to form
snowflakes.

Riming: Droplets freeze immediately on contact of ice
crystal will form rimed crystal or graupel. If freezing is
not immediate, it may form hail.

The size distributions of rain (g, ), snow (¢y), and graupel

or hail (4g) are hypothesized as

N (D) = Ny exp(=4 Dy ) , (14.3.6)
where k=r,s,or g, N, 18 based on observations,

Dy, 1s the diameter of the water substance, and

2,18 the slope parameter of the size distribution.

This type of distribution is called the Marshall-Palmer
distribution (Marshall and Palmer 1948).

The slope parameters are given by

0.25
4= (”PkN ok )
k — ’
P

where P 1s the density of water, snow or graupel.

In general, the size distribution (14.3.6) includes the shape
factor and is written as

N.(D)=N,D/exp(-4D,), k=r s, 0org, (14.3.10)

where « is called the shape parameter. Thus, there are 3
parameters or moments, N> 4. @, to be determined.




Microphysical Schemes

@ Various levels of complexity
o Single moment
@ predict mixing ratio (lambda)
o Fix Ny, alpha (impacts reflectivity factor Z)
o Double moment
@ predict mixing ratio, N,
o alpha is fixed
e “2.5" scheme: diagnose alpha from mean variables and type of particle
o 3 moment - predict q, Ny, and Z.
o Bin models
o break distribution into “bins” (like 100-200 bins)
o prediction of interactions between all bins

o just now feasible for water and ice in 3D cloud models (Ted Manselll)



Examples

Microphysics schemes can be broadly
categorized into two types:

Size distribution
assumed to follow
functional form

Detailed (bin) bulk

Size distribution
A
- IIIIIII .
. B

discretized into
Diameter (D) Diameter (D)

Representation of particle size distribution



1 Mom. Microphysical Parameterizations

The microphysical processes are very complicated, which
are summarized in Fig. 14.6. (From Lin et al. 1983 — the

Lin-Farley-Orville Scheme; MM35 Goddard scheme and
several other schemes are based on LFO scheme)

» WATER VAPOR <
Pcorp v A Puep/Pisus

. Pour

CLOUD -
WATER Pow, Poom
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|
|
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A
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' Pomer
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PRECIPITATION ON GROUND

Fig. 14.6: A sketch of cloud microphysical processes in a bulk microphysics
parameterization (LFO) scheme including ice phase. Meanings of the production terms
(i.e., P terms) can be found in Table 14.1. (Adapted after Lin, Farley, and Orville 1983;
Orville and Kopp 1977) (Lin 2007)




2 Mom. Microphysical Parameterizations

Continuity Equations

The prognostic equations for the mixing ratios of all phases of water in the parameterization (i.e., vapor, liquid,
ice, and liquid water on ice) are as follows:

%qt_" — —QCND — QREVP — (1 — §)(QSEVP + QGEVP + QHEVP)

— §(QINT + QIDEP + QSDEP + QGDEP + QHDEP),

% = QCND — QRAUT — QRACW — QSACWS — QGACWG — QHACWH

—~ QIFM — §(QIACW + QIHR + QSACWG + QGACWH + QHACWG),

% = QIFM + §(QINT + QIDEP + QIACW + QIHR + QIHMS + QIHMG

+ QIHMH — QICNVS — QRACI — QSACI — QGACI — QHACI),

% = QREVP + QRAUT + QRACW + QSSHD + QGSHD + QHSHD

— 5(QIACR + QSACRS + QSACRG + QSACRH + QGACRG + QGACRH + QHACR),

dq, _

it QSACWS — QGACS —~ QHACS — QSSHD + (1 — 6)QSEVP + 6(QSDEP + QICNVS

+ QSACI + QSACRS — QRACSG — QRACSH —~ QWACSG — QIHMS),

% — QGACWG + QGACS — QGSHD + (1 — §)QGEVP + §(QGDEP + QGACI

+ QGACRG + QSACRG + QRACSG + QSACWG + QWACSG + QHACWG
+ QWACHG — QRACGH — QWACGH — QIHMG),

% = QHACWH + QHACS — QHSHD + (1 — §)QHEVP + §(QHDEP + QHACI

+ QHACR + QIACR + QRACI + QSACRH + QRACSH + QGACRH + QRACGH
+ QGACWH + QWACGH — QWACHG - QIHMH),

% = QSACW — QSFM — QSSHD - F,,(QGACS + QHACS) + (1 — 6)QSEVP

+ 6[QSACRS - F,,(QRACSG + QRACSH + QWACSG)],

—dgj” = QGACW — QGFM — QGSHD + F,,-QGACS + (1 — §)QGEVP

+ 5{QGACRG + QSACRG + QSACWG + QHACWG + F,,(QRACSG + QWACSG)
+ F,,-QWACHG ~ F,,(QRACGH + QWACGH)],

__dZ:w — QHACW — QHFM — QHSHD + F,,-QHACS + (1 — §)QHEVP

+ 6[QIACR + QSACRH + QGACRH + QHACR + QGACWH + F,,,-QRACSH
+ F,,(QRACGH + QWACGH) — Fj,- QWACHG]. (A.10)
The functions & in (A.1)—(A.10) and F,, in (A.8)—(A.10) are defined as

1, T<0C
{ (A.11)

0, otherwise,

Fry = qu/qs, (A.12)

where the variable x represents the precipitation ice species of snow, graupel, and hail/frozen drops (x = s, g, k).
Changes in the simulated potential temperature (q) due to latent heating are calculated using the following
thermodynamic energy equation:

e L,

- =~ = (QCND + QREVP)

dt  TIC,

8L
+ Tic. (QINT + QIDEP + QSDEP + QGDEP + QHDEP)
p

N HL—é [QIFM + QSFM + QGEM + QHFM + 6(QIACW + QIHR)],
P

where IT is the Exner function (po/p)“ and k = R,/C,.
Finally, prognostic equations for the number concentrations of each ice species are

dn,
_di = NIFM + §(NINT + NIDEP + NIHMS + NIHMG + NIHMH + NIHR

— NICNV — NIACI — NRACI — NSACI — NGACI — NHACI), (A.14)

dn,

I NSBR — NSACS — NGACS — NHACS + (1 — §)(NSEVP — NSSHD)

+ §(NSCNV + NSDEP — NRACSG — NRACSH — NWACSG), (A.15)
dn,

—& = (1~ 6)(NGEVP ~ NGSHD) + 6(NGDEP + NSACRG

+ NWACSG + NWACHG — NRACGH - NWACGH), (A.16)

dn,

- (1 — §)(NHEVP — NHSHD) + §(NHDEP + NIACR

+ NSACRH + NGACRH + NWACGH — NWACH). (A.17)

Ferrier JAS 1994




NWP in a week...summary...

Basic equations
- 3 forms of compressible equations
- various approximations to equations (fully compressible, hydrostatic, anelastic)
Horizontal grids
- global, local
- grid point, finite volume, structured FV, unstructured FV, spectral
Vertical grids
- types (z, p, sigma)
- coordinate transforms
- errors associated with coordinate transform: e.g., PGF
Choices driving model choices: (problem to be solved, efficiency versus accuracy,
etc)
Numerical Methods
- CFL criteria
- Taylor series analysis
- stability analysis
Parameterizations
- radiation
- microphysics
- land surface






