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Abstract 
 Probabilistic quantitative precipitation forecasts (PQPFs) from the Storm-Scale Ensemble 
Forecast system run by the Center for Analysis and Prediction of Storms during spring 2009 are 
evaluated using area under the relative operating characteristic curve (ROC-area).  ROC-area, which 
measure discriminating ability, is examined for ensemble sizes, n, from 1 to 17 members and for spatial 
scales ranging 4- to 200-km.   
 Expectedly, incremental gains in skill decrease with increasing n.  Significance tests comparing 
ROC-areas for each n to those of the full 17 member ensemble revealed that more members are required 
to reach statistically indistinguishable PQPF skill relative to the full ensemble as forecast lead time 
increases and spatial scale decreases.  These results appear to reflect the broadening of the forecast 
probability distribution function (PDF) of future atmospheric states associated with decreasing spatial 
scale and increasing forecast lead time.  They also illustrate that efficient allocation of computing 
resources for convection-allowing ensembles requires careful consideration of spatial scale and forecast 
length desired.   
 
1. Introduction 
 Motivated by promising results (e.g., Done et al. 2004; Kain et al. 2005) testing convection-
allowing1 configurations of the Weather Research and Forecasting (WRF) model (Skamarock et al. 
2008) and a desire to quantify forecast uncertainty at convective scales, the Center for Analysis and 
Prediction of Storms (CAPS) at the University of Oklahoma began producing convection-allowing 
Storm Scale Ensemble Forecasts (SSEFs) for NOAA/Hazardous Weather Testbed Spring Experiments 
(Kain et al. 2003) in 2007.  During 2007-2008, the SSEF systems were comprised of 10 WRF-ARW 
members (Kong et al. 2007, 2008 provides model configurations) and in 2009 ensemble 
size/diversification was increased by adding eight Nonhydrostatic Mesoscale Model (NMM; Janjic 
2003) members and two Advanced Regional Prediction System (ARPS; Xue et al. 2001) members.    

This study examines probabilistic quantitative precipitation forecasts (PQPFs) at different spatial 
scales and forecast lead times as a function of ensemble size, n, in the 2009 SSEF system.  Specifically, 
we focus on one particular aspect of forecast skill – resolution or discriminating ability – and explore 
whether a point of “diminishing returns” is reached with increasing n.  Clearly, such analyses are 
important in designing ensemble systems that efficiently utilize computing resources.   
 
2. Data and methodology 
a. Ensemble configuration 
 The 2009 SSEF members used 4-km grid-spacing, were initialized at 0000 UTC, and integrated 
30 hours over a 3600 x 2700 km domain covering most of the contiguous US.  A smaller sub-domain (~ 
2000 x 2200 km; Fig. 1) centered over the central US is used in subsequent analyses to avoid lateral 
boundary condition (LBC) effects (e.g., Warner et al. 1997) and emphasize regions climatologically 
favored for strong, organized springtime convection.  Results are aggregated over 25 cases between 
April 27 and June 5 (Fig. 1).  Table 1 provides ensemble member configurations (see also Xue et al. 
2009).  Radial velocity and reflectivity data from WSR-88D radars and surface observations were 
assimilated into initial conditions (ICs) of 17 members using the ARPS 3DVAR (Xue et al. 2003; Gao et 
al. 2004) data and cloud analysis (Hu et al. 2006; Xue et al. 2008) system.  Analyses from the 0000 
UTC operational 12-km North American Mesoscale (NAM) model (Janjic 2003) were used as the 
analysis background.  Three other members did not assimilate radar data so that impacts of the radar 
data assimilation could be isolated (Kain et al. 2010; only the 17 members assimilating radar data are 
                         
1 The term “convection-allowing” refers to simulations using the maximum grid-spacing (or below) at which convection 
can be treated explicitly and mid-latitude MCSs can be adequately resolved, which is generally thought to be ~ 4-km 
(Weisman et al. 1997).   
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used herein).  IC/LBC perturbations were derived from evolved (through 3 hours) bred perturbations of 
2100 UTC NCEP operational Short-Range Ensemble Forecast (SREF; Du et al. 2006) members and 
added to the ARPS 3DVAR analyses.  Corresponding SREF forecasts were used for LBCs.  To account 
for model physics uncertainty, different boundary layer, microphysics, radiation, and land surface 
schemes were used (see Table 1 for schemes and references).   

 
b. Verification methods 

NCEP’s stage IV (Baldwin and Mitchell 1997) multi-sensor rainfall estimates are used to verify 
rainfall forecasts.  The 4-km stage IV grids are remapped to the model grid using a neighbor-budget 
interpolation (e.g., Accadia et al. 2003).  Statistical significance is determined using Hamill’s (1999) 
resampling methodology.   
 PQPFs for 6-h accumulated rainfall computed using 1 to 17 members for different spatial scales 
are computed following Hamill and Colucci (1997, 1998), which basically involves finding the location 
of verification thresholds within the distribution of ensemble member forecasts.  PQPFs for thresholds 
beyond the highest ensemble member forecast are obtained by assuming that the PDF in this region 
follows a Gumbel distribution (Wilks 1995).  Different spatial scales are examined by averaging grid-
points within circular regions with radii varying between 2-km (the raw model grid) and 200-km, 
similar to the “upscaling” methodology described by Ebert (2009).  For the raw model grids, the 0.10-, 
0.25-, and 0.50-in rainfall thresholds are verified.  For the “upscaled” model grids, verification 
thresholds corresponding to the 0.10-, 0.25-, and 0.50-in. quantiles in the non-upscaled stage IV rainfall 
distribution (aggregated over all cases and grid-points) are used to allow equitable comparison among 
the different spatial scales.  Thus, exceedance forecasts of constant rainfall quantiles, rather than 
amounts, are evaluated (e.g., Jenkner et al. 2008).  Figure 2k illustrates how this procedure changes the 
verification thresholds with increasingly smoothed rainfall fields, and Figures 2a-j show how varying 
degrees of smoothing affect the appearance of the forecast probabilities and observed precipitation 
fields.   
 PQPFs are evaluated using the area under the relative operating characteristic curve (ROC-area; 
Mason 1982).  The ROC-area measures the ability to distinguish between events and non-events (or 
resolution) and is calculated by computing the area under a curve constructed by plotting the probability 
of detection (POD) against the probability of false detection (POFD) for specified ranges of PQPFs.  
The area under the curve is computed using the trapezoidal method (Wandishin et al. 2001).  The ranges 
of PQPFs used for ROC curves in this study are P < 0.05, 0.05 ≤ P < 0.15, 0.15 ≤ P < 0.25 … 0.85 ≤ P < 
0.95, and P ≥ 0.95.  The range of ROC-area is 0 to 1, with 1 a perfect forecast and areas greater than 0.5 
having positive skill.  A ROC-area of 0.7 is generally considered the lower limit of a useful forecast 
(Buizza et al. 1999).  Because the method used to compute PQPFs allows for continuous (rather than 
discrete) values between 0 and 100%, the same set of probabilities used to define the ROC curves can 
be used for every ensemble size, and problems associated with comparing ROC-areas between different 
size ensembles are avoided.   
 To study the effect of increasing n on PQPF skill, ROC-areas were computed for 100 unique 
combinations of randomly selected ensemble members for n = 2, 3, … 15.  For n = 1, 16 and 17, ROC-
areas were computed for all possible combinations of members because the number of unique member 
combinations for these n is smaller than 100.   
 
3. Results 
 Results show that for each rainfall threshold and spatial scale examined, the ROC-areas 
generally increase with increasing n, but with lesser gains as n approaches the full 17 members (Fig. 3).  
To objectively define a “point of diminishing returns”, significance tests were performed comparing 
ROC-areas for each n to that of the full 17 member ensemble.  For each n, the combination of members 
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with the median ROC-area was used in significance tests (dark shading in Fig. 3 distinguishes 
significance).  Clearly, for all three rainfall thresholds (or quantiles) examined, more members are 
required to reach statistically indistinguishable ROC-areas relative to the full ensemble as forecast lead 
time increases and spatial scale decreases.  For example, at every spatial scale for the 0.25-in threshold 
at forecast hour 6 (Fig. 3f), only three members are needed to obtain ROC-areas statistically similar to 
those of the full ensemble.  However, by forecast hour 30 at the smallest spatial scale, nine members are 
needed to obtain ROC-areas not significantly different than those of the full ensemble, and fewer 
members are needed with increasing spatial scale (Fig. 3j).   
 These results can be viewed as reflecting the gain in PQPF skill as the forecast probability 
distribution function (PDF) of future atmosphere states is better sampled by larger n.  Because more 
members are required to effectively sample a wider forecast PDF, the n at which skill begins to flatten 
increases with a wider PDF.  These apparent changes in the point of diminishing returns are consistent 
with two aspects of our analysis associated with a widening forecast PDF: 1) increasing forecast lead 
time (because model/analysis errors grow) and 2) decreasing spatial scale [because errors grow faster at 
smaller scales (e.g., Lorenz 1969)].  Alternatively, the results could be viewed as reflecting the typical n 
required to adequately encompass observed precipitation – as lead time increases and scale decreases, 
the resulting error growth means that individual ensemble member solutions become less likely to 
verify.  Therefore, more members are needed to “capture” the observations.  These results are consistent 
with Richardson (2001) who found that for lower predictability more members were required to reach 
maximum possible skill (i.e., skill obtained using ∞ members), and Du et al. (1997) who also found that 
the majority of PQPF skill could be obtained with ~ 10 members.   
   
4. Discussion  
 Although Figure 3 appears to identify the point of “diminishing returns” for n, additional 
considerations should be made in future convection-allowing ensemble design.  First, for cases with 
below average predictability, larger n is required to effectively sample the forecast PDF.   Second, the 
rainfall forecasts are under-dispersive (i.e., observations often fall outside all ensemble members) as 
implied by the U-shaped rank-histograms (e.g., Hamill 2001)2 in Figure 4a, and statistical consistency 
analyses finding that ensemble variance is less than the mean-square-error (MSE) of the ensemble mean 
(Fig. 4b)3.  The under-dispersion means that the forecast PDF is too narrow and a statistically consistent 
ensemble (i.e., no under-dispersion) would require more members to effectively sample the forecast 
PDF.  The under-dispersion, which is most pronounced at early forecast lead times (6 to 18-hrs), is 
likely related to under-sampling of model errors and inadequate IC/LBC perturbation methods.  The 
IC/LBC perturbations are extracted from relatively coarse (30- to 45-km Δx) SREF members and do not 
account for smaller scale errors on the 4-km grids (Nutter et al. 2004).  At early forecast lead times 
when error growth is dominated by these smaller scales, the SREF perturbations may not be able to 
generate enough spread to accurately depict forecast uncertainty.   

To illustrate impacts of under-dispersion on the apparent n required to effectively sample an 

                         
2    Hamill (2001) suggests that U-shaped rank histograms can be somewhat ambiguous and shows that other factors like 

observational errors, conditional biases, and nonrandom sampling of mis-calibrated distributions can contribute to the 
appearance of under-dispersion.  In our case, a statistical consistency analysis also implied under-dispersion as well as 
daily subjective examinations comparing SSEF system precipitation forecasts to observations during the 2009 
NOAA/HWT Spring Experiment.  Thus, most of the U-shape in the rank histograms likely reflects under-dispersion.   

 
3  MSE and ensemble variance are computed using Eqs. (B6) and (B7), respectively, in Eckel and Mass (2005).  In a 

statistically consistent (i.e., reliable) ensemble MSE and variance are approximately equal when averaged over many 
cases. To eliminate bias influences on MSE and variance, forecast precipitation distributions are replaced with those from 
stage IV estimates as described in Clark et al. (2009).  The bias-elimination results in forecasts with the same spatial 
patterns as the raw fields with no bias.   
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idealized PDF, two Gaussian PDFs with an arbitrarily chosen mean (μ = 10-mm) are shown (Fig. 4c).  
The forecast PDF with standard deviation, σ = 1.87-mm (green), corresponds to the average ensemble 
variance at forecast hour 6, while the forecast PDF with σ = 3.0-mm (blue) corresponds to the average 
MSE of the ensemble mean at forecast hour 6 (shown in Fig. 4b).  Each PDF is randomly sampled using 
n from 2 to 100.  For each n, 1000 sets of synthetic “members” are drawn and probabilities for rainfall 
exceeding 12.7-mm (marked by vertical line in Fig. 4c) are computed for each set using the method to 
compute PQPFs described in Section 2b.  Then, using the actual probabilities from the PDFs, the 
average probability error (i.e., sampling error) for each n is computed (Fig. 4d).  In this idealization, if 
tolerable error is considered ≤ 0.05 (marked by horizontal line in Fig. 4d), then average errors 
associated with probabilities derived from the PDF with σ = 1.87-mm would fall below the tolerable 
error using a minimum of 20 members.  However, if the ensemble was statistically consistent (i.e., σ = 
MSE = 3.0-mm), about 60 members would be required to fall below the tolerable error.   

A third consideration is the systematic wet bias implied by the right-skewness of the rank 
histograms (Fig. 4a), and explicitly shown by time series of average bias for each ensemble member in 
Figure 5.  As discussed by Eckel and Mass (2005), systematic biases introduce “bogus” uncertainty 
because systematic errors are not uncertain.  Thus, calibration – which was not attempted given the 
limited number of “training cases” available – typically reduces spread.  Clark et al. (2009) also 
discusses the impact of wet biases on spread-error metrics.      

Fourth, the change in ROC-area as a function of n does not necessarily reflect changes in 
potential value (e.g., Richardson 2000) to end-users.  Richardson (2001) illustrated that for rare events, 
users with low cost-lost ratios (e.g., Murphy 1977) benefit significantly in terms of potential value by 
increasing n from 50 to 100, despite little change in Brier Skill Score (Wilks 1995).   

In summary, average ROC-areas for PQPFs from the 2009 SSEF system were quite skillful, 
especially considering the relatively low predictability typical of May-June (Fritsch and Carbone 2004). 
For the full ensemble, ROC-areas range between 0.88 and 0.95 to forecast hour 30 for even the finest 
spatial scales.  Additionally, relatively small n (3 to 9 members) had statistically indistinguishable 
average ROC-areas relative to the full 17 member ensemble, and the n at which skill began to level 
increased (decreased) with increasing forecast lead time (spatial scale).  However, larger spread that 
better matched the MSE would have resulted in larger n to reach the point of “diminishing returns”.  
Additionally, low predictability regimes and/or rare events would require more members to reach 
“diminishing returns”.  Nevertheless, clearly spatial scale and forecast lead time desired require careful 
consideration for future convection-allowing ensemble design.  Future work should address improving 
statistical consistency of convection-allowing ensembles, and further evaluations are needed for 
weather regimes with varying degrees of predictability and/or rare events.      
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and (b) corresponding SSEF system 24-hr forecast probabilities of rainfall greater than 0.75-in 
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and (i) – (j), same as (a) – (b), except stage IV estimates and the forecasts used to generate 
probabilities are smoothed over grid-points within radii of 10-, 60-, 100-, and 200-km, 
respectively, of each grid-point. (k) The quantiles for a range of rainfall thresholds in the 
unsmoothed stage IV rainfall distribution are marked (e.g., p = 0.980 for 0.50-in.), and each lines 
shows how the values corresponding to each of these quantiles changes for grids smoothed over 
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forecast hours 6-30.  (b) Average mean-square-error (MSE) of ensemble mean 6-hr precipitation 
(blue), and corresponding ensemble variance (green) from the SSEF system at forecast hours 6-
30.  (c) Idealized, normally distributed forecast probability distribution functions (PDFs) with μ = 
10-mm and σ = 1.87-mm [green; corresponding to the variance at forecast hour 6 in (b)] and σ = 
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3.0-mm [blue; corresponding to the MSE of the ensemble mean at forecast hour 6 in (b)].  The 
black vertical line marks the 12.7-mm (0.5-in) rainfall threshold.  (d) Average error in forecast 
probabilities for rainfall greater than 12.7-mm derived from randomly sampling the PDFs in (c) 
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Figure 5 Average forecast precipitation bias for 6-hourly accumulation intervals from each SSEF system 

member [legend in panel (a)] for the thresholds (a) 0.10- , (b) 0.25-, (c) 0.50-, (d) 1.00-, and (e) 
2.00-in.  The dashed horizontal line in each panel marks a bias of 1.0.   

 
Table 1 Model configuration for SSEF system members.  All WRF members used version 3.0.1.1 NAMa and NAMf indicate 

NAM forecasts and analyses, respectively; ARPSa refers to ARPS 3DVAR and cloud analysis; em_pert, nmm_pert, 
etaKF_pert, and etaBMJ_pert are perturbations from different SREF members; and em-n1, em-p1, nmm-n1, nmm-p1, 
etaKF-n1, etaKF-p1, etaBMJ-n1, and etaBMJ-p1 are different SREF members that are used for LBCs.  Note, the 
SREF members obtain their LBCs from NCEP’s Global Ensemble Forecast System. Boundary layer schemes include 
Mellor-Yamada-Janjic (MYJ; Mellor and Yamada 1982; Janjic 2002), YonSei University (YSU; Noh et al. 2003), and 
a 1.5-order closure scheme developed for ARPS (Xue et al. 2001).  Microphysics schemes include Thompson et al. 
(2004), WRF single-moment 6-class (WSM-6; Hong and Lim 2006), Ferrier et al. (2002), and Purdue Lin (Chen and 
Sun 2002).  Radiation schemes include the RRTM short-wave (Mlawer et al. 1997), Goddard long-wave (Chou and 
Suarez 1994), and GFDL short-wave (Lacis and Hansen 1974) and long-wave (Fels and Schwarzkopf 1975; 
Schwarzkopf and Fels 1991).  Land-surface models include the NOAH (Chen and Dudhia 2001), RUC (Smirnova et 
al. 1997, 2000), and Force-restore (Xue et al. 2001). 

 
Ensemble 
Member 

ICs LBCs Radar 
data 

Micro-
physics 
scheme  

Short-wave 
Radiation 
scheme  

Long-wave 
Radiation 
scheme 

Land-
surface 
model 

Boundary 
Layer 
scheme 

arw_cn 00Z ARPSa 
 

00Z NAMf yes Thompson Goddard RRTM Noah MYJ 

arw_c0 00Z NAMa 
 

00Z NAMf no Thompson Goddard RRTM Noah MYJ 

arw_n1 arw_cn – 
em_pert 

21Z SREF 
em-n1 

yes Ferrier Goddard RRTM Noah YSU 

arw_p1 arw_cn + 
em_pert 

21Z SREF 
em-p1 

yes WSM6 Dudhia RRTM Noah MYJ 

arw_n2 arw_cn – 
nmm_pert 

21Z SREF 
nmm-n1 

yes Thompson Dudhia RRTM RUC MYJ 

arw_p2 arw_cn + 
nmm_pert 

21Z SREF 
nmm-p1 

yes WSM6 Dudhia RRTM Noah YSU 

arw_n3 arw_cn – 
etaKF_pert 

21Z SREF 
etaKF-n1 

yes Thompson Dudhia RRTM Noah YSU 

arw_p3 arw_cn + 
etaKF_pert 

21Z SREF 
etaKF-p1 

yes Ferrier Dudhia RRTM Noah MYJ 

arw_n4 arw_cn – 
etaBMJ_pert 

21Z SREF 
etaBMJ-n1 

yes WSM6 Goddard RRTM Noah MYJ 

arw_p4 arw_cn + 
etaBMJ_pert  

21Z SREF 
etaBMJ-p1 

yes Thompson Goddard RRTM RUC YSU 

nmm_cn 00Z ARPSa 
 

00Z NAMf yes Ferrier GFDL GFDL Noah MYJ 

nmm_c0 00Z NAMa 
 

00Z NAMf no Ferrier GFDL GFDL Noah MYJ 

nmm_p1 nmm_cn + 
em_pert 

21Z SREF 
em-p1 

yes WSM6 GFDL GFD: RUC MYJ 

nmm_n2 nmm_cn – 
nmm_pert 

21Z SREF 
nmm-n1 

yes Ferrier Dudhia RRTM Noah YSU 

nmm_p2 nmm_cn + 
nmm_pert 

21Z SREF 
nmm-p1 

yes Thompson GFDL GFDL RUC YSU 
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nmm_n3 nmm_cn – 
etaKF_pert 

21Z SREF 
etaKF-n1 

yes WSM6 Dudhia RRTM Noah YSU 

nmm_n4 nmm_cn – 
etaBMJ_pert 

21Z SREF 
etaBMJ-n1 

yes WSM6 Dudhia RRTM RUC MYJ 

nmm_p4 nmm_cn + 
etaBMJ_pert 

21Z SREF 
etaBMJ-p1 

yes Ferrier Dudhia RRTM RUC YSU 

arps_cn 00Z ARPSa 
 

00Z NAMf yes Lin  Goddard Goddard Force-
restore 

TKE 

arps_c0 00Z NAMa 
 

00Z NAMf no Lin Goddard Goddard Force-
restore 

TKE 

 

 
Figure 1 The outer domain (light shading) used for the SSEF system ensemble members and the inner 

sub-domain (dark shading) used for the analyses conducted in this study.  The dates for the 25 
cases analyzed are listed below the domain.   
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Figure 2 (a) Stage IV precipitation estimates interpolated to the raw model grid for the 6-hr period 

ending 0000 UTC 16 May 2009 with the black contours marking the 0.75-in rainfall threshold; 
and (b) corresponding SSEF system 24-hr forecast probabilities of 6-hr rainfall greater than 0.75-
in (shaded) with areas of stage IV rainfall greater than 0.75-in hatched. (c) - (d), (e) - (f), (g) - (h), 
and (i) – (j), same as (a) – (b), except stage IV estimates and the forecasts used to generate 
probabilities are smoothed over grid-points within radii of 10-, 60-, 100-, and 200-km, 
respectively, of each grid-point. (k) The quantiles for a range of rainfall thresholds in the 
unsmoothed stage IV rainfall distribution are marked (e.g., p = 0.980 for 0.50-in.), and each line 
shows how the values corresponding to each of these quantiles changes for grids smoothed over 
radii from 10- to 200-km.   
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Figure 3 ROC-areas with increasing ensemble size at different spatial scales for 6-hr accumulated 

precipitation at the 0.10-in rainfall threshold for forecast hours (a) 6, (b) 12, (c) 18, (d) 24, and (e) 
30.  (f) – (j), and (k) – (o) same as (a) – (e), except for the 0.25- and 0.50-in rainfall thresholds, 
respectively.  The range of values encompassed by each color corresponds to the range of ROC-
areas for each ensemble size within the “whiskers” of a standard box-plot (i.e., the most extreme 
values within 1.5 times the inter-quartile range).  The dark shaded areas denote ensemble sizes for 
which the ROC-areas are significantly less (α = 0.05) than that of the full 17 member ensemble.  
The legend in panel (a) shows the spatial scales that correspond to each color of shading.     

 
  
 
 
 
 
 
 
 



14 
 

 
Figure 4 (a) Rank histograms from the SSEF system for 6-hr accumulated precipitation ending at 

forecast hours 6-30.  (b) Average mean-square-error (MSE) of ensemble mean 6-hr precipitation 
(blue), and corresponding ensemble variance (green) from the SSEF system at forecast hours 6-
30.  (c) Idealized, normally distributed forecast probability distribution functions (PDFs) with μ = 
10-mm and σ = 1.87-mm [green; corresponding to the variance at forecast hour 6 in (b)] and σ = 
3.0-mm [blue; corresponding to the MSE of the ensemble mean at forecast hour 6 in (b)].  The 
black vertical line marks the 12.7-mm (0.5-in) rainfall threshold.  (d) Average error in forecast 
probabilities for rainfall greater than 12.7-mm derived from randomly sampling the PDFs in (c) 
using an increasing number of samples.   
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Figure 5 Average forecast precipitation bias for 6-hourly accumulation intervals from each SSEF system 

member [legend in panel (a)] for the thresholds (a) 0.10- , (b) 0.25-, (c) 0.50-, (d) 1.00-, and (e) 
2.00-in.  The dashed horizontal line in each panel marks a bias of 1.0.   


