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Summary

In this paper, a new three-dimensional variational analysis
scheme capable of retrieving three-dimensional winds
from single Doppler observations of convective storms is
developed. The method incorporates, in a single cost
function, Doppler radar observations, a background field,
smoothness and mass continuity constraints, and the
residual of reflectivity or radial velocity conservation. By
minimizing this cost function, an analysis with the desired
fit to these constraints is obtained in a single procedure.
In tests with both simulated and real thunderstorm cases,
detailed structures of the storms are well retrieved in
comparison with reference analysis.

Unlike most kinematic retrieval methods, our scheme is
capable of directly dealing with data voids. When an analysis
background is available, say from a proximity sounding, a
wind profiler, or a numerical model forecast, the method
naturally blends Doppler radar observations with it. Thus,
a smooth transition is obtained between data-rich and data-
void areas. These features, among others, are important if the
analysis is to be used to initialize storm-scale numerical
models or for diagnostic studies of storm structures.

1. Introduction

Doppler radar has long been a valuable observa-
tional tool in meteorology. It has the capability of
observing, at high spatial and temporal resolu-
tion, the internal structure of storm systems from

remote locations. However, direct measurements
are limited to reflectivity, the radial component
of velocity, and the spectrum width; there is
no direct measurement of the complete three-
dimensional (3-D) wind field. In order to gain a
more complete understanding of storm dynamics,
as well as to initialize storm-resolving numerical
models, such information is necessary.
Many techniques for retrieving the unobserved

wind components from single-Doppler radial
velocity and perhaps also reflectivity data have
been developed since the last decade (e.g., Tuttle
and Foote, 1990; Sun et al, 1991; Liou et al,
1991; Qiu and Xu, 1992; Sun and Crook, 1997,
1998; Shapiro et al, 1995; Laroche et al, 1994;
Weygandt et al, 1995, 2002; Zhang and Gal-
Chen, 1996; Gao et al, 2001, Crook and Sun,
2004). A detailed review of these and other meth-
ods can be found in Shapiro et al (2003).
Qiu and Xu (1992) developed a simple adjoint

method (SA) to retrieve 2-D wind field from
the lowest-elevation scans, and tested using the
Phoenix-II dataset and the Denver microburst
dataset (Xu et al, 1994; 1995). As demonstrated
in their studies, the use of data gathered over
several radar scans reduces the under-determined



nature of the retrieval problem. Other non-
Doppler radar information, such as surface wind
and other observations, and equation constraints
such as the mass continuity and smoothness con-
straints can be easily incorporated into the re-
trieval procedure. Because the SA method uses
only the conservation equation(s) for reflectivity
and=or radial velocity, the boundary conditions
are readily available. The shortcoming is that it
is difficult to deal with data voids in the initial
tracer field which is needed to integrate the sim-
ple forward model equation.

The variational Doppler radar analysis system
(VDRAS) for retrieval of three-dimensional
wind, thermal, and hydrometeor fields was de-
scribed and tested using simulated data of a
warm rain convective storm and real dataset
(Sun et al, 1991; Sun and Crook, 1997; 1998).
This analysis system applies the 4-D variational
data assimilation technique to a cloud-scale
model. Radial velocity and reflectivity observa-
tions from one or more Doppler radars can be
assimilated into the numerical model by mini-
mizing the difference between the observations
and the model predictions. A set of optimal
initial conditions consisting of wind, thermal,
and microphysical fields is determined as the
model is optimally fitted to the observations.
The application of this analysis system to differ-
ent stages of the evolution of a simulated con-
vective storm demonstrated that the detailed
structure of wind, thermodynamics, and micro-
physics could be obtained with reasonable accu-
racy. However, the application of VDRAS to
deep convective storms can present a great chal-
lenge because it is computationally too expensive
to run in real time. Nevertheless, it was shown
that the method could be applied to retrieve the
low-level wind reasonable in real time success-
fully (Crook and Sun, 2004).

Qiu and Xu (1996) also applied a least-
squares method by using the simple advection=
conservation equation as a weak constraint. This
more efficient method proved superior to the
2-D simple adjoint method. For the purpose of
initializing numerical weather prediction (NWP)
models, the vertical velocity is also required un-
less other fields are known perfectly (Weygandt
et al, 1999; Nascimento and Droegemeier, 2002).
Diagnostic studies using the retrieved data usu-
ally require information about vertical velocity as

well. Typically, vertical velocity is obtained by
integrating the mass continuity equation verti-
cally from independently retrieved horizontal
(or nearly horizontal) winds. However, the results
often are poor (Gao et al, 1999a).
Gao et al (2001), and Xu et al (2001) extended

the 2-D SA methods to a fully 3-D formulation,
also using the 3-D anelastic mass continuity con-
servation equation as a weak constraint, so as to
couple the three wind components. The method
was tested using data from a simulated supercell
storm and compared against the model ‘‘truth’’.
It was shown that circulations inside and around
the storms, including the strong updraft and
associated downdraft, can be well retrieved.
The SA method does require the integration of
a simplified radial-component momentum equa-
tion and=or the reflectivity conservation equation
forward, and their corresponding adjoint back-
ward, many times in the minimization procedure.
However, for a 3-D dense grid, the CPU time
and memory requirements still can be significant.
In this work we seek to overcome this diffi-

culty by using the reflectivity conservation equa-
tion, as a weak constraint in a 3-D setting. In the
cost function, temporal and spatial derivatives
are obtained using finite differences from two
or three time levels of radar observations, and
the equations are not integrated in time. Also,
different from Qiu and Xu (1996), we include
the background field as additional information,
and use the more physical mass continuity equa-
tion constraints instead of the zero-divergence
and zero-vorticity (weak) constraints. To test the
performance of our method, we present single-
Doppler wind retrievals using a simulated deep
convective storm as well as radar observations
of a real storm. For the simulated data case, the
sensitivities of the retrieval to radar location and
observation errors are examined and the analysis
errors quantified against model ‘‘truth’’.
This paper is organized as follows: in Sect. 2,

the new 3-D variational method is introduced. In
Sect. 3, the method is tested with a set of ideal-
ized data sampled from a simulated supercell
storm, and quantitative analysis errors are calcu-
lated against the model ‘‘truth’’. In Sect. 4, re-
trieval results from the May 17, 1981 Arcadia,
Oklahoma supercell storm are presented. Finally,
summary and concluding remarks are given in
Sect. 5.
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2. Description of retrieval method

Our method is based on a variational procedure
in which we define a cost function, J, as the
sum of the squared errors due to the misfit
between observations and analyses, subject to
certain constraints. Each constraint is weighted
by a factor that accounts for its presumed
accuracy. The cost function is minimized to
yield an analysis that gives the best fit to the
radar observation subject to background and
other constraints. When a different form of
the cost function is used, the analysis is usually
different. The definition of the cost function
and its subsequent minimization are key issues
in variational analysis. The variational method
makes use of the derivative of J with respect
to the analysis variables, and thus J must be
differentiable.

Designed for the analysis of 3-D wind fields
from Doppler radar and other observations, our
variational method described herein retrieves the
3-D time-mean (over the retrieval period) wind
vector (um, vm, wm) from single-Doppler radar
radial velocity (Vob

r ) and=or reflectivity (�ob).
The retrieval period is typically the interval com-
prising two or three radar volume scans over
which the time tendency of radial velocity or
reflectivity is evaluated (typically between 1 to
10 minutes depending on the radar scan strategy
used).

The cost-function that we use is defined as
follows:

J ¼ JE þ JVr
þ JB þ JD þ JS; ð1Þ

where the first term,

JE ¼ 1

2

XN�1

n¼1 or 2

WEðEnÞ2 ð2Þ

measures the extent to which the three-dimen-
sional reflectivity or radial velocity advection-
diffusion (or conservation) equation,

@�

@t
þ um

@�

@x
þ vm

@�

@y
þ wm

@�

@z
� kHr2

H�

� kVr2
V� � Fm ¼ 0; ð3Þ

is satisfied. WE in Eq. (2) is the weight for
this term, more discussion on the choice of
weights for the terms in Eq. (1) will be given

later. The index n in Eq. (2) denotes the time
level of the observation, and N is the total
number of radar volume scans used in the
retrieval.
The studies of Xu et al (1994), and Xu and Qiu

(1995) examined the use of one or both of the
radial velocity and reflectivity equations, in the
form of Eq. (3), in the context of the 2-D SA
method. When both are used, slightly better
retrieval results were obtained (Xu and Qiu,
1995). When � is the radial velocity, then
Eq. (3) represents a momentum equation with
the term Fm representing other forcing terms
not explicitly given in the equation. When � is
the reflectivity, Fm then contains source and sink
terms related to microphysical processes. Our
procedure is formulated in a general way so that
Eq. (3) can be applied to either radial velocity or
reflectivity, or both.
In Eq. (2), um, vm, and wm are the time-mean

(over the retrieval period) x, y, and z velocity
components, which are the outcome of retrieval.
In the terminology of optimal control theory,
they are the control variables, and represent the
time mean because the radar observations span
over the retrieval period. It is assumed that this
mean velocity causes, via advection, a significant
part of the change in the ‘‘tracer’’ field, �. Here
the ‘‘tracer’’ does not have to conserve be-
cause the ‘‘conservation’’ equation does include
the effect of other non-conservative forcing or
source=sink terms, denoted by Fm, which is to
be retrieved as well.
Equation (3) includes horizontal and vertical

diffusion terms, with eddy coefficients of kH
and kV , which are assumed to be unknown
constants to be retrieved. The term Fm, men-
tioned earlier, is a time-mean source term, also
to be retrieved, and includes effects such as
centrifugal and pressure gradient forces if the
tracer is radial velocity, or sources and sinks
of hydrometeors in association with micro-
physical processes, and the effects of terminal
velocity (if this effect is not accounted for
in the vertical advection process), if the tracer
is reflectivity. In order to evaluate the terms
in Eq. (3) using finite differences, bilinear-
interpolation is performed to interpolate the
observed reflectivity and=or radial velocity from
the observation points (in radar spherical coor-
dinates) to the analysis (Cartesian coordinate)
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grid. The residual of Eq. (3), En, is computed
according to

En �
1

2�t
�nþ1
ob � �n�1

ob

� �
þ um

@

@x
þ vm

@

@y
þ wm

@

@z

� �
�nob

� kHr2
H þ kvr2

v

� �
�nob � Fm; ð4Þ

where �nob denotes the observed reflectivity or
radial velocity at the n-th time level and �t is
the time interval between successive radar scans.
All spatial derivatives are computed using the stan-
dard second-order centered difference scheme.

The second term, JVr
, in Eq. (3) defines the

distance between the analyzed temporal mean
radial velocity, Vr, and the observed counterpart,
Vr ob:

JVr
¼ 1

2

X
n

WrðVr � Vn
r obÞ

2: ð5Þ

Wr is the weight, and Vr is given by the forward
operator Vr ¼ PQðum; vm;wmÞ, where Q is a lin-
ear interpolation operator that maps the 3-D
Cartesian velocity (um, vm, wm) from the grid to
observation points. At observation points, the
winds are denoted by ðu0m; v0m;w0

mÞ. P is an opera-

tor that projects the winds (u0m; v
0
m;w

0
m) to the

radial direction and has the following form:

Pðu0m; v0m;w0
mÞ ¼ ðxu0m þ yv0m þ zv0mÞ=r; ð6Þ

where r is radial distance from the radar to the
observation point. In doing so, all observed veloc-
ities, including their orientation, are used with-
out any directional bias when � is the radial
velocity. In another words, interpolation that may
produce inaccurate averaged vectors is avoided.
This issue does not exist for scalar reflectivity.

The other terms in the cost function have the
following definitions:

JB ¼ 1

2

X
ijk

Wubðum � ubÞ2 þ
X
ijk

Wvbðvm � vbÞ2
"

þ
X
ijk

Wwbðwm � wbÞ2
#
; ð7Þ

JD ¼ 1

2

X
ijk

WDD
2; ð8Þ

JS ¼
1

2

X
ijk

Wusðr2umÞ2 þ
X
ijk

Wvsðr2vmÞ2
"

þ
X
ijk

Wwsðr2wmÞ2
#
: ð9Þ

Here, JB measures the fit of the variational anal-
ysis to the analysis background, and JD imposes
a weak anelastic mass continuity constraint on
the analyzed wind field, where

D � @���um
@x

þ @���vm
@y

þ @���wm

@z
; ð10Þ

and where ���ðzÞ is the mean air density chosen
to be a function only of height. D ¼ 0 is the
anelastic mass continuity equation.
The last term in the cost function, Js, is a

spatial smoothness constraint that acts to both
reduce the noise in the analyzed field as well
as help to alleviate the under-determined nature
of the problem. The effect of this smoothing
term is similar to filters, either, as discussed in,
e.g., Huang (2001), or implicit (e.g., Hayden and
Purser, 1995) in the standard formulation of
3DVAR analysis. In the latter case, the filter is
generally designed to model the effect of back-
ground error covariances so that the background
can be effectively updated using the limited
amounted of observations available. This pro-
duces yet relatively smooth analysis. Again,
each of the terms in Eqs. (8)–(10) contains a
weight, W.
The weights, W, which are assumed to be

constant coefficients, are simplified forms of
the inverse error covariances for each term. In
general, these coefficients should be matrices
proportional to the inverse of the error covari-
ance matrices of the associated terms in the
cost function. In storm-scale data assimilation,
and especially for radar data, these error covari-
ances are usually difficult to obtain. The accu-
rate estimation of error statistics is one of the
major challenges of variational data assimila-
tion, especially for small scales where weather
phenomena are often spatially and temporally
intermittent.
By using constant weights, the spatial corre-

lations are not included in the background
error covariance matrices, though the effects
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of spatial correlations of the same variable, as
well as cross-correlations among variables, are
achieved partially through the use of equa-
tion (conservation and mass continuity) and
smoothness constraints. It is these constraints
that make the retrieval of unobserved variables
possible.

The actual choice of the values of weights
should reflect the error statistics of each term.
For all terms to be effective in the cost func-
tion, the weights should result in constraint
terms that are of same or similar order of mag-
nitude, as least when the optimization is close
to convergence. For our purposes, the weight
coefficients are chosen based on both the esti-
mated standard deviation of observed radial
wind and the perceived relative important of
each term via trial and error numerical ex-
perimentation. Experience with the test cases
presented herein suggests that the solutions
obtained are not very sensitive to the precise
values of W, and W can be treated as a tuning
parameter (Hoffman, 1984). In one case, we
will show that the analyses change by only a
small amount when a particular W is halved or
doubled.

To solve the above variational problem by
direct minimization, we derive the gradient of
the cost function with respect to the con-
trol variables (um, vm, wm, Fm, kH, kv). Taking
the variation of J with respect to um, vm, wm,
Fm, kH, and kV at each grid point, we
obtain the components of the gradient of as
follows:

@J

@um

� �
ijk

¼
X
n

ðWEEÞn
@�nob
@x

þWr

x

r

@Q

@x
ðVn

r �Vn
r obÞþWubðum�ubÞ

�WD���
@D

@x
þWsur2ðr2umÞ; ð11aÞ

@J

@vm

� �
ijk
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X
n

ðWEEÞn
@�nob
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þWr

y

r

@Q
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ðVn
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r obÞþWvbðvm�vbÞ

�WD���
@D

@y
þWsvr2ðr2vmÞ; ð11bÞ
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ijk
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X
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@�nob
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z

r

@Q

@z
ðVn

r �Vn
r obÞþWwbðwm�wbÞ

�WD���
@D

@z
þWswr2ðr2wmÞ; ð11cÞ

@J

@Fm

� �
ijk

¼ �
X
n

ðWEEÞn; ð11dÞ

@J

@kH

� �
ijk

¼
X
n

ðWEEÞnr2
H�; ð11eÞ

@J

@kv

� �
ijk

¼
X
n

ðWE EÞn
@2�

@z2
: ð11fÞ

In the above derivation, the commutation
formulaX

�r� ¼ �
X

�r� ð12Þ

of the finite-difference analog is used (Sasaki,
1970).
After the gradients of the cost function are

obtained, the data retrieval problem can be
solved via the following steps:

(1) Choose a first guess for the control vector
Z¼ (um, vm, wm, Fm, kH, kV) and calculate
the cost function, J, using Eqs. (1), (2), (5),
(7), (8) and (9);

(2) Calculate the gradients
�

@J
@um

, @J
@vm

, @J
@wm

, @J
@Fm

, @J
@kH

,
@J
@kV

�
according to Eq. (11a) through (11f);

(3) Use the quasi–Newton minimization algo-
rithm (Navon, 1987) to obtain updated values
of the control variables,

Zl
ijk ¼ Zl�1

ijk þ � � f @J

@Z

� �
ijk

; ð13Þ

where l is the number of iterations, � is the
optimal step size obtained by the so-called
‘‘line-search’’ process in optimal control
theory (Gill et al, 1981), and f ð@J=@ZÞijk
is the optimal descent direction obtained by
combining the gradients from several former
iterations;

(4) Check whether the optimal solution has been
found by computing the norm of the gradi-
ents and the value of J to see if they are
less than prescribed tolerances. If the criteria
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are satisfied, stop the iteration and output
the optimal control vector (um, vm, wm, Fm,
kH, kv);

(5) If the convergence criteria are not satisfied,
steps 1 through 4 are repeated using updated
values of (um, vm, wm, Fm, kH, kV) as the new
guess. The iteration process is continued
until a suitably converged solution is found.

For radar scans at nonzero elevation angles,
the fall speed contributes to the Doppler estimate
of radial velocity. The observations of radial
velocity are adjusted to remove this contribution
using

vr ob ¼ var ob þ wt sin �; ð14Þ
where var ob is the radial velocity actually observed
by the radar, vr ob is the true radial velocity of the
air, wt is the terminal velocity of precipitation,
and � is the elevation angle (0� is horizontal).
An empirical relationship is used to relate the
reflectivity, R, and raindrop terminal fall velocity
(Foote and duToit, 1969; Atlas et al, 1973):

wt ¼ 2:65
�0
�

� �
R0:114; ð15Þ

where � is the air density and �0 is its surface
value. Note that, in this formulation, wt is posi-
tive downwards.

3. Experiment design and statistics

3.1 Experiment design

To evaluate the performance of our variational
single Doppler velocity retrieval technique, we
utilize a set of numerical model simulated single-
Doppler radar data. The Advanced Regional
Prediction System (ARPS, Xue et al, 1995;
Xue et al, 2000) is used here to perform a two-
hour simulation using a sounding near Del
City, Oklahoma on 20 May 1977. The simulation
starts from a thermal bubble placed in a hori-
zontally homogeneous base state specified
from the sounding. The model grid comprises
67� 67� 35 grid points with a uniform grid
interval of 1 km in the horizontal and 0.5 km in
the vertical (detail of model settings can be found
in Gao et al, 2001). Figure 1 shows horizontal
and vertical cross-sections of storm-relative
wind, vertical velocity, and reflectivity at two
hours. A strong rotating updraft (with maximum

vertical velocity exceeding 34m=s) and asso-
ciated low-level downdraft are evident near the
center of the domain, while the left mover is
about to exit the domain. The evolution of the
simulated storm is qualitatively similar to that
described by Klemp and Wilhelmson (1981),
and by two hours, the storm has attained a struc-
ture typical of mature supercells.
The simulated 3-D convective-scale wind and

reflectivity fields at two hours are sampled by a
single pseudo-Doppler radar located at several
different locations at ground level. Using a bi-
linear interpolation scheme, the wind compo-

Fig. 1. The ARPS model simulated wind vectors, vertical
velocity w (contours) and simulated reflectivity (shaded)
fields of the 20 May 1977 supercell storm at 2 hours. (a)
Horizontal cross-section at z¼ 5 km; (b) Vertical cross-sec-
tion at y¼ 28.5 km, i.e., through line A–B in (a)

J. Gao et al



nents are first interpolated from the model grid
points to the radar sampling locations. Then they
are synthesized to obtain radial velocities accord-
ing to Eq. (6). The reflectivity field (used as trac-
er) also is interpolated to the sampling locations
along the radar beams using the same procedure.
The elapsed times for the volume scans of the
pseudo-radar are neglected, and thus we assume

that the radial wind observations are instanta-
neous. The simulated radial velocity data at time
level 7200 s are used as observations, and simu-
lated reflectivity data at 6900 s 7200 s and 7500 s
are used as the tracer in Eq. (3). The time interval
between reflectivity scans is similar to that of
NEXRAD.
When radar data are used to initialize a nu-

merical weather prediction model, a complete
description of the wind and other meteorological
variables is needed in the entire model domain.
Even for diagnostic studies, consistent analyses
outside the area containing radar data areas also
are desirable. Here the sounding profile used to
define the storm-environment for the numerical
simulation is incorporated into the cost function
as the analysis background.
The parameter settings used for the retrievals

are Wrm ¼ 1, Wub ¼ Wvb ¼ 5�10�2, Wwb ¼ 0:0,
WD ¼ 1=ð0:5�10�3Þ2, and Wus ¼ Wvs ¼ Wws ¼
10�2. These values are chosen so that the con-
straints have proper orders of magnitude after
being multiplied by the corresponding coeffi-
cients. These parameters also indicate the rela-
tive importance of each term in the cost function.

3.2 Statistical measures of analysis errors

To measure the accuracy of single-Doppler radar
retrievals, we calculate the RMS error and rela-
tive RMS error between the retrieved 3-D veloc-
ity and the model-generated ‘‘truth’’. However,
the complete 3-D wind components (u, v, w) con-
sist of both the observed radial wind (vr) and
unobserved tangential and polar winds. Because
the quality of the retrieval is based largely on the
quality of the unobserved wind components, we
project the retrieved horizontal winds back to
the tangential direction to obtain the azimuthal
velocity component, v� (Weygandt et al, 2002).
We calculate the RMS and relative RMS errors
of v� according to

RMS ¼ 1

N

XN
i¼1

v� � vref�

� �2

i

" #1=2

; ð16Þ

RRE ¼
XN
i¼1

v� � vref�

� �2

i

,XN
i¼1

vref�

� �2

i

" #1=2

:

ð17Þ

Fig. 2. The contours of the ARPS model simulated tan-
gential wind component v�. (a) Horizontal cross-section at
z¼ 5 km; (b) vertical cross-section at y¼ 28.5 km
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Here the summation is over the total number of
grid points, N, and the superscript ref stands
for the reference or true field sampled from
the ARPS model simulation. Because Doppler
radars usually operate at low elevation angles,
vertical velocities are mostly unobserved. We
therefore also calculate the RMS and relative
RMS errors of the vertical velocities, which are
mostly retrieved. In addition, the Spearman’s
rank correlation coefficients (CC) of azimuthal
and vertical winds (between the retrieved and
reference fields) also are calculated by the fol-
lowing formula, which is given for the azimuthal
velocity as an example:

�ðv�; vref� Þ

¼
XN
i¼1

ðv� � v�Þ vref� � vref�

� �" #

�
XN
i¼1

ðv� � v�Þ2
XN
i¼1

vref� � vref�

� �2

" #�1=2

:

ð18Þ

4. Experiments with model-simulated
observations

In this section, we present the results from the set
of experiments outlined in the previous section.
The analysis domain is the same as the ARPS

integration domain described earlier.
To obtain well-converged solutions, 350 itera-

tions are used in all experiments.

4.1 Control experiment

We examine first the control experiment
(CNTL), for which all constraints discussed in
Sect. 2 are included. The first guesses for all
the wind components and the forcing term of
the simplified equation are set to zero, and the
first guesses for the horizontal and vertical diffu-
sion coefficients are set to 400ms�2. The re-
trieval results are presented in Figs. 3 and 4.
Comparing Fig. 3 with the true fields in Fig. 1,
we see that all important features in the horizon-
tal wind fields are retrieved, including flow cur-
vature around the main rotating updraft as well as
convergence on the upstream side of the updraft
(Fig. 3a). In the vertical cross-section, the general

structure of the updraft is well retrieved at all
levels, though the low-level downdraft immedi-
ately below the updraft is less obvious. The
retrieved fields show a deeper downdraft circula-
tion that descends from about 6 km and is located
further west of the main updraft. The vertical

Fig. 3. The wind vectors, the contours of difference vertical
velocity between the retrieved wind and the referenced one.
Others are same as Fig. 1. The first guess wind is zero
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circulation on the downstream side (with respect
to the upper-level flow), with strong descend-
ing flow below 10 km in the retrieval (Fig. 3b),
agrees quite well with the reference field
(Fig. 1b). The mean relative RMS error is small
for the cross-beam wind (0.378m=s, see Table 1),
and the correlation between the retrieval and the
truth peaks at 0.914. The RMS error for the ver-
tical velocity is larger (0.762m=s) and the corre-
lation coefficient is only 0.691. Still, the general
vertical flow structure is quite reasonable (Fig. 3).
This is so because most of the errors are in
the amplitude while the phase error is relatively

small. The maximum retrieved vertical motion is
weaker than the true one.
To clearly show how much of the unobserved

wind field is retrieved, the tangential wind com-
ponent v� is plotted in Fig. 4. The main positive–
negative couplet near the domain center agrees
well with the true one in Fig. 2, while the tan-
gential wind component of left-moving storm,
the storm cell near the northwest corner of the
analysis domain, is less well retrieved. The
proximity to the lateral boundary, the more rapid
cell movement, and the relatively greater dis-
tance from the radar are believed to be the con-
tributing factors.
To further examine in detail the quality of this

retrieval, the changes of the cost function and its

Table 1. List of experiments with different radars

Experiments Cross-beam wind
(v�)

Vertical wind (w)

RMS RRE CC RMS RRE CC

CNTL 5.352 0.378 0.914 2.915 0.762 0.691
Radar 2 5.549 0.393 0.916 3.020 0.790 0.664
Radar 3 5.658 0.423 0.912 3.083 0.807 0.632
Radar 4 5.772 0.474 0.896 3.225 0.844 0.596
Radar 5 5.657 0.521 0.875 3.348 0.876 0.579
Radar 6 5.358 0.539 0.813 3.194 0.836 0.596
Radar 7 5.393 0.496 0.766 3.095 0.810 0.624
Radar 8 4.891 0.448 0.884 3.253 0.851 0.544

Fig. 4. The contours of retrieved component v� in CNTL.
As Fig. 2

Fig. 5. The scaled total cost function (Jk=J0) and contribu-
tion of each constraint as a function of the number of
iterations. The first guess wind is zero. J_TOT stands for
the total cost function, J_VR, J_MOD, J_DIVand J_BKGD
stands for contribution from the mean radial velocity, the
simple conservation equation, the mass continuity, and
background constraints, respectively
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gradient norm for each constraint, as a function
of iteration number, are presented in Figs. 5 and
6. It can be seen that the cost function for the
background constraint changed by only one order
of magnitude, while the cost functions for the
other constraints, including the simple conserva-
tion equation, mean radial velocity, and mass
continuity constraints, are reduced by more than
four orders of magnitude during the minimiza-
tion. This indicates that the background con-
straint contributes less to the retrieval than any
of the other constraints.

Figure 6a shows that the norm of the gradient
of the background constraint is smallest among
all constraints for nearly all iterations. Note that
the background constraint does not have any
contribution to the retrieval of vertical velocity
because the background w is zero and is not used
as a constraint. Comparing Fig. 6a with 6b, the
contribution of the radial velocity constraint to

the horizontal wind retrieval is of the same order
of magnitude as the other constraints, except the
background. The contribution of the radial veloc-
ity constraint to the vertical velocity retrieval,
however, is significantly less than that of the
other constraints. This is because Doppler radars
usually operate at relatively low elevation angles,
with the horizontal winds being much better
observed than the vertical winds. Hence, the cost
function corresponding to the radial velocity con-
straint is more sensitive to horizontal winds than
to vertical winds, and therefore the horizontal
wind component is easier to retrieve with the
help of this constraint. Thus the retrieved w tends
to be less accurate. Comparing Fig. 6a with 6b,
the conservation equation and mass continuity
constraints play about the same role for the
retrieval of either the horizontal or vertical wind.
More precisely, apart from the background term,
the radial velocity constraint is most important

Fig. 6. The scaled norm of gradient of each
constraint as a function of the number of itera-
tions. (a) The contribution to horizontal wind,
(b) the contribution to vertical velocity. The
first guess wind is zero. GH_VR, GH_MOD,
GH_DIVand GH_BKGD stand for contribution
from the mean radial velocity, the simple con-
servation equation, the mass continuity, and
background constraints to the retrieval of hori-
zontal wind respectively. GW_VR, GW_MOD,
and GW_DIV stand for contribution from the
mean radial velocity, the simple conservation
equation, and the mass continuity constraints
to the retrieval of vertical velocity, respectively
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(the contribution to the gradient of the cost func-
tion is the largest) for the horizontal wind re-
trieval, while the mass continuity constraint is
the most important to the retrieval of vertical
velocity.

4.2 Sensitivity to radar position

Lazarus et al (1999), and Liou et al (2001) report
that the quality of the single Doppler velocity
retrieval depends on the radar location in their
cases. Their conclusions were based on the
retrieval of idealized divergent flows. For super-
cell-type convection, where the flow is often
dominated by the rotational wind component,
the conclusion may be different. In this section,
we examine the sensitivity of wind retrieval to
the radar location using the simulated storm from
the previous section.

Similar to Liou et al (2001), a total of 9 virtual
radars are placed in different locations relative to
the primary storm cell. Our variational scheme is
applied to data from each of these radars. Figure 7
illustrates the relative positions of these radars
with respect to the retrieval domain. The main
storm cell is near the center of domain at the data
collection time. For the particular flow pattern
shown in Fig. 1a, each radar observes a different
portion of the 3-D wind vector. The test results
for these 9 radars are listed also in Table 1, which

shows that the mean relative RMS error of the
retrieved tangential wind does not change much
with radar location, and that the correlation coef-
ficient between the retrieval and truth remains
relatively high in all cases, with a minimum
value of 0.766. This indicates that the retrieved
cross-beam wind is not very sensitive to the radar
positions for the current case. For vertical veloc-
ities, the relative RMS errors are larger, but the
correlation coefficients between the retrieved and
true vertical velocities change only by 0.15, with
the minimum being 0.544. The vertical velocity
therefore appears slightly more sensitive to the
radar position as would be expected. In general,
the retrieval for this deep convection case is less
sensitive to radar location than reported by
Lazarus et al (1999) and Liou et al (2001). This
is probably because the horizontal flow in our
current supercell case is mostly rotational and
more isotropic than the flows examined in their
studies. The conclusion may not be different if
we focus on low-level flows where convergence
along the gust front tends to be stronger, or in the
case of quasi–symmetric tropical hurricane.

4.3 Sensitivity to weights and the role
of individual constraints

As noted earlier, the weights of individual terms
in the cost function are selected based on an

Fig. 7. Locations of the eight assumed radars
that sample radial wind observation from the
ARPS two hours run in Fig. 1. The square is
the ARPS integration domain
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estimate of the error characteristics of each term,
and on numerical experimentations. A question is
then raised regarding how important the choices
of these weights are to the quality of the retrieval.
This problem is examined in this section with
regard to the sensitivities of the retrieval to
the weights. For an extensive examination, we
change these parameters individually in the range
of 0.1 to 10 times the value of control run. The
results are summarized in Table 2, which also
includes the errors of the control run.

The variations in the statistics are within 15%
of the control for most of the weights (except for
WD), even when each of them is increased or
decreased by a factor of 10. In general, the retriev-
als are not very sensitive to the values of these
weights, especially to the weights of mean radial
wind constraint, smoothness and background
constraints. When the weight of the smoothness
constraint, WS, is increased by a factor of 10, the
statistics improve in term of RMS errors; when it
is decreased by a factor of 10, the statistics of
retrieval is significantly reduced. This finding
agrees generally with those of Sun and Crook
(1997; 1998) and Xu et al (1996; 2001).

As suggested in Gao et al (2001), the role of the
anelastic mass continuity constraint is very impor-
tant for the retrieval of vertical velocity. However,
increasing the weight WD by a factor of 10 makes
the retrieval of the horizontal tangential wind
much worse, even though the statistics for the
vertical velocity are better; decreasing weight
WD 10 times slightly improves the retrieval of
the tangential wind, but the retrieval for vertical
velocity is worse. The retrieval is therefore most
sensitive to the weight of the mass continuity con-
straint. Objectively, the order of magnitude of this
weight should be close to the inverse of 10�4 to
10�3, the magnitude of divergence associated
with mesoscale, or stormscale flows. The choice
of these weights significantly different from these
values would make the retrieval worse.
Decreasing the weight of the simple reflectiv-

ity conservation equation reduces the quality of
the retrieval according to the statistics in Table 2.
The simple equation helps in retrieving detailed
flow features of the storm, associated with, e.g.,
the low-level cold pool (picture not shown). The
retrieval therefore seems to be also relatively sen-
sitive to the weight of the conservation equation.

Table 2. List of experiments for different weight settings

Experiment Action Tangential wind (V�) Vertical wind (w)

RMS RRE CC RMS RRE CC

CNTL �1 5.352 0.378 0.914 2.915 0.762 0.691

WS �10 5.317 0.375 0.919 2.888 0.756 0.686
=10 5.462 0.386 0.911 3.079 0.806 0.663

WR �10 5.385 0.380 0.913 2.924 0.765 0.694
=10 5.321 0.376 0.915 3.047 0.797 0.652

WB �10 5.900 0.416 0.911 3.287 0.860 0.547
=10 6.053 0.427 0.902 3.000 0.785 0.676

WD �10 10.06 0.710 0.853 2.761 0.722 0.721
=10 5.346 0.377 0.917 3.319 0.868 0.640

WE �10 7.992 0.564 0.847 3.524 0.922 0.588
=10 5.458 0.358 0.922 2.339 0.612 0.804

Table 3. List of experiments with different observations errors

Experiments Error of radial velocity Tangential wind (V�) Vertical wind (w)

RMS RRE CC RMS RRE CC

CNTL No error 5.352 0.378 0.914 2.915 0.762 0.691
ERR1 �¼ 0.3 5.461 0.385 0.919 2.932 0.767 0.662
ERR2 �¼ 0.6 5.584 0.394 0.908 3.349 0.876 0.515
ERR3 �¼ 1.0 6.184 0.436 0.878 3.997 1.046 0.280
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4.4 Sensitivity to data error

In reality, radial wind observations can contain
large errors, both a bias type (e.g., ground clutter
and anomalous propagation) and random errors.
It is, however, very difficult to account for such

errors in detail. Thus, we test in this section the
quality of the retrieved fields when radar ob-
servations are subject to random observational
errors. Similar to Gao et al (2001), we use eVrVr ¼
ð1þ �"ÞVr as the observations, where " repre-
sents random numbers between �1 and þ1 and
� is a specified positive number representing the
relative magnitude of the error.
The error of retrieved field are given in Table 3,

which shows that the retrieved vertical velocity is
more sensitive to observational error than the
tangential wind. Nevertheless, the general fea-
tures of the 3-D wind field can be retrieved in
all of these cases. It is worth mentioning that
when � is increased to 1.0, i.e., when the relative
errors are 100%, most of the key flow patterns in
the truth are still recognizable, even though the
correlation coefficient is rather small (Fig. 8).
This shows that the method is rather robust even
for such large random observation errors.

5. Test with to an observed storm case

In the previous section, we discussed results from
a set of idealized experiments using model-
generated pseudo observations. To demonstrate
the effectiveness of the variational method for
real data, we apply it to the 17 May 1981 Arcadia,
Oklahoma (OK), supercell storm (Dowell and
Bluestein, 1997). Twelve coordinated dual-
Doppler scans were obtained from the Norman
and Cimarron, OK S-band Doppler radars over a
one-hour period spanning the pre-tornadic phase
of the storm. Using the variational dual-Doppler
analysis technique developed by the authors
(Gao et al, 1999a), we performed a detailed dual-
Doppler analysis of this storm. The analysis grid
comprises 83� 83� 37 grid points and the grid
interval is 1 km in the horizontal and 0.5 km in
the vertical. This dual-Doppler analysis will be
used to verify the single-Doppler retrieval.
Figure 9 shows horizontal and vertical cross-

sections in the dual-Doppler radar analysis of
wind vectors, vertical velocity (vertical section
is plotted through line A–B in Fig. 9a) and reflec-
tivity at 1641 CST on May 17, 1981. A strong
rotating updraft and the associated low-level
downdraft are evident near the center of the
vertical cross-section. A cold outflow originates
from the rear flank downdraft that exhibits two
maximum centers flanking the occlusion point of

Fig. 8. The retrieved wind vectors and the contours of
vertical velocity w when random errors are 100%. Others
are same as Fig. 1. The first guess wind is zero
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the gust fronts. Ahead of this outflow is the rear
flank gust front that is associated with surface
convergence and a vertical velocity maximum.
The reflectivity field shows a hook-echo pattern
is consistent with the retrieved flow. Such a
flow structure is typical of a tornadic supercell

storm with strong low-level rotation (Lemon
and Doswell, 1979).
For the single-Doppler velocity retrieval, the

analysis domain is the same as that of dual-
Doppler analysis. The background field is defined
from a nearby sounding from Tuttle, Oklahoma.
An initial guess of zero is used in this experi-
ment, and the minimization is stopped after 350
iterations. Data at two time levels, specifically, at
1641 CST and 1645 CST from Cimarron, OK,
are used by our single-Doppler velocity retrieval.

Fig. 9. Wind vectors, vertical velocity (contours) retrieved
using the variational dual-Doppler analysis method for
Arcadia, OK 17 May 1981 tornadic storm. (a) Horizontal
cross-section at z¼ 0.5 km, (b) vertical cross-section through
line A–B in panel (a). The shading area is reflectivity

Fig. 10. As Fig. 9, but for single Doppler velocity retrieval
using the radar data from Cimarron, OK
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Figure 10 shows the retrieved fields (see cap-
tion for more details). Compared with Fig. 9, we
can see that all significant features in the hori-
zontal winds, i.e., the curvature around the rotat-
ing updraft and the convergence of wind fields,
are well recovered. The main updraft is seen to
originate ahead of the low-level gust front and in
general matches the areas of maximum reflectiv-
ity. However, the retrieved maximum updraft is
only about 12.83m=s (Fig. 10b), or much lower
than the dual-Doppler analysis value of about
26.31ms�1 (Fig. 9b). The main downdraft is
located below the updraft core and is collocated
with a region of high reflectivity behind the gust
front. These features suggest that both the hori-
zontal and vertical flows are kinematically con-
sistent and agree very well with the dual-Doppler
analysis given in Fig. 9. A smooth transition
exists between area where data is provided by
the radar, and the area where only a background
sounding is available.

6. Conclusions

In this paper, a new three-dimensional variational
analysis scheme designed for retrieving three-
dimensional winds from single-Doppler radar
observations of convective storms is developed.
The method incorporates observation (includ-
ing radar radial velocity), background, smooth-
ness, and mass continuity constraints as well as
reflectivity and=or radial velocity conservation
equation(s) in a single cost function. The cost
function is minimized through a variational proce-
dure to obtain an analysis with the desired fit
to these constraints. This method is closely relat-
ed to the three-dimensional simple-adjoint (SA)
method developed earlier (Gao et al, 2001).
Specifically, the same conservation equation is
used in both method, but the SA method involves
time integration of the conservation equation and
its adjoint in the iterative minimization procedure.
Even though the equations are relatively simple,
such integrations for many times are still rather
expensive in three dimensions. In cases where
the regions of significant radar echoes are small
and discontinuous, the portions of computational
domain in which this conservation equation can be
integrated over the retrieval period can become
quite small, hence limiting the effectiveness of
the conservations equation constraints. The cur-

rent method forsakes the time integration of the
conservation equation, but uses the equation as a
weak constraint directly and evaluates the time
tendency term in the equation with finite differ-
ence between two radar observation times. In
doing so, the above two problems are alleviated.
The method is tested against a simulated data

set as well as real radar observations of supercell
storms. In both cases, detailed structures of the
storms were well retrieved in comparison with
the model truth and dual Doppler analysis.
Unlike most kinematic methods of wind retrie-

val, our method is capable of adequately dealing
with data voids. When an analysis background
is available, the method naturally blends the
Doppler radar observations with the background.
A smooth transition is obtained between data-
rich and data-void areas in our experiment. These
features are considered important for the analysis
to be usable for initializing storm-scale numeri-
cal models as well as for diagnostic studies of
storm structures. It is our plan to generalize our
variational analysis procedure to include addi-
tional data sources, and to introduce additional
dynamic constraints in the cost function so that
thermodynamic fields can be retrieved simulta-
neously with the winds.
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