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ABSTRACT

Accurately forecasting snowfall is a challenge. In particular, one poorly understood component of snow-
fall forecasting is determining the snow ratio. The snow ratio is the ratio of snowfall to liquid equivalent and
is inversely proportional to the snow density. In a previous paper, an artificial neural network was devel-
oped to predict snow ratios probabilistically in three classes: heavy (1:1 � ratio � 9:1), average (9:1 � ratio
� 15:1), and light (ratio � 15:1). A Web-based application for the probabilistic prediction of snow ratio in
these three classes based on operational forecast model soundings and the neural network is now available.
The goal of this paper is to explore the statistical characteristics of the snow ratio to determine how
temperature, liquid equivalent, and wind speed can be used to provide additional guidance (quantitative,
wherever possible) for forecasting snowfall, especially for extreme values of snow ratio. Snow ratio tends to
increase as the low-level (surface to roughly 850 mb) temperature decreases. For example, mean low-level
temperatures greater than �2.7°C rarely (less than 5% of the time) produce snow ratios greater than 25:1,
whereas mean low-level temperatures less than �10.1°C rarely produce snow ratios less than 10:1. Snow
ratio tends to increase strongly as the liquid equivalent decreases, leading to a nomogram for probabilistic
forecasting snowfall, given a forecasted value of liquid equivalent. For example, liquid equivalent amounts
2.8–4.1 mm (0.11–0.16 in.) rarely produce snow ratios less than 14:1, and liquid equivalent amounts greater
than 11.2 mm (0.44 in.) rarely produce snow ratios greater than 26:1. The surface wind speed plays a minor
role by decreasing snow ratio with increasing wind speed. Although previous research has shown simple
relationships to determine the snow ratio are difficult to obtain, this note helps to clarify some situations
where such relationships are possible.

1. Introduction

Forecasting the accumulation of new snow is argu-
ably the most challenging quantitative precipitation
forecasting problem. Forecasters must not only cor-

rectly predict the occurrence, timing, and location of
precipitation, but they are also expected to predict the
accumulation of the snow. To accomplish this task,
forecasters rely heavily on numerical weather predic-
tion models for guidance. Such models do not output
snowfall explicitly, so forecasters must convert the liq-
uid precipitation output by the models to solid precipi-
tation manually. As reviewed in Roebber et al. (2003),
this conversion is usually performed using a constant
ratio of snowfall to liquid equivalent (hereafter called
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the snow ratio). This ratio, which is inversely propor-
tional to the snow density, is typically assumed to be
about 10:1 (10 in. of snow equal 1 in. of liquid water; 1
in. � 25.4 mm). In contrast, observations of the snow
ratio from large and disparate datasets can range from
values near 3:1 to those approaching 100:1 (Currie
1947; LaChapelle 1962, reproduced in Doesken and
Judson 1997, p. 15; Power et al. 1964; Super and Hol-
royd 1997; Judson and Doesken 2000; Roebber et al.
2003; Baxter et al. 2005). Therefore, substantial im-
provement in forecasting snowfall may be possible by
improving techniques to forecast snow ratio.

Roebber et al. (2003) reviewed previous attempts to
forecast snow ratio and have shown that they have not
been successful because the exact processes affecting
snowfall density are not simple or well understood. To
attempt some progress, Roebber et al. (2003) devel-
oped an ensemble of artificial neural networks for fore-
casting snow ratio. The ensemble of artificial neural
networks provided probabilistic forecasts of the likeli-
hood of the snow ratio being average (9–15:1), above
average (�15:1), or below average (�9:1). This ap-
proach showed substantial improvement over climatol-
ogy and other methods currently applied by operational
forecasters.

A Web-based forecast application of the Roebber et
al. (2003) neural network technique has now been
implemented online (information at http://sanders.
math.uwm.edu/cgi-bin-snowratio/sr_intro.pl). This
Web site allows a user to select a forecast model
sounding from numerous sites across North America
and apply the neural network ensemble approach of
Roebber et al. (2003) to determine the probability of
snow ratio within each of the three classes, given that
snow occurs.

The purpose of this note is to provide some insight
into the statistical properties of the Roebber et al.
(2003) dataset. Our hope is to provide some additional
guidance that could be applied by operational forecast-
ers for forecasting snowfall, such as climatological char-
acteristics not specifically accounted for by the neural
networks (e.g., local microclimatological effects that
may vary across stations).

Because of the complexity of relationships between
temperature, moisture, compaction, and wind that af-
fect snow density, discussed by Roebber et al. (2003),
simple relationships are unlikely. At the very least,
however, we hope to determine the conditions for
which extreme snow ratios are likely or not likely to
occur, such that forecast busts due to an incorrect ap-
plication of a central value of snow ratio (such as 10:1)
can be avoided. This approach suggests that the human

forecaster can, and should, still play an important role
in the forecast process for winter precipitation.

In section 2, we discuss the dataset—the same one
developed and applied by Roebber et al. (2003). In
section 3, we present the geographical variation of
snow-ratio distributions at 28 stations. Sections 4–6 dis-
cuss the dependence of snow ratio on the temperature,
liquid equivalent, and wind speed, respectively. Finally,
section 7 concludes this paper with guidelines for fore-
casting snow ratio.

2. Data

The dataset for this study consisted of 1650 snowfall
events between 1973 and 1994 from 28 stations around
the United States. The data were compiled and quality
controlled as described more fully by Roebber et al.
(2003). A brief review follows.

The 6-h new-snow amounts come from the United
States Air Force DATSAV2 Surface Climatic database,
whereas the National Climatic Data Center (NCDC)
hourly precipitation dataset TD-3240 provided the liq-
uid equivalent precipitation corresponding to each
snow event. Two different datasets were required be-
cause the DATSAV2 dataset generally included only
24-h precipitation amount and the hourly precipitation
dataset did not include new-snow amounts. Two 6-h
snowfall amounts on either side of 0000 or 1200 UTC
are summed to produce a 12-h snowfall amount that is
compared to the 12-h precipitation amount summed
from the hourly precipitation dataset. To limit potential
errors in the calculation of the snow ratio, the accumu-
lation of 12-h new snow must have measured at least
50.8 mm (2 in.) and the 12-h melted equivalent precipi-
tation at least 2.8 mm (0.11 in.). Excluding snowfall
events with the above criteria and where other precipi-
tation types fell during the 12-h period (e.g., rain, freez-
ing rain, sleet), 22.7% of the total available snowfall
was included in this dataset. Percentages for each sta-
tion are listed in Table 1.

One of the principal challenges in using snowfall data
are potential biases in the measurement of liquid
equivalent precipitation from the type of gauge, its lo-
cation, its exposure, and the type of wind shield, if any
(e.g., Groisman and Easterling 1994; Doesken and Jud-
son 1997; Yang et al. 1998). When the wind speed is 6–7
m s�1, the precipitation gauge used by the National
Weather Service has an undercatch of as much as 70%
compared to measuring liquid equivalent from snow
cored off a sheltered snowboard (e.g., Goodison 1978;
Yang et al. 1998). Consequently, the results of this
study should be viewed as representing the snow
amount that is measured in the gauge rather than the

FEBRUARY 2006 N O T E S A N D C O R R E S P O N D E N C E 95



accumulation of snow on the ground. Users may then
wish to apply their own correction for wind speed and
gauge type.

Since the snow density is a function of the habit and
size of the ice crystals, which in turn is a function of the
vertical temperature and moisture structure of the at-
mosphere, we desire collocated atmospheric soundings
at the time of the snowfall. Sounding data were used
from the NCDC/Forecast Systems Laboratory North
American radiosonde dataset [Schwartz and Govett
(1992); information online at http://raob.fsl.noaa.gov/
Raob_Software.html]. Only events with surface winds
from the radiosonde data less than or equal to 9 m s�1

were used to avoid events where substantial blowing
and drifting snow may have occurred. Since stations
were at different elevations, the height above sea level
reported in the radiosonde data was converted to a
nondimensional height above ground. As in Roebber et
al. (2003, their Table 1), this nondimensionalization was
accomplished by using � coordinates, where � � p/psurf,
with p being pressure and psurf the surface pressure.
The combination of the surface and upper-air criteria
produced a total of 1650 twelve-hour snowfall events,
hereafter called the dataset.

Roebber et al. (2003, their Table 2) used principal
component analysis to extract a set of six factors from
the sounding data. These six factors were low–midlevel
temperature (F1), low–midlevel relative humidity (F2),
mid–upper-level temperature (F3), upper-level relative
humidity (F4), midlevel relative humidity (F5), and ex-
ternal compaction caused by surface wind and precipi-
tation amount (F6). A seventh index based on the
month represented solar radiation or ground tempera-
ture.

3. Geographic distribution

The mean snow ratio for the 1650-member dataset is
15.6, which is higher than the median of 14.1, indicating
skewness toward higher snow ratios (Fig. 1). Therefore,
as discussed in Roebber et al. (2003), forecasting a con-
stant 10:1 snow ratio for snowfall events is not likely to
be ideal for all situations. The mode of the dataset,
however, is 10:1, with 14% of the events having snow
ratios between 9:1 and 11:1 (Fig. 1), indicating some
weak validity for the 10:1 rule. The shape of this curve
and its skewness toward high ratios are consistent with
previously published studies (see Roebber et al. 2003,

TABLE 1. Statistical properties of snow ratio by station. Std devs with asterisks indicate cities with fewer than 30 events. These data
have not been corrected for wind speed or other gauge biases.

Station No. of events
Percent of total

snowfall Mean Median Std dev

Albany, NY 104 38.9 13.3 12.1 7.1
Amarillo, TX 22 21.3 13.3 13.4 5.1*
Bismarck, ND 44 18.0 18.4 16.2 8.6
Buffalo, NY 106 19.5 15.9 14.8 7.4
Caribou, ME 123 23.3 14.3 12.9 6.6
Dayton, OH 29 18.0 14.6 12.4 7.1*
Denver, CO 100 29.7 16.0 14.4 7.5
Dodge City, KS 22 17.9 14.5 11.9 8.8*
Flint, MI 31 10.4 16.7 14.8 8.6
Great Falls, MT 62 23.7 17.2 15.7 8.8
Green Bay, WI 66 23.0 15.4 14.6 6.4
Greensboro, NC 11 21.1 10.9 8.7 6.4*
Huntington, WV 52 24.0 13.6 12.4 5.0
Huron, SD 54 24.4 16.6 14.0 6.9
International Falls, MN 78 20.9 18.7 18.4 6.6
Lander, WY 124 26.7 16.9 16.5 7.5
Nashville, TN 10 19.0 12.1 11.3 4.0*
North Omaha, NE 26 17.5 16.6 16.7 8.2*
North Platte, NE 33 18.7 13.4 12.6 7.4
Peoria, IL 47 27.7 16.6 15.7 7.3
Pittsburgh, PA 48 19.0 13.9 11.7 6.3
Portland, ME 94 33.9 12.7 11.3 6.2
Rapid City, SD 40 15.3 14.2 13.1 5.9
Saint Cloud, MN 6 1.8 14.3 14.4 2.2*
Salt Lake City, UT 56 17.4 14.8 12.4 7.9
Sault Ste. Marie, MI 195 27.2 17.0 15.7 6.8
Topeka, KS 24 21.9 19.6 20.8 6.2*
Washington/Dulles International Airport, VA 22 18.1 14.3 12.3 8.0*
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p. 268). These results are higher than the other com-
prehensive climatology of snow ratios for the United
States by Baxter et al. (2005), who found a mean (me-
dian) of 13.5 (12.1). We suspect the difference is be-
cause our data is based on 6-h snowfall amounts and
their data is based on the 24-h cooperative observer
data, where greater compaction and lower snow ratios
would be expected.

The snow ratios are classified into three classes: av-
erage (between 9:1 and 15:1), light (�15:1), and heavy
(�9:1). The dataset consists of 14% heavy, 41% aver-
age, and 45% light. To better discriminate among the
different conditions determining snow ratio, we first
explore the geographic variability of the dataset.

Figure 2 shows a map of the distributions of snow
ratio for all 28 stations, and Table 1 presents a list of
statistical properties of the snow ratio at each station.
The distributions show substantial regional variability.
Because the frequency of snow is greater farther north,
locations in the north have larger numbers of events,
thus producing more robust snow-ratio distributions.
Stations in the north also tend to have a greater fre-
quency of higher snow ratios (Fig. 2). For example, the
station with the highest mean (median) (with at least 30
events) is International Falls, Minnesota (INL), with
18.7 (18.4) (Table 1). In contrast, stations with the low-
est mean (median) are Greensboro, North Carolina,
and Nashville, Tennessee, with 10.9 (8.7) and 12.1
(11.3), respectively (Table 1). Comparing the seven fac-
tors between these stations indicates that the largest
differences are primarily manifest by the warmer tro-

pospheric temperatures (F1 and F3) at the southern
stations (not shown).

Even stations in close proximity can have quite dif-
ferent distributions of snow ratio (e.g., Super and Hol-
royd 1997; Judson and Doesken 2000). For example,
the distribution at Buffalo, New York (BUF) is skewed
toward higher snow ratios compared to Albany, New
York (ALB), only 400 km away (Fig. 2). The histo-
grams of the tropospheric temperatures (F1 and F3)
show the greatest differences between BUF and ALB
(not shown), indicating that BUF tends to be colder
throughout the troposphere during snow events than
ALB. Similarly, the distance between Denver, Colo-
rado (DEN), and Lander, Wyoming (LND), is only 475
km, but Lander has a higher mean snow ratio and a
significantly higher median snow ratio than Denver.
The largest difference between these two cities occurs
with the compaction factor (F6), with Denver having a
much higher compaction factor (not shown). Examin-
ing the distributions of the two components of the com-
paction factor individually (liquid equivalent and wind
speed) shows that the mean and median wind speeds
were about 50% greater at DEN than at LND, whereas
the liquid equivalents had nearly identical statistical
distributions (not shown).

The geographical distribution of snow ratio in Fig. 2
is comparable to that of Baxter et al. (2005), who ex-
amined 24-h precipitation and snow amounts for 7760
National Weather Service cooperative observing sites
for 1971–2000. The larger number of stations in their
study enabled them to resolve mesoscale variations in
the climatology of snow ratio. Since their study used
24-h snowfall compared to our study that used two 6-h
snowfall measurements, some discrepancy may exist,
with our events having higher snow ratios due to the
reduced compaction effect (e.g., Roebber et al. 2003),
especially for large snowfalls.

The factors that control the distribution of snow ratio
depend on the types of weather patterns (i.e., the cli-
mate) experienced at each station. As discussed in
Roebber et al. (2003), the vertical temperature and hu-
midity profile at the time the snow is falling, the weight
of the snow, the surface wind, and solar radiation
(month) had the greatest effect on snow ratio. To ex-
plore these factors in more depth, we next investigate
the statistical properties of the dataset in terms of these
parameters.

4. Influence of temperature on snow ratio

Temperature plays an important role in determining
snow density. One way in which this occurs is through
the habit of the ice crystals, which is a strong function of

FIG. 1. Distribution of snow ratios for all 1650 12-h snowfall
events. The vertical axis shows the number of events on the left
and the percentage of total events on the right of the graph. The
categories of light, average, and heavy are defined in the text.
These data have not been corrected for wind speed or other gauge
biases.
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the temperature at which they grow (e.g., Magono and
Lee 1966; Ryan et al. 1976; Fukuta and Takahashi
1999). Dendrites, which grow between �10° and
�20°C, have large interstitial air spaces in the crystal
structure, thereby yielding a low snow density (e.g.,
Figs. 11 and 12 in Fukuta and Takahashi 1999; Table 2
in Rasmussen et al. 1999). On the other hand, needles,
which grow at temperatures between �4° to �10°C, are
comparatively more dense (e.g., Figs. 11 and 12 in

Fukuta and Takahashi 1999; Table 2 in Rasmussen et
al. 1999).

Another way that temperature may affect the density
of snowfall is through the aggregation of airborne snow
crystals. Aggregation is more effective at temperatures
near 0°C, as well as at the temperature of dendritic
growth (around �15°C) (Hobbs et al. 1974, their Figs.
8 and 9a). Heymsfield (1986) also argues for the impor-
tance of aggregation at temperatures of �25° to �36°C

FIG. 2. Distributions of snow ratios for each of the 28 stations and their locations: (a) the western and (b) the eastern United States.
Abscissa of the graphs of the individual stations are identical to that in Fig. 1. The ordinates are given in terms of percentage of events
and have varying ranges among the stations. These data have not been corrected for wind speed or other gauge biases.
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in cumulonimbus anvils. Whether the degree of aggre-
gation has any effect on the ultimate density of snowfall
is unknown, because the action of snowflakes falling on
the ground or snow surface, and subsequent accumula-
tion, may involve more forceful collisions than those
that occur during free fall. We are aware of no studies
that have addressed this issue.

To explore the effect of low-level temperature on
snow ratio, the 1650 snowfall events were divided into
quintiles based on the low-level temperature factor
(F1) derived in Roebber et al. (2003). (Low-level tem-
perature was defined by the average of the temperature
from � � 1.0 to � � 0.8, which was equivalent to the

surface to about 850 mb.) Roebber et al. (2003) showed
that the correlation between F1 and surface tempera-
ture was 0.94, suggesting that surface temperature was
a good proxy for F1. The cumulative distribution fre-
quency plots (CDFs) of the temperature quintiles (Fig.
3) vary monotonically across snow ratios, in agreement
with Roebber et al. (2003, Fig. 6b). The F1 quintile
ranges and their corresponding temperatures are found
in Table 2. The highest snow ratios were associated
with the lowest 20% of low-level temperatures (F1 �
�0.774 or low-level temperatures less than approxi-
mately �10.1°C), and the lowest snow ratios associated
with the highest 20% of low-level temperatures (F1 �

FIG. 2. (Continued)
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0.812 or low-level temperatures greater than approxi-
mately �2.7°C) (Fig. 3). The medians range from 18.2
for the lowest 20% of low-level temperatures to 11.4 for
the highest 20% of low-level temperatures. More spe-
cifically, these CDFs could be used by forecasters to
predict what snow ratios are not likely to occur. For
example, low-level temperatures in the highest quintile
rarely yield snow ratios over 25:1 (only about 5% of
events exceed 25:1), whereas low-level temperatures in
the lowest quintile yield snow ratios less than 10:1 less
than 5% of the time. Thus, even though the snow ratio
depends on factors other than temperature, potentially
useful forecasting insight might be derived from the
data presented in this manner.

5. Influence of liquid equivalent on snow ratio

In Roebber et al. (2003, Fig. 6d), both liquid equiva-
lent and wind speed were combined into a surface com-
paction factor. Extracting the individual effects of these
two terms was not performed. To explore the effects of
each term independently, we first consider the liquid
equivalent. Section 6 considers the effect of the wind
speed independently.

One moisture-related parameter that discriminated
among snow ratios well was the liquid equivalent of

snow. Physically, there are two possible reasons for this.
First, snowfalls with high liquid equivalents may come
from clouds with high cloud water content, implying a
greater likelihood of riming or higher-density crystal
habits. Second, the higher the liquid equivalent, the
greater the weight of the snowpack, which would lead
to greater compaction and smaller snow ratios. In con-
trast, snow ratios approaching 100:1 have been anec-
dotally associated with accumulations of a dusting to an
inch. As with the other parameters, the dataset was
divided into quintiles based on the liquid equivalent. As
expected, the CDFs monotonically decrease with in-
creasing liquid equivalent, with the lowest 20% of liq-
uid equivalents yielding much larger snow ratios than
the highest 20% of liquid equivalents (Fig. 4). More
specifically, the medians differ from 9.4:1 for liquid
equivalents greater than 11.2 mm (top 20%) to 21.5:1
for liquid equivalents 2.8–4.1 mm (bottom 20%). In
fact, liquid equivalents 2.8–4.1 mm produced no ratios
less than 14:1, and liquid equivalents greater than 11.2
mm produced less than 1.4% of events with snow ratios
greater than 26:1. This dataset implies a negative cor-
relation between liquid equivalent and snow ratios.

Because of the strong relationship between liquid
equivalent and snow density, it is possible to create a
potentially useful nomogram for forecasters. We com-
pared the distributions of liquid equivalent to the 12-h
snowfall for the 1650 cases. For ease of application in an
operational forecasting environment, the five curves in
Fig. 5 are not the same as the quintiles in Fig. 4, al-
though they are close. The total percentage of the
dataset encompassed by each curve is listed within the
legend in Fig. 5. This nomogram can be used by fore-
casters to provide probabilistic guidance for 12-h snow-
fall for liquid equivalent less than 12.5 mm (0.5 in.). For
example, a liquid equivalent of 2.8–5.0 mm (0.11–0.2
in.) has produced 12-h snowfalls of 50–225 mm (2–9
in.), although 50% of the events result in a snowfall of
75 mm (3 in.). Likewise, a good estimate of the 12-h
snowfall can be determined for other liquid equivalent
ranges. Eighty percent of the snowfalls with 5.0–7.5 mm
(0.2–0.3 in.) of liquid equivalent will yield 75–150 mm
(3–6 in.) of snowfall. Caution should be exercised in
applying Fig. 5 for liquid equivalents over 12.5 mm (0.5
in.) because of the wide distribution of 12-h snowfalls
and inadequate sampling at very large snow accumula-
tions. Of course, such situations are likely to produce
the most socioeconomic impact, as well.

6. Influence of surface wind speed on snow ratio

Surface wind speed can affect the snow ratio. Surface
winds exceeding approximately 9 m s�1 can move ice

TABLE 2. The F1 quintiles and temperature ranges for the
dataset. The data have not been corrected for wind speed or other
gauge biases.

Quintile F1 range Temperature range (°C)

1 4.2 to �0.8 �25.6 to �10.1
2 �0.8 to �0.09 �10.1 to �6.9
3 �0.09 to 0.4 �6.9 to �4.6
4 0.4 to 0.8 �4.6 to �2.7
5 0.8 to 4.0 �2.7 to 12.1

FIG. 3. Cumulative distribution of snow ratios for low-level (be-
low 850 mb) temperature quintiles. For corresponding F1 and
temperature ranges to quintiles, see Table 2. These data have not
been corrected for wind speed or other gauge biases.
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crystals at the surface, fracturing the crystal during sal-
tation and increasing the snow density (e.g., Gray and
Male 1981, 345–350). Therefore, only snow events oc-
curring at wind speeds below 9 m s�1 were considered.
Classifying the snow events by snow-ratio bin and plot-
ting the fraction of events as a function of wind speed
results in Fig. 6. Although the fraction of average snow
ratios is constant with wind speed, the fraction of heavy
snow ratios increases with wind speed from about 10%
at low wind speeds to about 20% at 9 m s�1 (correlation
coefficient of 0.572). In addition, the fraction of light
snow ratios decreases with wind speed from about 53%
at low wind speeds to 40% at 9 m s�1 (correlation co-
efficient of �0.507). These relationships are statistically
significant at the 98% level. If considered in isolation,
the wind speed plays a small, but significant, role in
determining the snow ratio by shifting the distribution

of snow ratio toward lower values at higher wind speeds
(Fig. 6). This minor role for wind speed may be due
partly to the way Roebber et al. (2003) compiled their
data, using 6-h observations to minimize effects of pro-
longed wind compaction on snow ratio. However,
Roebber et al. (2003) also showed that wind speed can
be quite important when combined with other param-
eters. In addition, accounting for the gauge undercatch
(e.g., Goodison 1978; Yang et al. 1998) may also lead to
a stronger relationship between snow density and wind
speed.

FIG. 4. Cumulative distribution of snow ratios for liquid equivalent quintiles. Value of
2.8–4.1 mm represents the lowest fifth of liquid equivalent values, and 11.2 � mm represents
the highest fifth of liquid equivalent values. These data have not been corrected for wind
speed or other gauge biases.

FIG. 5. Distribution of snowfalls for values of liquid equivalent.
The vertical axis represents the fraction of events in each respec-
tive group. These data have not been corrected for wind speed or
other gauge biases.

FIG. 6. Fraction of snow events within each snow-ratio bin (i.e.,
light, average, heavy) as a function of wind speed. These data have
not been corrected for wind speed or other gauge biases.

FEBRUARY 2006 N O T E S A N D C O R R E S P O N D E N C E 101



7. Summary

This paper attempts to provide forecasters with more
information about snow ratios, following up on our ear-
lier study (Roebber et al. 2003). First, a Web-based
application for use in operational forecasting to predict
12-h snow ratios probabilistically using the neural net-
work methodology of Roebber et al. (2003) is available.
Second, the climatology of the snow ratios using the
dataset previously constructed is explored with regard
to geographic location, temperature, liquid equivalent,
and wind speed. These results can be summarized in the
following manner.

1) Snow ratio tends to increase as the low-level (sur-
face to roughly 850 mb) temperature decreases.
• Mean low-level temperatures greater than �2.7°C

rarely (less than 5% of the time) produce snow
ratios greater than 25:1.

• Mean low-level temperatures less than –10.1°C
rarely produce snow ratios less than 10:1.

2) Snow ratio tends to increase as the liquid equivalent
decreases.
• Liquid equivalent amounts 2.8–4.1 mm (0.11–0.16

in.) rarely produce snow ratios less than 14:1.
• Liquid equivalent amounts greater than 11.2 mm

(0.44 in.) rarely produce snow ratios greater than
26:1.

3) Increasing surface wind speed has a small, but sig-
nificant, role in decreasing snow ratio.

In using the techniques described in this paper, fore-
casters must remember the following caveats implicit in
this research. First, the Roebber et al. (2003) dataset
may be unrepresentative for certain situations. For ex-
ample, the dataset does not capture the extreme events;
thus, the tails of the distributions may not be sampled
adequately. Other examples where the dataset may be
unrepresentative derive from the criteria we used for
constructing the dataset. For example, this dataset can-
not address 12-h snowfalls where the liquid equivalent
values are less than 2.8 mm (0.11 in.), 12-h snow
amounts are less than 50.8 mm (2.0 in.), and surface
wind speeds are greater than 9 m s�1.

Second, the techniques described in this note were
developed probabilistically. With many of these distri-
butions skewed toward high snow ratios, the state of the
science is not sufficiently advanced to ascertain abso-
lute cutoffs. Thus, the term “rarely” implies probabili-
ties less than 5% of the sampled population.

Third, these snowfall data have not been corrected
for gauge bias, of which the largest source of error ap-
pears to be the type of gauge and wind screen available
(e.g., Goodison 1978; Doesken and Judson 1997; Yang

et al. 1998). Although regression equations exist for
“correcting” these data for wind speed (e.g., Yang et al.
1998), we have chosen not to employ such corrections.
As was noted by one anonymous reviewer, not correct-
ing for gauge bias may have a potentially negative im-
pact on the accuracy of our neural network in Roebber
et al. (2003). In this situation, we prefer not to tamper
with the original data by imposing an arbitrary and em-
pirical correction for one of a number of possible biases
in the precipitation data.

Fourth, the combination of effects (e.g., temperature,
liquid equivalent, wind speed) is what makes prediction
of the snow ratio difficult. Even though the artificial
neural network approach was not perfect, the actual
prediction in a specific case may be strongly modified
by the conditions represented by the other effects
(Roebber et al. 2003, p. 277). Thus, inherent limitations
exist to any approach, including the guidance suggested
in this paper.

Applying the generalizations described above de-
rived from the statistical properties of the dataset con-
structed by Roebber et al. (2003) could help isolate
many of the extreme occurrences of snow ratios, when
the values are either large (greater than 20) or small
(less than 10). Therefore, if these extreme values could
be ascertained ahead of time, human forecasters can
play an important role in minimizing the potential fore-
cast busts due to application of a constant snow ratio to
liquid equivalent (e.g., 10:1) from numerical weather
prediction model output. If the numerical forecast
models accurately represent the forecast scenario, then
a Web-based application is available, as described in
section 1.
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