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Abstract 

 
 The impact of radar-data assimilation in real-time, convection-allowing model 

forecasts was evaluated during the spring seasons of 2008 and 2009 as part of Hazardous 

Weather Testbed (HWT) Spring Experiment activities.  Preliminary results suggest that 

an early prototype version of a CONUS-scale assimilation system had a positive impact 

on model forecasts, especially when organized convective activity was ongoing at the 

initial time.  Daily interrogation of output by teams of modelers, forecasters, and 

verification experts provided additional insight into the value-added characteristics of the 

radar-assimilation forecasts.  This evaluation revealed that the positive effect of the 

assimilation was greatest during the first 3-6 h of each forecast, appeared to be most 

pronounced with larger convective systems, and may have been related to a phase lag that 

sometimes developed when the convective-scale information was not assimilated.  These 

preliminary results are currently being evaluated further using advanced objective 

verification techniques. 
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1. Introduction 
 

 Numerical weather prediction has advanced to higher and higher resolution since its 

inception and in recent years numerous operational prediction centers have implemented 

convection-allowing configurations (i.e., configurations with fine enough resolution to 

obviate convective parameterization) in their forecast models (e.g., Weis et al. 2008; 

Dixon et al. 2009).  This latest generation of operational models appears to have 

numerous advantages over traditional approaches, most notably an improved ability to 

provide information on convective morphology and evolution (e.g., Done et al. 2004; 

Kain et al. 2008; Weisman et al. 2008).  Yet, the resolution of convection-allowing 

models (CAMs) is considerably higher than that provided by traditional data sources, so 

current CAM-based forecast systems typically use relatively coarse resolution initial and 

lateral boundary conditions and rely on the “spin-up” process to develop smaller scale 

circulations such as those associated with convective overturning (Skamarock 2004).  

The spin-up process typically requires 3-6 h of integration time and it inherently results in 

errors in forecasts of small-scale phenomena such as thunderstorms.   

 Intuition suggests that these errors could be ameliorated significantly with robust 

initialization procedures that include observations on scales that are commensurate with 

model resolution and the size of weather phenomena we are interested in predicting.  For 

example, when thunderstorms are present at the initial time, numerical forecasts should 

benefit greatly if the storm-scale circulations, inflow, hydrometeors, etc. are represented 

well in the initial conditions.  This information is not available from conventional 

observations, but it is retrievable from various remote sensing platforms.  Among these 

platforms, the WSR-88D radar network holds considerable promise for initializing CAMs 
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with storm-scale information.  This network provides extensive coverage of reflectivity 

and radial velocity over the CONUS (the contiguous 48 states in the U.S.), from which 

storm-scale hydrometeor, kinematic, and thermodynamic properties can be derived. In 

fact, the use of Doppler radar data for initializing storm-scale numerical weather 

prediction models had been envisioned since early 1990’s (Lilly 1990). 

 Beginning with the early leadership of Douglas Lilly, scientists at the University of 

Oklahoma Center for Analysis and Prediction of Storms (CAPS) have been working on 

assimilation of radar data for many years (e.g., Xue et al. 2002; Xue et al. 2003; Hu et al. 

2006a, b; Dawson and Xue 2006; Sheng et al. 2006; Hu and Xue 2007a, b).  Their early 

efforts involved single radars or regional data and relatively small forecast domains, but 

in the Spring of 2008, in association with the National Oceanic and Atmospheric 

Administration Hazardous Weather Testbed (NOAA HWT) Spring Experiment (hereafter 

SE2008) they for the first time initialized near-CONUS-scale CAM forecasts every 

evening at 0000 UTC with storm-scale data.  These forecasts utilized data from the 

national network of WSR-88Ds, analyzing them at the model-native 4 and 2 km 

resolutions using CAPS’ three-dimensional variational (3DVAR, Xue et al. 2003; Gao et 

al 2004) and cloud analysis scheme (Xue et al. 2008; Kong et al. 2008) that is part of the 

ARPS modeling system (Xue et al. 2003).  For comparison, CAPS also produced a 4-km 

forecast daily that was initialized without the radar data, but was identically configured in 

every other way. 

 This effort was remarkable because of its large scale and the fact that it adhered to 

quasi-operational time constraints – the high resolution forecasts were ready to be used as 

forecast guidance by 1200 UTC – but it was also unique because the output was 
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scrutinized by teams of expert researchers and forecasters every day during SE2008.  

Simulated reflectivity fields from the run with radar assimilation were compared to 

corresponding fields from the parallel no-radar forecast, and both were critically judged 

by comparison with observed radar reflectivity.  Subjective impressions from these 

comparisons were documented as part of the SE2008 record. 

 After SE2008, traditional verification metrics, such as bias and Gilbert Skill Scores 

(GSS – also known as the equitable threat score), were applied to the data to supplement 

the subjective comparisons (e.g., Xue et al. 2008; Kong et al. 2008).  The traditional 

metrics provided useful additional information, but these measures have known 

deficiencies that are magnified as model resolution increases (e.g., Baldwin and Kain 

2006; Casati et al. 2008).  Thus in preparation for the 2009 Spring Experiment (SE2009), 

during which CAPS ran a similar set of forecasts, scientists from the HWT consulted 

with colleagues from the National Developmental Testbed Center (DTC), who had 

participated in SE2008.  The DTC is a center of expertise in the verification of high 

resolution model forecasts and through these consultations DTC and HWT scientists 

identified a compelling strategy for realtime verification efforts in 2009.  This strategy 

engaged HWT scientists and SE2009 participants in a subjective evaluation of the 

potential value of emerging new verification tools during in an operational environment.  

The collaboration also brought to bear innovative verification metrics that may be more 

appropriate for these unique model output datasets. 

 This collaboration between scientists and forecasters from the HWT, CAPS, and DTC 

provided a unique framework in which the impact of the CAPS radar-assimilation 

methodology was assessed from several different perspectives.  The purpose of this Note 
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is to highlight the preliminary findings of this assessment and the value of this 

collaborative arrangement.  In the next section, technical details about model 

configurations, etc. will be outlined and the framework for verification described.  This 

will be followed by a section on results and a final section on the summary and 

conclusions.   

2. Methodology 

 Data generation, dissemination, and verification occurred in conjunction with SE2008 

and SE2009, from mid-April through early June each year.  A full suite of experimental 

activities were conducted daily, Monday through Friday in 2008 and Monday through 

Thursday in 2009. 

a. Model configuration and initialization procedures 

 CAPS ran a 4-km resolution ensemble prediction system and provided the output to 

the Spring Experiment in both 2008 and 2009 (Xue et al. 2008; 2009).  Each year, two 

members of the ensemble were configured identically but initialized differently.  

Specifically, the initialization of one of these members included assimilation of radar and 

other observational data, while the other one did not.  This study focuses exclusively on 

output from these two members.  

 The configurations of these two members are highlighted in Table 1 and the forecast 

domain is shown in Fig. 1.  For both years, background fields were generated by 

interpolating the NCEP (National Centers for Environmental Prediction (NCEP) North 

American Mesoscale (NAM – Rogers et al. 2009) model 0000 UTC analysis (native 12 

km grid) to the 4 km high-resolution grid.  One of these members (hereafter “C0”) used 

this background directly as initial condition while the other member (hereafter “CN”) 
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incorporated additional observational datasets in a storm-scale analysis, including 

assimilation of radar reflectivity and velocity data in the initial condition. Specifically, 

the unique assimilation process in the CN run ingested data from the national network of 

WSR-88D radars, typically using the Level II dataset, but occasionally using the Level III 

data (see Hu et al. 2006a for a discussion of these two datasets) when Level II was not 

available.  Information from conventional rawinsonde, wind profiler, METAR 

(Meteorological Aviation Report) surface observations and Oklahoma Mesonet 

observations was also included.  Furthermore, visible and infrared channel-4 data from 

GOES satellites were used in the cloud analysis package.  Details about this complex 

assimilation process can be found in Xue et al. (2008; 2009, and references therein). 

 Both members were integrated out to the 30 h forecast time, but the focus here will be 

primarily on the first 6-12 h – the period when the assimilated radar data is expected to 

have the most impact (Zhang et al. 2007).   

b. Verification data sets 

 Simulated reflectivity (SR) from CAMs has proven to be a very useful diagnostic 

output field because it provides important clues about a variety of circulations and 

processes in a model forecast (e.g., Xue et al. 2003; Koch et al. 2005).  Thus, the 

subjective evaluations were based primarily on comparison of SR with observed 

reflectivity from WSR-88D radars in both 2008 and 2009.  Objective verification in 2008 

used accumulated precipitation fields.  The verifying data are derived from the Stage II 

hourly precipitation analyses (Baldwin and Mitchell 1998).  In 2009, both accumulated 

precipitation fields and simulated reflectivity were evaluated but the focus of this 
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discussion will be on simulated reflectivity.  The remainder of this section describes the 

fields in detail. 

 The SR was computed from the three-dimensional hydrometeor field as described in 

Kain et al. (2008), with all relevant parameters (such as those describing particle size 

distributions) set to the values used by the Thompson microphysical parameterization that 

was used during model integration.  For this study, composite SR was used, meaning that 

gridded values represent the largest computed simulated reflectivity at any level in each 

vertical column. 

 In 2008, the observed reflectivity (OR) data were from national composite-reflectivity 

mosaics that are part of the SPC operational data stream.  These mosaics are generated by 

Unisys Corporation at a frequency of five minutes or less on a 2 km grid.  In 2009, the 

OR data came from the National Severe Storms Laboratory (NSSL) national 1 km radar 

mosaic (Vasiloff et al. 2007). 

c. HWT Spring Experiment activities 

 During both SE2008 and SE2009, hourly SR output from the C0 and CN forecasts 

were visually compared to corresponding OR fields.  Whenever possible, this comparison 

was focused on a region of active thunderstorms at the model initialization time by 

zooming in on a regional domain so that features ranging from individual convective 

cores to mesoscale convective systems (MCSs) could be examined within a single image.  

The comparison was a group activity, conducted by teams of expert forecasters and 

researchers.  The teams were asked to focus on 1) the continuity and evolution of 

reflectivity features assimilated into the CN forecast, i.e., did the model forecast appear to 

“hit the ground running” with a smooth and realistic-looking evolution of precipitation 
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features on all scales, from those of individual convective cells to MCSs?  2) how long it 

appeared to take for coherent precipitation structures in the C0 run to “spin up”, i.e., 

develop similar levels of detail and apparent realism in the reflectivity field as compared 

to the CN forecast.  The evaluation was performed by manually stepping through hourly 

SR and OR fields, displayed side-by-side on a large elevated plasma screen.  The 

assessment of the evaluation teams was formally documented each day, along with any 

related discussion.   

d. DTC activities and collaboration 

 During SE2008, NSSL and SPC scientists worked with colleagues from the DTC to 

develop a framework for incorporating realtime objective verification procedures into 

daily HWT spring experiment activities.  These procedures were implemented for the 

first time during SE2009.  As part of this process, model SR and precipitation fields were 

extracted from output at the HWT and transferred to the DTC, along with verifying 

reflectivity and precipitation fields from the NSSL national radar reflectivity and 

quantitative precipitation estimate (QPE) mosaics (Vasiloff et al. 2007).  These datasets 

were ingested at the DTC and several different types of verification statistics were 

computed, focusing on a specified (moveable) regional domain where active weather was 

expected at model initialization time (0000 UTC) each day.  Graphical displays of the 

statistical results were posted to an internal web page along with selected output fields 

such as simulated reflectivity in time for subjective assessments and critical examination 

by forecast teams during the SE2009 daily activities.  This group evaluation was led by a 

DTC scientist each day, as the DTC rotated several scientists through SE2009 on a 

weekly basis.  The group was instructed to focus on assessing 1) the degree to which 
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objective verification metrics corroborated subjective impressions and 2) the potential 

utility of the various objective metrics in an operational environment. 

 Verification procedures at the DTC used the Meteorological Evaluation Tools (MET) 

software package (Brown et al. 2007).  In addition to numerous traditional verification 

metrics, such as the Gilbert Skill Score (GSS) and Critical Success Index (CSI), bias, and 

false alarm ratio, this package includes tools that produce additional verification statistics 

designed to quantify the correspondence between objects, or features, in forecasts and 

observations.  This Method of Object-based Diagnostic Evaluation (MODE – see Davis 

et al. 2006; Brown et al. 2007) software relies on user-specified parameters to identify 

similar features (such as precipitation elements) in forecasts and observations.  In this 

study, the matching features are overlaid to enhance visual comparison of forecasts and 

observations.  Meanwhile, work is underway to utilize MODE with the SE datasets to 

quantify the degree of correspondence between features in terms of attributes such as 

size, distance, orientation, internal structure, etc., but this effort is still at an early stage of 

development and will be reported in a separate paper. 

3. Results 

a. SE2008 

1) SUBJECTIVE ASSESSMENTS 

 On many days evaluation teams noted a “lack of continuity” during the first 1-3 h of 

the CN forecasts.  Specifically, they noted that the most intense convective cells, the 

location of which appeared to be initialized very well, were often substantially weakened 

if not gone altogether by one hour into the forecast.  They also noted that spurious (no 

correspondence with observations), transient convection “bloomed” nearby on some 
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days.  In addition, they indicated that, on most days, the C0 run spun up convection 

within 3-6 h, noting that beyond this time period SR fields from the CN and C0 runs 

began to resemble each other more so than either one resembled the corresponding OR 

field. 

 These general characteristics are exemplified quite well by the set of forecasts that 

begins with the 0000 UTC 5 June 2008 initialization.  Comparison of Figs. 2a and 2b 

suggests that the CAPS procedures for assimilating hydrometeors from radar data are 

quite faithful to the observations - the correspondence between observed and assimilated 

reflectivity structures is remarkably good.  However, within the first hour the model 

forecast begins to lose correspondence with the intense convective cells but retains a 

good semblance of the general envelope of convective activity (cf. Figs. 2 d and e).  

Meanwhile, the C0 forecast develops some isolated storms in southeastern Nebraska 

during this first hour and begins to form a cohesive convective system in the Nebraska 

Panhandle and northeastern Colorado (Fig. 2f).  As integration time progresses, the two 

forecasts begin to look more and more alike, and less like observations (cf. Figs. 2 j, k, 

and l), but the run with data assimilation clearly appears to get a “head start” in its 

representation of two coherent MCSs.   

2) OBJECTIVE VERIFICATION 

 During much of the SE2008 period, being the first time to run their system at such a 

large scale, CAPS scientists were making adjustments to their data assimilation system.  

Also, the input radar dataset was incomplete on many days.  Nonetheless, and in spite of 

some inconsistencies in performance from day to day, objective verification metrics 

indicate that the net impact of the data assimilation was positive.  Aggregate verification 
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of hourly precipitation data from all days suggests that the assimilation procedures led to 

higher precipitation skill scores for the CN forecasts through at least the first 12 h of 

integration (Fig. 3).   

 This result, particularly the extended duration of the positive impact, came as 

somewhat a surprise to many who participated in the daily SE2008 subjective 

assessments.  Apparently, the realtime focus on the most intense convective cores (which 

typically dissipated within the first hour of the CN forecast) drew attention away from the 

fact that assimilated mesoscale features, such as MCSs, often showed relatively good 

continuity after initialization.  These larger systems can dominate traditional verification 

metrics by simple virtue of their size, and the objective statistics suggested that the 

measurable benefits of the CAPS radar assimilation for mesoscale features extended 

beyond the time when such benefits were obvious to the naked eye.  This view is 

supported by a number of cases discussed in Xue et al. (2008; 2009). 

 An alternative application of the same objective metrics can be used to substantiate 

our subjective impression that the two forecasts tend to look more like each other than 

like observations beyond the first several hours.  Specifically, when GSSs and CSIs are 

re-computed for the C0 dataset, but this time using the CN data as the verifying 

“observation” instead of the Stage II data (black curves in Fig. 3), scores are higher than 

those associated with either the CN or C0 data, as verified against the Stage II data, 

beyond the 4 h time period.  This is apparently because the two runs share very similar 

forecasts of the mesoscale environment. After the predictability of small convective-scale 

features initialized by the radar data is lost, the development and evolution of convective 

activity is strongly modulated by forcing mechanisms in the environment.   
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3) PRELIMINARY ASSESSMENT FOLLOWING SE2008 

 The impact of radar data assimilation appeared to be scale dependent.  Visual 

examination indicated that convective scale information was lost very quickly after the 

model integration started and, in fact, SE2008 participants noted that smaller-scale 

reflectivity structures in the CN forecasts looked “non-meteorological” in the first six 

hours of the forecasts on some days, after which more realistic looking features began to 

spin up in both the run with radar-data assimilation and the “cold start” run.  So the radar 

assimilation appeared to add relatively little in the way of reliable guidance for the 

occurrence and/or behavior of discrete convective cells during the first 6 h or so of 

integration1.  However, it clearly provided added value for regional quantitative 

precipitation forecasts (QPF) in the first 3 to 6 h.  Beyond this time, and through about 

15h, GSS and CSI scores indicated a QPF advantage for the CN runs in spite of the fact 

that CN and C0 runs looked much more like each other than observations during this 

period.  

b. SE2009 

1) SUBJECTIVE ASSESSMENTS 

 In 2009, the subjective assessments were greatly facilitated by a web-based display 

developed at the DTC.  As in SE2008, this display placed hourly time-matched 

composite reflectivity images (SR and OR) side-by-side, but in 2009 these images were 

supplemented with simple graphical displays derived using MODE that contained 

                                                 
1 This conclusion may be specific to the particular data assimilation strategy and model grid spacing used 
during SE2008 and SE2009. Due to the constraint of realtime operations, only a single-time 3DVAR 
analysis  was performed, and the forecasts discussed here used relatively coarse 4-km grid spacing.  In case 
studies conducted by CAPS using higher resolution and cycled 3DVAR (e.g., Hu et al. 2006a) or ensemble 
Kalman Filter (e.g., Lei et al. 2008) techniques, smaller scale convective structures introduced through 
assimilation of WSR-88D data appear to evolve quite realistically through the life cycle of the storms.  
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.overlays of corresponding SR and OR objects.  For example, Fig. 4 displays images in a 

format similar to the one used in SE2009.  The supplemental graphics are in the bottom 

two rows, showing the observed objects identified by MODE outlined in blue, with the 

corresponding objects from the two forecasts (CN in the next-to-bottom row, C0 in the 

bottom) overlaid as color filled areas.  The corresponding SR fields are in the second 

(CN) and third (C0) rows; OR fields are in the top row.  

 Examination of these displays yielded impressions that were similar to those of 2008.  

For example, the initialization from 0000 UTC 14 May 2008 indicated that the CAPS 

assimilation scheme placed hydrometeor fields on the model grid very accurately (cf. 

Figs. 4 a and b), but the smaller scale features appeared to lose coherence rapidly in the 

forecast.  By the two hour time, the CN SR pattern seemed quite disorganized compared 

to observations (cf. Figs. 4 f and g), yet the object field, which was based on a reflectivity 

threshold of 30 dBZ, indicated substantial overlap between the SR and OR fields (Fig. 

4i).  Meanwhile, deep convection was beginning to spin up in the C0 forecast (Fig. 4h), 

with the location axis in fairly good agreement with observations, especially on the 

southern end of the line (Fig. 4 j).   

 Four hours into the 14 May forecast, the CN forecast still had a diffuse representation 

of the main convective line compared to observations, but also continued to have very 

good spatial overlap with the observed system, at least at the 30dBz threshold (Figs. 4 k, 

l, and n).  At this time, it could be argued that SR from the C0 run looked more like 

observations than did SR from the CN forecast in terms of convective evolution and 

morphology (cf. Figs. 4k, l, and m), yet a subtle but important trend is revealed by the 
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overlay in Fig. 4o.  Namely, the C0-predicted convective system appears to lag behind 

the corresponding observed and CN systems.   

 This relative upstream lag persists for the lifetime of this convective system, as 

suggested by Figs. 4 p, r, and t.  In fact, an upstream lag in C0 systems was noted on a 

number of days during SE2009.  The tendency for this behavior would certainly help the 

CN forecasts retain an advantage over the C0 forecasts in terms of traditional verification 

metrics, especially for narrow features like this convective line.  This may explain why 

aggregate GSS and CSI scores favor the CN forecasts well beyond the ~ 6 h integration 

time when such a systematic difference is difficult to discern from simple side-by-side 

visual inspections of the SR and OR fields.   

2) OBJECTIVE VERIFICATION 

 Object-based verification metrics, such as those available in MODE, are capable of 

diagnosing systematic biases, such as the upstream lag proposed above.  However, 

generation of statistically significant inferences from these metrics is quite challenging 

due to sample size constraints (i.e. number of identified objects is small over a 4-6 week 

time period) and is the subject of ongoing work.  Nonetheless, application of traditional 

verification metrics, this time based on reflectivity fields rather than accumulated 

precipitation, yields some interesting results.   

 As expected, GSSs start out at a high level in the CN runs, with the magnitude 

depending on the reflectivity threshold.  But GSSs from the CN and C0 runs converge at 

about the 10 h time (Fig. 5).  Although the convergence point may be a few hours earlier 

than seen with the previous (i.e., 2008) dataset (which was verified on the basis of 

accumulated precipitation), it is not clear whether there is any real significance to this 
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difference.  In a broad sense, traditional verification metrics from 2008 and 2009 are 

rather similar, indicating a decrease in the impact of the radar assimilation after 6-12 h.. 

3) COMBINED ASSESSMENT FOLLOWING SE2008 AND SE2009 

 Visual examination of daily forecasts during SE2009 substantiated the results from 

SE2008, including the scale dependence of the value added with radar assimilation and 

the 3-6 h spin-up time for the forecasts without radar assimilation.  All measures 

indicated a clear advantage for the CN runs through about 6h.  Beyond this time side-by-

side visual inspection did not reveal a consistent advantage for either the CN or C0 

forecasts in terms of convective evolution and morphology, yet simple overlays of SR 

and OR entities revealed a phase lag in the C0 forecasts on many days.  This phase lag, 

similar in character to the phase shifts identified by Dawson and Xue (2006), may help 

explain the measured differences between CN and C0 GSSs after the 6 h time (Fig. 5).   

 With verification metrics limited to traditional approaches, the systematic impact of 

this phase lag remains speculative.  However, work is underway to develop more robust 

ways of applying MET/MODE to this dataset.  A better characterization of the errors in 

both the C0 and CN forecasts is the expected outcome of this effort.  For example, one of 

the MODE diagnostics is the centroid distance between objects.  The algorithm for this 

metric can be modified easily to relate this distance to phase speed and direction, 

allowing us to confirm or deny our hypothesis of a systematic C0 phase lag in convective 

features that are active at model initialization time.  Alternatively, spatially shifted 

verification scores such as those used in Dawson and Xue (2006) could be applied.  MET 

also has algorithms to determine forecast skill as a function of spatial scale (e.g., Casati et 
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al. 2004), which should be useful in formally assessing the scale dependence of any skill 

differential.   

4. Summary and discussion 

 Assimilation of radar data into numerical weather prediction models holds great 

promise for improving forecasts, but it is also one of the most challenging problems 

facing numerical modelers.  This problem has many different facets, including 

theoretical, computational, and practical constraints.  Consequently, it is being addressed 

from many different angles (see, e.g., Stensrud et al. 2009 and references therein).  

Scientists at CAPS have more than a decade of experience working on this issue and they 

recently applied their expertise in the development of a CONUS-scale realtime 

forecasting system, including one at 1-km resolution in 2009 (Xue et al 2009).  This 

system assimilates data from the entire national network of WSR-88D radars.  Because of 

the computational demands associated with a CONUS-scale implementation, this 

prototype system uses a relatively efficient 3DVAR analysis technique, rather than a 

more computationally intensive 4DVAR (e.g., Sun and Crook 1998) or ensemble-based 

approach (e.g., Tong and Xue 2005; Lei et al. 2008; Aksoy et al. 2009) approaches to 

assimilate cloud-scale data.  Furthermore, high-frequency assimilation cycles (e.g., Hu 

and Xue 2008) making use of multiple volume scans of radar data was not done for the 

realtime experiments. The lack of balance among state variables and consistency with the 

prediction model in the single time 3DVAR-based analysis is at least partially responsible 

for the relatively rapid decrease is the forecast skills of convective-scale features in the 

first few hours (Hu et al. 2006b, Hu and Xue 2008). Meanwhile, model biases (Kong et al 

2009) and sensitivity to microphysics (Xue et al. 2009) can also significantly affect the 
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forecast performance. Nonetheless, the effort represents a ground-breaking scientific and 

computational achievement and lays the foundation for more advanced applications of 

such a prototype and further improvement to the data assimilation methodologies in the 

future.   

 Output from this forecasting system incorporating radar assimilation was visually 

compared to output from forecasts with no assimilation of radar data during HWT Spring 

Experiments in 2008 and 2009 and the differences were scrutinized in order to assess the 

impact of the radar-data assimilation.  In addition, the impact was measured after the 

close of the experimental periods using various objective verification metrics.   

 Compared to the no-radar (C0) forecasts, the visual assessments of the radar (CN) 

runs indicated a positive impact from the CAPS assimilation system during the first 6 h 

of integration - the time period during which precipitation features were spinning up in 

the C0 runs.  After the 6 h time the evaluation teams focusing on visual side-by-side 

comparisons often found it difficult to discern which forecast was better.  However, 

simple overlay techniques introduced by DTC scientists seemed to indicate a small yet 

systematic phase lag in the C0 forecasts, similar to the phase shift identified in MCS 

simulations by Dawson and Xue (2006).  That is, not only did precipitation systems 

require 3-6 h of integration time to spin up when radar and other observational data were 

not assimilated, these features were often displaced slightly upstream compared to 

corresponding features in observations and the CN forecasts.  This phase lag may help to 

explain why the CN forecasts earned slightly higher aggregate objective verification 

scores after ~ 6 h when any advantage in overall convective evolution and morphology 

past this time was not readily discernible in side-by-side subjective assessments. 
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 This study provides valuable guidance for future experimentation related to the radar-

assimilation problem, but its impact reaches far beyond that.  By bringing together 

experts not only in numerical modeling, but also in the areas of severe weather 

forecasting and model verification, this synergistic effort resulted in progress on several 

fronts.  For example, SE2008 and SE2009 exposed severe weather forecasters to new 

technologies and scientific concepts, including high-resolution deterministic models, 

ensembles, and advanced techniques in data assimilation.  These technologies are 

envisioned as fundamental components of future numerical guidance systems, such as 

Warn-On-Forecast systems (Stensrud et al. 2009), and early engagement with the 

forecasting community is essential for their success.  In particular, forecaster feedback 

can be extremely helpful to model developers, who may have a limited understanding of 

how model output is used in the operational forecasting process.  At the same time, 

human forecasters must frequently adapt to new innovations in modeling, and the success 

of this adaptation is facilitated by advanced knowledge of anticipated changes.  

 Consultation with forecasters is also critically important for developers of verification 

metrics, such as DTC scientists.  For example, object-based verification metrics are 

designed to replicate an expert user’s (e.g., a human forecaster’s) assessment of the 

strength and weaknesses of numerical guidance.  Feedback from users is critical to the 

success of such a metric, just as it is to the optimization of a numerical model.  During 

SE2009 participants generally had a positive impression of the information provided by 

daily MET/MODE output, but they also identified a number of potential weaknesses in 

the algorithms used by this software package.  Most notably, they found that 

unambiguous identification of corresponding objects in observations and model forecasts 
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can be very challenging, particularly in convective regimes where reflectivity patterns are 

quite complex.  Feedback from SE2009 participants is currently being used to refine 

parameters and algorithms in the MET/MODE software for use in SE2010. 
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Figure Captions 

 

Fig. 1.  Model domain for the 4 km 2008 and 2009 CAPS forecasts 

Fig. 2.  Comparison of observed and simulated composite reflectivity for forecast hours 

0, 1, 3, and 6, beginning at 0000 UTC 5 June 2008.  Observations are in the left-hand 

column, the CN forecast is in the middle column, and the C0 forecast is in the right 

column. 

Fig. 3.  Coverage Bias, CSI, and GSS as a function of time for all forecast hours and all 

days during SE2008, for the 1 mm hr-1 precipitation-rate threshold.  Note that the 

black curve in each image compares the C0 and CN fields, while the other curves 

compare the respective model forecasts to Stage II observed precipitation data. 

Fig. 4.  Comparison of observed and simulated composite reflectivity for forecast hours 

0, 2, 4, and 6, beginning at 0000 UTC 14 May 2009.  Observations are in the top row, 

with the CN and C0 forecasts in the second and third rows, respectively.  In the 

bottom two rows, the location of observed features is outlined in blue and the features 

predicted by the CN (fourth row) and C0 (fifth row) are overlaid and color filled.  

Objects filled with a single color have been grouped (or merged) by the MODE 

software as a collection of related objects.  Each time period is analyzed 

independently by MODE.   

Fig. 5.  Gilbert Skill Score as a function of time for all forecasts during SE2009.  The 

dark (light) curves are derived from the run with (without) assimilation of radar data, 

solid (dashed) lines represent scores using a 40 (20) dBz reflectivity threshold.   
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Table Caption 

 

Table I.  Weather Research and Forecasting (WRF) model configuration used by CAPS 

during SE2008 and SE2009.  ARW denotes the Advanced Research WRF dynamic 

core (Skamarock et al. 2005); the physical parameterizations include Thompson 

microphysics (Thompson et al. 2008), MYJ boundary layer/turbulence (Janjic 1994), 

Goddard short-wave radiation (Tao et al. 2003), RRTM: Rapid Radiative Transfer 

Model (Mlawer et al. 1997; Iacono et al. 2000).  Version 2.2 of the WRF-ARW was 

used in 2008, version 3.0.1.1 in 2009. 
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Fig. 1.  Model domain for the 4 km 2008 and 2009 CAPS forecasts. 
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Fig. 2.  Comparison of observed and simulated composite reflectivity for forecast hours 0, 
1, 3, and 6, beginning at 0000 UTC 5 June 2008.  Observations are in the left-hand 
column, the CN forecast is in the middle column, and the C0 forecast is in the right 
column. 

a b c

d e f

g h i 

j k l



32 

 
 
 

 
 
 

Fig. 3.  Coverage bias, threat score (TS), and equitable threat score (ETS) as a function of 
time for all forecast hours and all days during SE2008, for the 1 mm hr-1 precipitation-
rate threshold.  The different datasets indicated in the legend correspond to the CAPS 
WRF-ARW forecasts with (CN) and without (C0) assimilation of radar data and the 
WRF-NSSL runs that also do not assimilate radar data.  Note that the black curve in 
each image compares the C0 and CN fields, while the other curves compare the 
respective model forecasts to Stage II observed precipitation data. 

Fig. 3.  Coverage Bias, CSI, and GSS as a function of time for all forecast hours and all 
days during SE2008, for the 1 mm hr-1 precipitation-rate threshold.  Note that the 
black curve in each image compares the C0 and CN fields, while the other curves 
compare the respective model forecasts to Stage II observed precipitation data. 
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Fig. 4.  Comparison of observed and simulated composite reflectivity for forecast hours 0, 
2, 4, and 6, beginning at 0000 UTC 14 May 2009.  Observations are in the top row, 
with the CN and C0 forecasts in the second and third rows, respectively.  In the 
bottom two rows, the location of observed features is outlined in blue and the features 
predicted by the CN (fourth row) and C0 (fifth row) are overlaid and color filled.  
Objects filled with a single color have been grouped (or merged) by the MODE 
software as a collection of related objects.  Each time period is analyzed independently 
by MODE.   

 



34 

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 5.  Gilbert Skill Score as a function of time for all forecasts during SE2009.  The 
dark (light) curves are derived from the run with (without) assimilation of radar data, 
solid (dashed) lines represent scores using a 40 (20) dBZ reflectivity threshold.   
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Dynamic Core WRF-ARW 
Horiz. Grid (km) 4 
Vertical Levels 51 

Microphysics Param Thompson 
PBL/Turb. Param MYJ 

Radiation (SW/LW) Goddard/RRTM 
Background IC/LBC 12 km NAM 

Table I.  Weather Research and Forecasting (WRF) model configuration used by CAPS 
during SE2008 and SE2009.  ARW denotes the Advanced Research WRF dynamic core 
(Skamarock et al. 2005); the physical parameterizations include Thompson microphysics 
(Thompson et al. 2008), MYJ boundary layer/turbulence (Janjic 1994), Goddard short-wave 
radiation (Tao et al. 2003), RRTM: Rapid Radiative Transfer Model (Mlawer et 
al. 1997; Iacono et al. 2000).  Version 2.2 of the WRF-ARW was used in 2008, version 
3.0.1.1 in 2009. 


