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ABSTRACT

Numerical forecasts from a pilot program on short-range ensemble forecasting at the National Centers for
Environmental Prediction are examined. The ensemble consists of 10 forecasts made using the 80-km Eta Model
and 5 forecasts from the regional spectral model. Results indicate that the accuracy of the ensemble mean is
comparable to that from the 29-km Meso Eta Model for both mandatory level data and the 36-h forecast cyclone
position. Calculations of spread indicate that at 36 and 48 h the spread from initial conditions created using the
breeding of growing modes technique is larger than the spread from initial conditions created using different
analyses. However, the accuracy of the forecast cyclone position from these two initialization techniques is
nearly identical. Results further indicate that using two different numerical models assists in increasing the
ensemble spread significantly.

There is little correlation between the spread in the ensemble members and the accuracy of the ensemble
mean for the prediction of cyclone location. Since information on forecast uncertainty is needed in many
applications, and is one of the reasons to use an ensemble approach, the lack of a correlation between spread
and forecast uncertainty presents a challenge to the production of short-range ensemble forecasts.

Even though the ensemble dispersion is not found to be an indication of forecast uncertainty, significant spread
can occur within the forecasts over a relatively short time period. Examples are shown to illustrate how small
uncertainties in the model initial conditions can lead to large differences in numerical forecasts from an identical
numerical model.

1. Introduction

Numerical weather prediction is one of the founda-
tions upon which operational forecasters rely to produce
accurate and timely weather forecasts for both public
and private uses. Although these computer generated
predictions have never been perfect, they offer a picture
of the evolution of the atmosphere over some prede-
termined time window. One of the many tasks a fore-
caster faces each day is to determine when a numerical
forecast is going awry and then to compensate for these
errors in the forecast products produced.

Although numerical predictions have improved dra-
matically in the last 30 yr (Bonner 1989), many sources
of error remain. These sources can be separated into
contributions from model error, reflecting the unre-
solved forcings present in the atmosphere but included
imperfectly in the model, and errors in observing the
true initial state of the atmosphere, including instrument
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error, sampling error, and initialization error (Tribbia and
Baumhefner 1988). Examples of the sensitivities of nu-
merical weather prediction models to uncertainties in
both model initial conditions and model physics abound.
For explosive cyclogenesis, it is recognized that the
forecast skill is limited as much by initial condition error
as by model error (Reed et al. 1988; Sanders and Au-
ciello 1989; Kuo and Low-Nam 1990; Mullen and
Baumhefner 1989, 1994). One example of a potential
error is that the vertical distribution of latent heat release
can have a significant influence on forecast cyclone
deepening rates (Gyakum 1983), and this vertical dis-
tribution depends upon the model initial and forecast
vertical thermodynamic structure, the physical processes
included in convective parameterization schemes (Kain
and Fritsch 1990), and the specification of rain and ice
processes in explicit microphysical schemes (Kogan and
Martin 1994).

In simulations of convection, Kain and Fritsch (1992)
find that the development and evolution of a squall line
is affected greatly by the form of the function that de-
termines where and when the model parameterized con-
vection is activated. There are a number of realistic
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alternatives to use for this function, all of which produce
distinctly different evolutions of the squall line. There
also exist different physical parameterization schemes
for the same atmospheric process. Wang and Seaman
(1997) show that different convective parameterization
schemes produce different evolutions of convective ac-
tivity in the model simulations and that no one scheme
is better than all the others when different measures of
skill are compared. Stensrud and Fritsch (1994a,b) show
sensitivities to the presence, or absence, of mesoscale
details in the model initial conditions. Regions of con-
vective development, and subsequent heavy rainfall,
shift by several hundred kilometers depending upon
whether or not a mesoscale-sized convective outflow is
included in the model initial condition. Zou and Kuo
(1996) illustrate similar sensitivities in the model pre-
cipitation simulations to mesoscale features in the initial
conditions, but suggest that four-dimensional data as-
similation of rainfall data can improve the model initial
conditions. However, even assuming it is possible to
create a perfect initial condition, model error still re-
mains. One approach that attempts to use these model
and observational uncertainties advantageously is the
use of forecast ensembles. Since weather forecasts al-
ways contain a degree of uncertainty, a numerical fore-
cast that explicitly represents this uncertainty would be
of great value to many users of weather information
(Murphy 1977, 1993).

Ensemble forecasting has the explicit goal of pre-
dicting the probability of future weather events or con-
ditions (Epstein 1969; Leith 1974), since it is well
known that a single deterministic forecast is sensitive
to small uncertainties in the initial condition (Lorenz
1963). As discussed by Leith (1974), an ensemble con-
sists of equally likely analyses of the atmospheric initial
state that encompass the unknown ‘‘true’’ state of the
atmosphere. The mean position of this cloud of analyses
in phase space represents the best estimate of the true
state of the atmosphere in a least-square-error sense,
and the spread between the individual analyses is an
estimate of analysis uncertainty. Thus, this set of initial
analyses represents an estimate of the probability den-
sity function (PDF) for the true initial state. A set of
forecasts is then produced using a deterministic model
to predict the future state of the atmosphere from each
of the analyses; this set of forecasts represents a random
sample of the PDF of the atmospheric state at this future
time. The mean of the forecast ensemble is the best
estimate of the true state of the atmosphere in a least-
square-error sense, assuming the model is perfect. How-
ever, the forecasts continue to diverge with time, owing
to the inherent nonlinearity of the atmosphere, and even-
tually the mean separation between the forecasts equals
the mean separation of randomly chosen atmospheric
states. At this point in time the forecast skill is equal
to that from climatology.

As discussed by Mullen and Baumhefner (1994), the
goal of ensemble forecasting is to specify the evolution

of the atmospheric PDF as completely as possible. Un-
fortunately, while the idea of ensembles is simple, the
implementation of an ensemble strategy is not. It is often
assumed that by using a set of different initial conditions
in which each initial condition is constrained to match
to the basic observational data, while also differing from
all the other initial conditions in an estimate of the ob-
servational error, the PDF of the true initial state can
be obtained. This process usually is accomplished by
using the control analysis as the best estimate of the
true initial state and adding perturbations to the control,
thereby virtually guaranteeing that the mean of the en-
semble initial states is the control analysis. Several
methods exist for defining these perturbations, including
Monte Carlo (Mullen and Baumhefner 1988), the breed-
ing of growing modes (Toth and Kalnay 1993), and
singular vectors (Molteni et al. 1996), although the best
method to use for operational ensembles is not yet
known (see Anderson 1996).

One problem common to all these approaches is the
general lack of knowledge of analysis error. Daley and
Mayer (1986) have estimated global analysis error, but
the case-to-case variability in the uncertainty of the true
atmospheric state could be much larger or smaller than
the estimated global analysis error (Mullen and Baum-
hefner 1989). As the scales of phenomena are decreased,
our understanding of analysis error also decreases. On
the mesoscale, we lack the observations necessary to
determine even the mean analysis error, although special
field programs have highlighted the fine-scale structure
of the atmosphere that is missed by the present obser-
vational network (e.g., Hoecker 1963; Johnson and
Hamilton 1988; Schneider 1990; Ziegler and Hane
1993). This lack of knowledge is especially troublesome
when trying to define a PDF for an ensemble of me-
soscale model initial conditions, which is currently un-
der exploration (Stensrud et al. 1998).

Another problem is the computer resources needed
for ensemble forecasting. Although Du et al. (1997)
have shown that as few as 8–10 ensemble members can
improve precipitation forecasts for a case of explosive
cyclogenesis, it is desirable to have a much larger num-
ber of ensemble members to produce a better estimate
of the PDF for the atmosphere and obtain a more ac-
curate estimate of the spread (see Epstein 1969). Pro-
ducing a larger number of model forecasts is compu-
tationally expensive and present computer resources at
most operational centers are not sufficient to create more
than 10–50 ensemble members. Using a relatively small
number of ensemble members makes the methods by
which the initial conditions are perturbed even more
important, since it is then necessary to sample as much
of the PDF as possible with very few points.

Even with the difficulties involved, ensemble strat-
egies have been found to be of benefit to operational
forecasting. Ensemble techniques have been used for
global medium-range (5–15 day) forecasting and have
demonstrated the usefulness of ensemble predictions
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over a single control forecast valid at the same time
(Dalcher et al. 1988; Murphy 1990; Brankovic et al.
1990; Tracton and Kalnay 1993; Toth and Kalnay 1993;
Molteni et al. 1996; Buizza 1997). Medium-range en-
sembles also have shown utility in the forecasting of
extreme weather events during the cool season over the
Mediterranean region (Petroliagis et al. 1997), in which
the ensemble probabilities are used to provide a measure
of confidence in a higher-resolution numerical forecast
valid at the same time. Similar results indicating that
the spread between the ensemble members can be used
to predict forecast skill are shown by Kalnay and Dalch-
er (1987) for 500-hPa height patterns. Although the
spread in the ensemble is less than the difference be-
tween the forecast and the validating analysis as shown
by Buizza (1995), indicating that the methods for gen-
erating the ensemble do not necessarily capture the PDF
for the true atmosphere, the usefulness of the ensemble
approach for medium-range forecasting is clear. The
success of global model-based ensemble forecasting
techniques at the medium range, and evidence from case
studies of ensemble systems used for short-range pre-
diction (Mullen and Baumhefner 1988, 1989; Du et al.
1997), led to the development of a pilot program at the
National Centers for Environmental Prediction (NCEP)
in 1994 to explore the usefulness of regional short-range
ensemble forecasting (SREF) (Brooks et al. 1995).

Initial results from the SREF pilot program suggest
that the ensemble approach can provide value for prob-
abilistic quantitative precipitation forecasts (PQPFs).
While Hamill and Colucci (1997) find that the NCEP
ensemble forecasts of precipitation are underdispersive,
the precipitation forecasts can be postprocessed to cor-
rect this problem and yield an adjusted ensemble with
more desirable statistical properties. They further show
that the ensemble can generate forecasts that have sim-
ilar or lower error than forecasts from the 29-km Meso
Eta Model. In a subsequent paper, Hamill and Colucci
(1998) show that the accuracy of the adjusted PQPFs
from the NCEP ensemble are more skillful than the
Nested Grid Model’s model output statistics for all pre-
cipitation categories except the basic probability of mea-
surable precipitation. However, the ensemble output
shows no ability to predict the forecast skill of precip-
itation for the cases examined.

The goal of the present paper is to further examine
the output from the NCEP SREF pilot program, but to
focus upon different parameters and also illustrate the
spread seen in some of the ensemble forecasts. We brief-
ly summarize the approach to developing the ensemble
member initial conditions in section 2, and then proceed
to a verification of the SREF output in section 3. Several
illustrations of ensemble spread are shown in section 4,
followed by a final discussion in section 5.

2. Creation of the ensemble member initial
conditions

The configuration of the ensemble members and
choice of numerical weather prediction model for this

pilot program on SREF were determined at a workshop
held at NCEP during July 1994 (Brooks et al. 1995).
The pilot program was designed in an attempt to address
most of the scientific questions and concerns of the
workshop members, while being constrained by the
computational and human resources of NCEP. The result
is a 15-member ensemble, with 10 of the members from
the 38-level, 80-km Eta Model (Janjić 1994) and 5 mem-
bers from the 28-level, 80-km regional spectral model
(RSM) (Juang and Kanamitsu 1994). Six of the Eta
Model initial conditions are from different analyses that
are interpolated to the Eta Model grid. These analyses
are from a static eta optimum interpolation analysis
(Rogers et al. 1995), the Nested Grid Model regional
analysis (DiMego et al. 1992), the Eta Model data as-
similation system (Rogers et al. 1996), the 3D-varia-
tional analysis (Parrish et al. 1996), the medium-range
forecast model (MRF) control forecast (Parrish and Der-
ber 1992), and the aviation run of the MRF (Parrish and
Derber 1992). The remaining four Eta Model initial con-
ditions are from two positive and two negative bred
perturbations (Toth and Kalnay 1993). The five RSM
initial conditions are from the MRF control forecast and
two positive and two negative bred perturbations. Other
details of this ensemble configuration can be found in
Hamill and Colucci (1997).

The six different analyses for the Eta Model initial
conditions to some extent represent analysis uncertainty,
since the analyses are created using different techniques,
although also with slightly different input datasets ow-
ing to the varying data cutoff times that depend upon
the operational model suite execution structure. The
breeding of growing modes (BGM) technique is another
approach to generating ensemble members in which the
numerical forecast model is used to determine the fastest
growing modes that are then inserted back into the mod-
el initial conditions (Toth and Kalnay 1993). A key dif-
ference between the BGM approach and using different
analyses to vary the initial conditions is that the breeding
approach imposes a dynamic constraint on the initial
conditions, whereas the different analyses represent es-
timates of truth from the available input data as seen
through the lenses of different analysis techniques.
However, several of the analysis techniques produce ini-
tial conditions that are very similar to each other, sug-
gesting that the uncertainty in the initial state of the
atmosphere is likely underestimated using this approach.
Although the NCEP SREF initial condition perturba-
tions vary in magnitude, with the bred modes typically
having larger root-mean-square differences (RMSD) in
500-hPa heights and smaller RMSD in 850-hPa tem-
peratures than the analyses (Hamill and Colucci 1998),
the ensemble mean of these fields corresponds fairly
closely to the Eta Model initial condition from the avi-
ation run of the MRF (see Hamill and Colucci 1998).
In some sense, this ensemble can be viewed as pertur-
bations surrounding the aviation run initial condition
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where this initial condition represents the best estimate
of the true atmospheric state.

A total of 81 cases now exist of the ensemble forecasts
out to 48 h with model fields available at 6-h intervals
for the Eta Model and 12-h intervals for the RSM. Some
cases do not contain all 15 of the ensemble members,
owing to model and data transmission problems. In ad-
dition, 6-h output from the 50-level, 29-km Meso Eta
Model (Black 1994) out to 36 h also are archived to
compare the relative benefits of a single, higher-reso-
lution model forecast to the multiple run, low-resolution
ensemble.1 The versions of the eta and RSM used in
this study are identical to those used operationally at
NCEP, and have changed over time as the operational
models have been upgraded. We begin by verifying the
ensemble mean of basic atmospheric variables at man-
datory pressure levels with output from the Meso Eta
Model and observations.

3. Verification of the ensemble and Meso Eta
forecasts

One approach to documenting the usefulness of SREF
is to compare the ensemble mean with observations and
a single higher-resolution model forecast. The ensemble
mean should provide a better forecast than any individ-
ual ensemble member owing to errors in the individual
forecasts canceling when averaged (Epstein 1969; Leith
1974). However, an important question to address is
whether or not the ensemble mean of a low-resolution
model can produce forecasts of model parameters that
are as accurate as those from a higher-resolution model
forecast.

a. Standard atmospheric variables

Using the ensemble mean of the 10 80-km eta fore-
casts valid at the same time, the bias, mean absolute
error (MAE), and root-mean-square error (rmse) of tem-
perature, relative humidity, geopotential height, wind
speed, and wind direction are calculated from 20 fore-
casts started at 1200 UTC. Model data are interpolated
to the location of the rawinsonde sites without correcting
for balloon drift or duration of ascent. These same ver-
ification parameters also are calculated from the 29-km
mesoscale version of the Eta Model as archived on a
40-km grid. The cases chosen are the first 20 cases in
which both the 10 member eta ensemble data and the
Meso Eta Model data are available. We have neglected

1 The Meso Eta Model forecasts are actually started at 0300 and
1500 UTC after a 3-h data assimilation period. Therefore, we are
comparing the 9-h, 21-h, and 33-h Meso Eta Model forecasts with
the 12-h, 24-h, and 36-h ensemble forecasts. To avoid confusion we
have chosen to ignore the 3-h time difference in these forecasts and
consider the Meso Eta Model forecasts to be 12-h, 24-h, and 36-h
forecasts.

the RSM data in order to simplify our interpretations,
since the identical numerical model is then used for both
the 80-km and 29-km Eta Model forecasts. The verifi-
cation parameters are calculated at 850, 700, 500, 300,
200, and 100 hPa for all rawinsonde observations avail-
able within North America at the 12-, 24-, and 36-h
forecast times. The values of relative humidity are not
verified above 300 hPa owing to difficulties with cor-
rectly measuring humidity at low temperatures (Elliott
and Gaffen 1991; Wade 1994). For each time period
and parameter over 1200 observations are included in
the calculations.

Results indicate that the ensemble mean compares
favorably with the Meso Eta Model for all parameters
and pressure levels (Table 1). To estimate the probability
that the ensemble mean forecast is more accurate than
the Meso Eta Model, or vice versa, we compare the
domain-average errors of each variable from both mod-
els over all case days using the Wilcoxon signed-rank
test (Wilks 1995). For each variable and output time,
we obtain 20 pairs of the value of the domain-average
error from which we calculate the absolute value of the
error differences. These difference values are ranked
from 1 to 20 in ascending order and the rank values
summed for values with the same sign of the error dif-
ference. The statistical significance of the difference of
the two distributions is tested by calculating the specific
probability that the sum of the ranks will occur accord-
ing to the null distribution. Results indicate that most
of the differences between the ensemble mean and the
Meso Eta Model are significant at the 95% level (Table
1), with the ensemble mean more accurate than the Meso
Eta Model for just over half of the variables chosen for
examination. Although only the MAE is shown, the
overall comparison between the ensemble mean and the
Meso Eta yields a nearly identical outcome when using
the rmse.

These comparisons indicate that the mean of the small
10-member ensemble is producing a level of forecast
accuracy of the basic atmospheric parameters better than
or equivalent to the 29-km Meso Eta Model for most
parameters, a model with over twice the horizontal res-
olution and 1.3 times the vertical resolution of the 80-
km Eta Model used to generate the ensemble runs. This
result parallels that found in ensembles of medium-
range forecasts, namely that the loss of skill from a
reduction in model resolution can be recovered by using
an ensemble approach (Tracton and Kalnay 1993). How-
ever, in terms of CPU time, the 10-member eta ensemble
is 1.45 times more expensive than the single run of the
Meso Eta Model, and the 15-member eta and RSM en-
semble is twice as expensive as the single run of the
Meso Eta Model. Therefore, one hopes that some added
information could be gained from the ensemble that is
not provided by the Meso Eta Model.

For the medium-range forecast problem, one added
benefit gained from using an ensemble approach is that
the dispersion between members of an ensemble can be
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TABLE 1. Mean absolute errors in temperature (K), RH (%), geopotential height (m), wind speed (m s21), and wind direction (degrees)
calculated from the 29-km Meso Eta Model (meso) and the 10-member 80-km Eta Model ensemble mean (ens) at 12 h, 24 h, and 36 h into
the model forecasts for various mandatory pressure levels (850, 700, 500, 300, 200, and 100 kPa). Values in bold print indicate that the
differences are significant at the 95% level.

12 h meso 12 h ens 24 h meso 24 h ens 36 h meso 36 h ens

Temperature MAE (K)
850
700
500
300
200
100

1.29
1.08
0.93
1.04
1.38
1.66

1.39
1.03
0.85
0.92
1.3
1.28

1.5
1.16
0.97
1.1
1.59
1.59

1.48
1.16
0.9
1
1.35
1.31

1.71
1.29
1.16
1.23
1.73
1.68

1.79
1.26
1.09
1.19
1.64
1.46

Relative humidity MAE (%)
850
700
500
300

12.68
14.33
15.03
14.42

13.03
13.87
14.09
13.24

14.08
15.08
16.4
14.62

13.94
15.25
15.78
14.32

14
14.9
17.11
15.82

14.36
15
16.48
15.06

Geopotential height MAE (m)
850
700
500
300
200
100

10.77
10.07
11.16
16.4
21.28
30.92

10.2
9.98

12.71
19.11
23.41
29.52

13.37
13.26
14.19
26.73
33.02
30.42

16.17
15.99
17.85
24.23
28.19
28.66

14.58
14.3
15.88
23.86
29.35
34.14

16.1
15.69
18.36
26.87
31.85
35.93

Wind speed MAE (m s21)
850
700
500
300
200
100

2.15
2.48
2.65
3.57
4.02
3.43

2.26
2.34
2.55
3.45
3.75
2.92

2.48
2.58
2.94
4.15
4.46
3.35

2.57
2.55
2.82
3.92
4.18
3.05

2.48
2.8
3.24
4.49
4.87
3.45

2.48
2.75
3.19
4.45
4.5
3.51

Wind direction MAE (degrees)
850
700
500
300
200
100

31.88
24.04
16.26
14.62
13.31
19.12

31.15
23.67
18.35
15.48
15.37
19

33.02
25.03
17.38
14.52
14.42
17.84

34.88
25.96
19.11
15.96
16.31
18.32

33.42
26.58
19.29
17.57
16.79
19.77

35.51
28.96
20.92
18.76
17.74
21

Lapse rate MAE (31023 K m21)
700–500
700–300

0.533
0.243

0.500
0.228

0.601
0.268

0.547
0.257

0.625
0.287

0.578
0.270

used to predict the skill of the weather forecasts (Kalnay
and Dalcher 1987; Buizza 1995). Results from Hamill
and Colucci (1998) indicate that this is not true for the
SREF dataset. Their results show little correlation be-
tween the ensemble variability and the skill of the pre-
cipitation forecast in the 13 cases they examined. To
further explore the SREF data, we examine forecasts of
cyclone location as done for explosively developing cy-
clones by Junker et al. (1989), since the SREF pilot
program is focused upon the prediction of sensible
weather events and cyclones are important contributors
to sensible weather.

b. Cyclone position

As another way to evaluate the information content
of the ensembles, we examine the locations of cyclones
over North America from the ensemble mean and the
Meso Eta Model. Cyclones that are over the continental

United States in the model initial conditions and remain
within the model domain during the entire model fore-
cast are documented. However, before comparing results
from the ensemble mean and the Meso Eta Model, it is
important to determine the most appropriate method for
defining the ensemble mean of the cyclone position. The
ensemble mean low position can be defined in two ways:
1) the cyclone position defined by the ensemble mean
sea level pressure field (MSLP), and 2) the cyclone po-
sition defined by the mean position of the individual
cyclones (MPIC) from each of the ensemble forecasts.

To maximize the number of cases, output from only
the 48-h time of the 10 80-km Eta Model forecasts are
used, providing a total of 44 cases from August 1995
through September 1997. The cyclone centers are lo-
cated to a precision of 18 lat from the model data, and
from the NCEP surface analyses before June 1997 and
an objective analysis of the sea level pressure for the
two cases that occurred after June 1997. If a cyclone
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TABLE 2. MAE in cyclone position (8 lat) at 36 h from 33 cases
using the 29-km Meso Eta Model (Meso Eta), the MPIC from the
15-member eta and RSM ensemble, and the 80-km eta model ensem-
ble member that uses the operational initial condition (OPNL).

Model MAE

Meso Eta
MPIC
OPNL

2.19
2.20
2.58

TABLE 3. Spread calculated from forecasts at 36 h using the BGM
technique and from the different in-house NCEP analyses defined as
the mean distance (in 8 lat) between each of the individual ensemble
members and their MPIC. Nine ensemble member initial conditions
are created using the BGM technique, and six are created from dif-
ferent analyses. For the Eta vs RSM spread comparison, both cal-
culations use five ensemble members: one from the MRF control
initial condition plus the two positive and two negative bred pertur-
bations.

Ensemble members Spread

All
Analyses
Bred modes
Eta bred modes
RSM bred modes

1.62
0.95
1.80
1.41
1.53

does not occur in a model forecast, or if the forecast is
unavailable, then the MPIC and MSLP are calculated
only from the remaining ensemble members.2 The max-
imum absolute difference between the MPIC and MSLP
from all the cases is 3.98 lat, whereas the mean absolute
difference is 0.768 lat, indicating that these two methods
produce very different determinations of cyclone lo-
cation. Results indicate that the MPIC has a MAE of
2.368 lat, the MSLP has a MAE of 2.648 lat, and, for
comparison, the operational version of the 80-km Eta
Model has a MAE of 3.138 lat. Using the Wilcoxon
signed-rank test, the differences in the MAEs of the
MPIC and MSLP are estimated to be at the 77% sig-
nificance level, whereas the differences in the MAEs of
the MPIC and the operational version of the 80-km Eta
Model are estimated to be at the 99% significance level.

Part of the difficulty in evaluating the ability of a
model to forecast specific types of events is that, even
for synoptic-scale features, the number of times these
events occur, and for which good verification data are
available, is much less than the number of forecasts.
This requires a very large dataset in order to get statis-
tically significant results. Unfortunately, the 81 ensem-
ble forecast case days presently available are not always
sufficient to provide high levels of statistical signifi-
cance for specific types of weather events that are im-
portant to providing a good evaluation of the forecast
potential for short-range ensembles. Therefore, the num-
bers presented here must be viewed with a degree of
caution. Nevertheless, it appears that the MPIC may be
a better estimate of the forecast cyclone position than
the MSLP and we choose to use the MPIC to define the
ensemble cyclone position for a comparison of the en-
semble mean with the Meso Eta Model.

A total of 33 cyclone cases are documented in both
the 15-member eta and RSM ensemble and the Meso
Eta Model 36-h forecasts for which verification data are
available. Results indicate that the MAEs of the ensem-
ble mean and Meso Eta Model cyclone locations are
virtually identical (Table 2) and both have smaller

2 This leads to an overestimate of forecast skill, since a priori one
does not know if a low exists at a given forecast time or not. Only
a few of the forecasts used in these calculations show uncertainty
with regard to the presence of a cyclone, suggesting that for the cases
chosen, the overestimate of forecast skill is small. However, for larger
datasets this may be a concern.

MAEs than that of the operational version of the 80-
km Eta Model. Whereas the differences between the
Meso Eta and ensemble cyclone locations are not sig-
nificant, both forecasts of cyclone location are more
accurate than the operational version of the 80-km Eta
Model at the 90% significance level. Therefore, both
higher horizontal resolution and the use of ensembles
can improve forecasts of cyclone location. The virtually
identical position errors of the ensemble mean and the
Meso Eta suggest that the the loss of accuracy from a
reduction in model resolution can be recovered by using
an ensemble approach.

The cyclone position dataset also can be used to eval-
uate the amount of dispersion produced by the six dif-
ferent analyses versus the nine bred modes. Hamill and
Colucci (1998) show that the bred modes on average
have 25% larger domain-averaged 500-hPa height per-
turbations than the different analyses, whereas the anal-
yses have 18% larger 850-hPa temperature perturbations
than the bred modes. A natural question is which meth-
od, as applied in this NCEP pilot program, is more
effective in producing dispersion in the forecasts. This
is an important question to answer, since ensemble fore-
casts typically are underdispersive (Buizza 1997). If we
define spread as the mean distance between all individ-
ual ensemble member cyclone positions and their MPIC,
then the results from the 36-h forecasts indicate that the
bred modes produce 0.858 lat more spread than the dif-
ferent analyses (Table 3) (see Tracton et al. 1998). This
difference is significant at the 99% level. Although the
difference in spread between the different analyses used
in the Eta Model and only the Eta Model bred modes
is smaller (0.468 lat), it is still statistically significant.
The spread calculated from only the RSM bred modes
is not statistically different from the spread calculated
from the Eta Model bred modes. However, the spread
found with the bred modes at 36 h increases by 28%
when using the two different numerical models in the
ensemble, and this difference is significant at the 98%
level. This result strongly suggests that model differ-
ences are important contributors to spread in this en-
semble, in agreement with Tracton et al. (1998).
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FIG. 1. Plot of the MPIC error (8 lat) vs the spread from the en-
semble (8 lat) defined as the mean distance between all ensemble
members and the MPIC. FIG. 2. Histogram of the relative frequency of ensemble (diagonal

line) and observed (solid) cyclone distances from the MPIC at 36 h
binned into 0.58 lat categories. All values greater than 58 lat are
included in the 58 bin.To examine how the spread changes with time, the

cyclone position data from only the Eta Model ensemble
members at the 48-h time are examined. The spread is
calculated from five different analyses and the four bred
modes combined with a control forecast, yielding five
forecasts each. Results indicate that the spread from the
different analyses is 1.498 lat and from the bred modes
is 1.848 lat. The spread has increased 30% over the past
12 h from the bred modes, whereas it has increased over
57% from the analysis differences. Therefore, by 48 h
the bred modes produce only 0.358 lat more spread than
the different analyses, a smaller difference than found at
36 h. These results suggest that the BGM technique pro-
duces more spread in this ensemble than does analysis
differences, although the amount of increased spread at-
tributed to the BGM perturbations appears to decrease
between 36 and 48 h. This result also parallels that found
by Tracton et al. (1998), who investigated 500-hPa geo-
potential height and sea level pressure fields.

One of the hopes of ensemble forecasting is that the
spread, or dispersion, of the ensemble provides informa-
tion on the uncertainty of the forecast. Forecasts with larger
spread should be less certain than forecasts with smaller
spread (see Hamill and Colucci 1998). This relationship
has been seen to some extent in medium-range forecasts
of 500-hPa heights (Kalnay and Dalcher 1987). One way
to examine the relationship between spread and forecast
accuracy is to calculate the correlation coefficient for the
two parameters. But there are at least two ways to define
forecast accuracy: the MPIC position error and the control
forecast position error. Here we define the control forecast
as the Meso Eta Model forecast. When the MPIC position
errors are compared to the spread (Fig. 1) there is very
little correlation (r 5 0.21), indicating that the ensemble
is not able to predict the forecast skill of cyclone locations.
There is a slightly higher correlation (r 5 0.36) between
the Meso Eta Model cyclone location errors and the en-
semble spread, but even using this small data sample it
appears that this ensemble cannot predict forecast skill for
cyclone location. Indeed, if we examine the error in cy-

clone location of the MPIC from the Eta Model bred
modes and the Eta Model analyses, we find that the errors
are 2.48 and 2.478 lat, respectively. Therefore, the in-
creased dispersion produced by the Eta Model bred modes
does not correspond to a decrease in accuracy for cyclone
position at 36 h. This result parallels that found by Hamill
and Colucci (1998), who find that the ensemble variability
cannot be used to predict the forecast variable specificity
of the ensemble probability distribution from day-to-day
and location-to-location.

Part of the inability of the ensemble to predict forecast
skill may be due to the underdispersion of the ensemble.
If the distance between each ensemble member and the
MPIC is calculated and divided into 0.58 lat bins, and
then compared against the distance between the MPIC
and the observed cyclone location, we find that 60% of
the ensemble members are within 28 lat of the MPIC,
whereas only 30% of the observed cyclones occur with-
in the same range (Fig. 2). This result is consistent with
the analysis of Persson (1996), who shows that the re-
lationship between spread and error decreases if the en-
semble members are correlated with one another. There-
fore, this small dataset strongly suggests that the model
forecasts are underdispersive and one of the challenges
of ensemble forecasting is creating an ensemble system
that is more dispersive and less correlated while also
maintaining or improving the accuracy of the ensemble
mean. Persson (1996) indicates that as the numerical
model improves and as the ensemble members become
more uncorrelated, the covariance between spread and
error should increase. An ensemble system with larger
spread has recently been created at NCEP using an im-
proved numerical model (Tracton et al. 1998), but it is
too early to determine if the relationship between spread
and error in this ensemble system has improved.
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FIG. 3. Plots of cyclone positions from (a) 48-h forecasts valid 1200 UTC 23 Sep 1994, (b) 24-h and 48-h forecasts valid 1200 UTC 3
Aug 1995, (c) 48-h forecasts valid 1200 UTC 19 Dec 1996, and (d) 48-h forecasts valid 1200 UTC 19 Jul 1996. Locations of cyclones from
individual ensemble members indicated by a black L and the observed location is indicated by a gray L.

4. Ensemble variability
A number of cases have been identified to illustrate

the significant amount of dispersion that occurs in the
ensemble over relatively short time periods. These are
shown to illustrate that even though, by some measures,
the spread in the ensemble members may decrease ini-
tially before the most unstable modes begin to grow

(Lacarra and Talagrand 1988), significant differences
between ensemble members can be found in sensible
weather parameters very soon after the start of the fore-
casts. This is illustrated schematically by Toth and Kal-
nay (1993), who show that the low-energy convective
modes grow fastest initially and then saturate at a small-
er amplitude than the baroclinic modes that grow more



APRIL 1999 441S T E N S R U D E T A L .

FIG. 4. Forecast 12-h (a) maximum rainfall (mm) and (b) minimum rainfall valid 0000 UTC 29 May 1996, and (c) maximum rainfall and
(d) minimum rainfall valid 1200 UTC 9 Sep 1997. Rainfall extrema calculated at each individual grid point from all ensemble members.

slowly. However, for SREF it is not clear that these
convective modes are unimportant, since precipitation
is one of the most critical short-range forecast param-
eters. Since the production of short-range ensembles has
occurred only recently, a more qualitative look at the
variety of the forecasts produced, and the different types
of events captured, may be helpful to illustrate the dis-
persion that is created within this small ensemble.

a. Cyclones

Four different cases are chosen to illustrate the dis-
persion that occurs in cyclone location at 36 and 48 h
into the ensemble forecasts (Fig. 3). Most of the cases
examined do not show a large spread in cyclone location
at the 24-h forecast time; the spread begins to become
more clearly evident at 36 h and is larger at 48 h. Ad-
mittedly, these cases illustrate the maximum dispersion
seen in the ensemble dataset and are not in general
representative of the ensemble behavior on every day
where the spread on average is less (see Fig. 2). How-
ever, it is important to note that spread can occur in all
seasons and may indicate more than just different place-
ments of the cyclones. On 21 September 1994 (Fig. 3a),
output from the ensemble member that positioned the

low in northeastern Kansas indicates that this cyclone
has occluded by moving into the cold air behind the
frontal boundary. Therefore, some of the differences
between the ensemble members are produced by more
than just differences in phase; they may also indicate
changes in evolution.

b. Rainfall

As indicated in the study by Du et al. (1997), there
can be large variability in the rainfall totals from en-
semble member to ensemble member. This behavior is
seen consistently in the NCEP short-range ensemble
output. This variability may be illustrated most clearly
by calculating the maximum and minimum 12-h rainfall
totals at each grid point in the 80-km Eta Model domain
and plotting the resulting rainfall fields (Fig. 4). The
minimum rainfall field encompasses where all the en-
semble members produce rainfall over this 12-h time
period, whereas the maximum rainfall field encompasses
the area over which any ensemble member produces
rainfall. Typically the extrema in the minimum rainfall
field are 2–3 times smaller than the extrema in the max-
imum rainfall field, regardless of synoptic setting. It is
clear that the ensemble members disagree significantly
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FIG. 5. Location of the 2-m freezing line valid (a) 0000 UTC 28
Nov 1995 and (b) 1200 UTC 18 Nov 1997. Shaded areas in (a) denote
regions that received snowfall of over 4 in. for this event.

on which regions receive rainfall. However, Hamill and
Colucci (1998) indicate that this spread is not related
to forecast skill.

c. Freezing line

Forecasts of heavy snowfall are often assisted by a
good prediction of the freezing line, since the heaviest
snowfall typically occurs just to the cold side of the
freezing line. Output from the ensemble shows that sig-
nificant differences in the freezing line position can oc-
cur within the first 12 h of the model forecasts. Differ-
ences of up to 250 km are seen in the placement of the

freezing line during a heavy snowfall event in Michigan
(Fig. 5a). Larger differences in placement are seen in
the November 1997 case (Fig. 5b) where the northern-
most location of the freezing line in the central United
States varies from Texas to South Dakota, whereas in
other parts of the United States the ensemble members
are more in agreement.

d. Convective available potential energy

One parameter that is used to assist in forecasting the
general type of convective activity is the convective
available potential energy (CAPE). Forecasts of CAPE
also show significant variability at the earliest forecast
times (Fig. 6). Locations of local extrema vary from
ensemble member to ensemble member, and the extrema
of the maximum and minimum fields typically differ by
a factor of 1.5. As with the rainfall fields, the areal extent
of the region of positive CAPE varies significantly, par-
ticularly outside of the warm sectors of cyclones.

e. Secondary cyclogenesis

Seven cases of secondary type B cyclogenesis (Miller
1946) off the east coast of the United States are also
found within the ensemble dataset. Secondary cyclo-
genesis events represent approximately 15% of the dam-
aging coastal storms of the eastern United States (Math-
er et al. 1964) and present a significant forecast concern.
In two of the cases, all the ensemble members fail to
show any evidence of the developing coastal low. Of
the remaining five cases, one is chosen to illustrate that
the spread in cyclone location can be caused by changes
in cyclone development (Fig. 7). The ensemble data for
this case suggest two very different alternative scenarios
at 48 h, and many combinations of these two scenarios.
The first scenario is that the primary cyclone near Lake
Erie is the only cyclone along the east coast (Fig. 7a).
The second scenario is that the secondary cyclogenesis
process is strong enough that there is only a weak in-
dication of the parent cyclone over Lake Erie (Fig. 7b).
The other scenarios show combinations of these two
outcomes, with both cyclones clearly shown in the mod-
el output for five of the remaining ensemble members
(Fig. 7c). The location of the center of the parent cyclone
varies from northern Wisconsin through northern Mich-
igan to Lake Erie, depending upon which forecasts are
examined.

These examples illustrate that significant dispersion
does occur within the short-range ensemble data, even
though there is good evidence that this ensemble dataset
is underdispersive using the measures of spread that
have been examined. More evaluation is required to
ascertain if there is any probabilistic information content
in this spread that could be used to assist in the forecast
process, although this likely will require a larger dataset.
In-depth case studies of some of these events are war-
ranted.
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FIG. 6. Forecast 12-h (a) maximum CAPE (J kg21) and (b) minimum CAPE valid 0000 UTC 18 Jul 1996, and (c) maximum CAPE and
(d) minimum CAPE valid 0000 UTC 8 May 1996. Values calculated at each individual grid point from all ensemble members.

5. Discussion

We have shown that the ensemble means of basic
atmospheric variables, such as temperature, relative
humidity, geopotential height, and wind speed and di-
rection, are as accurate as the Meso Eta Model at man-
datory pressure levels. The same conclusion is reached
when examining the locations of model forecast cy-
clones over North America at 36 h using data from 33
cases. This indicates that the loss of accuracy from a
reduction in model resolution can be recovered by us-
ing an ensemble approach. Furthermore, the BGM
technique produces more spread in the ensemble than
does using different analyses at both the 36-h and 48-
h forecast times. However, the accuracy of the cyclone
position forecasts from these two initialization tech-
niques is nearly identical. The spread is increased sig-
nificantly when both the RSM and Eta Model ensemble
members are used together, suggesting that model dif-
ferences are important contributors to ensemble spread.
Yet our results indicate that for cyclone position there
is little correlation between the spread and the error in
the ensemble mean cyclone location, as also found by
Hamill and Colucci (1998) for PQPF, suggesting that

this particular ensemble is unable to forecast the fore-
cast skill.

Admittedly, this study and those of Hamill and Col-
ucci (1997, 1998) have only touched upon the data from
the 81 ensemble cases that are archived. More research
needs to be done with this and other SREF datasets in
order to evaluate the potential for ensembles to assist
in the short-range forecast problem. Our results suggest
that one of the most important issues to be addressed
is how to create ensemble members that realistically
sample the analysis error without sacrificing the accu-
racy of the ensemble information. The NCEP is pres-
ently testing the BGM technique (Toth and Kalnay
1993) within the context of RSM and eta-based higher-
resolution regional model ensembles. Initial results are
encouraging, largely predicated on the increased spread
relative to the ensemble system used in this study (Trac-
ton et al. 1998). But other techniques, such as using
dynamic singular vectors (Buizza and Palmer 1995) or
Monte Carlo techniques (Mullen and Baumhefner 1994;
Du et al. 1997) also should be examined to determine
which method, or combination of methods, provides the
most skill and spread. Low-order models may provide
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FIG. 7. Contours of sea level pressure (hPa) at 48 h, valid 1200
UTC 22 Sep 1996, from an ensemble member with (a) no coastal
cyclone, (b) a strong coastal cyclone and a weak parent cyclone, and
(c) a combination of a coastal cyclone and a stronger parent cyclone.
Sea level pressure contoured every 1 hPa.

guidance on this difficult problem (Anderson 1996). In
addition, as suggested by Stensrud and Fritsch (1994b)
and supported by our results and those of Du et al.
(1997), it is important to explore whether developing
ensemble members with different models or model
physical parameterization schemes can contribute to the
development of an ensemble that samples the atmo-
spheric probability density function.
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