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1. INTRODUCTION   
 

Forecasting rare, severe weather events is 
challenging.  Equally challenging, however, is the 
problem of developing meaningful verification 
procedures that can be beneficial from the standpoint of 
forecasters, forecast users, and the forecasting 
organization.  A wide range of difficulties arises in this 
context, from collecting good observations of the 
phenomena in question to conveying information from 
the verification in a meaningful way. 

In this paper, we will focus on one particular 
problem associated with the verification of rare event 
forecasts:  development of appropriate baselines for 
skill given that forecast difficulty varies from situation to 
situation.  Efforts to identify “no-skill” baselines date 
back to Gilbert (1884) and have focused primarily on 
the use of climatological (either sample or long-term) 
data.  Recently, there have been efforts to include 
meteorological information to stratify the forecasts into 
“easy” or “hard” forecasts.  For example, Brooks et al. 
(1996) looked at forecasts of freezing rain for standard 
observing sites and used only observations of winter 
precipitation in the data set in order to eliminate a large 
number of correct forecasts of null events.  (We note 
that this was a strong constraint.  Weaker constraints, 
such as only considering observations when 
temperatures were less than ~5 ˚C, would have allowed 
more correct null forecasts into the data set.)  Such 
efforts attempt to limit the credit given to forecasters for 
making easy, correct forecasts, particularly when the 
observations are dominated by non-events of the 
element of interest.  To quote Peirce (1884), “The value 
of the expert work must be measured by the excess 
which is obtained over the man who knows nothing of 
the subject.” 

For the verification of severe thunderstorm 
forecasts, particularly in the form of guidance products 
such as the the convective outlook and watch products 
from the Storm Prediction Center (SPC), the problem 
takes on additional complexity.  Unlike the freezing rain 
forecast problem, almost all of the observations come in 
from volunteer spotters, so that there is no regular 
temporal and spatial order to the observations.  Further, 
outlook and watch products are issued with the explicit 
expectation that there will be “false alarms” (parts of the 
forecast for which there are no events) and “missed 
detections” (events which are not included in the 
forecast).  Thus, the expected range of values of the 
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probability of detection (POD) or false alarm rate (FAR), 
for example, does not run from 0 to 1 in practice.  Here, 
we will discuss the concept of a “practically” perfect 
(PP) forecast and apply it to artificial and real data sets.   

By “practically” perfect, we mean a forecast that 
is consistent with a forecaster would make given perfect 
knowledge of the events beforehand.  If, as in the case 
of outlooks and watches, there are explicit or implicit 
limits on the size of the product (e.g., watches are rarely 
smaller than 10,000 km2) or if the forecaster has the 
goal of having a minimum number of reports within a 
forecast area before a product should be issued, then 
there will be false alarms and missed detections 
associated with the PP forecast.  The PP forecast can 
then be used to estimate the minimum and maximum 
scores that a forecaster could reasonably obtain.  In 
general, that range will be much smaller than the 
absolute minimum and maximum, but will provide a 
range over which forecast performance can be judged.  
Note that such a concept is not limited to any particular 
score that can be derived from a set of verification data, 
nor is it limited to dichotmous yes/no forecasts.  It can 
be applied to any forecast measure and to probabilistic 
forecasts easily. 

 
2. METHODOLOGY 

 
In order to develop the PP forecast, we will begin 

with the reports of events, as recorded at the SPC.  
Reports of severe weather are recorded on a grid with 
each grid box representing an area 40 x 40 km.  For 
now, we will consider all severe weather reports as 
equal and look at only whether a box has had an event 
or not.  (The methodology could be extended to 
consider intensity and number of reports, but we will 
limit the procedure to the simplest case, for now.)  The 
PP forecast is then created by smoothing the events 
using nonparametric density estimation with a two-
dimensional Gaussian kernel (Silverman 1986).   

Specifically, at each grid point in the domain, the 
PP forecast value, f, is given by  
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where dn is the distance from the forecast grid point to 
the n-th location that had an event occur, N is the total 
number of grid points with events, and σ is a weighting 
function that can be interpreted as the confidence one 
has in the location of the forecast event.  Increasing σ is 
is equivalent to increasing the uncertainty associated 



 
 
 

with the forecast as one would do with increasing lead 
time of the forecast.  That is, in the context of severe 
weather forecasting, very small σ can be thought of as 
being associated with the warning stage, while larger σ 
is associated with the watch or convective outlook 
stages.  The technique is similar to ones commonly 
used in objective analysis, with the values at each grid 
point being limited to 1 or 0, depending on whether an 
event occurred there or not.  (We plan to extend the 
work to include consideration of the number and 
intensity of events, but that is beyond the scope of this 
paper.) 

The field of f gives an artificial forecast that is as 
accurate as could be expected for a forecaster knowing 
the locations of events with a confidence level 
associated with σ;  it gives the probability that an event 
occurs in a given grid box.  To illustrate, we use the 
observed location of events over the central United 
States in the 24 hours beginning 1200 UTC on 26 April 
1991.  The observed locations for an area covering 60 x 
60 points (2400 km x 2400 km) and the associated field 
of f for σ = 3 give a feeling for the nature of how the 
smoothing function works (Fig. 1). 

By setting a threshold probability, the 
probabilistic forecasts can be converted to a 
dichotomous yes/no forecast of the event.  [This makes 
for easier comparison to SPC products which are of a 
dichotomous nature (in the case of a watch) or take on 
a small number of values (convective outlook).]  After 
that, a 2x2 contingency table can be developed for the 
forecasts and events and standard performance 
measures calculated.  As the threshold probability 
increases for making a "yes" forecast, the POD 
decreases and the FAR increases.  The CSI takes on a 
maximum value at some intermediate threshold.  The 
value of the CSI at a threshold probability of 0 (always 
forecast yes) is equal to the areal coverage of the 
event.  This represents one estimate of the lower bound 
on expected performance, which the forecaster could 
get by forecasting that the event would occur 
everywhere.  A slightly greater lower bound can be 
found by noting that there is a large drop in CSI from a 
threshold probability of 1% to a threshold of 0%, and 
considering the value that CSI approaches as the 
threshold probability approaches zero.  In this case, for 
σ = 3, the reasonable lower bound on CSI is ~0.12. 

 

Probability of Detection (POD) = x/(x+y) 
False Alarm Ratio (FAR) = z/(x+z) 
Critical Success Index (CSI) = a/(a+b+c) 
Table 1:  2x2 contingency table and selected measures 
of performance from it (Wilks 1995). 

 
 
Fig. 1:  Location (dots) of observed severe weather in 
24 hour period beginning 1200 UTC 26 April 1991.  PP 
forecast corresponding to σ=3 in gray shades.  Outside 
level 1-10% probability of severe weather.  Successive 
levels:  11-20%, 21-30%, 31-40%. 
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Fig. 2:  CSI for 2x2 table for PP forecast for varying 
threshold probability values for σ=1, σ=3, and σ=3.  CSI 
for actual convective outlook shown for reference. 
 

As σ increases, the maximum in CSI generally 
decreases (Fig. 2).  Assuming that a value of σ can be 
found which produces forecasts that "look" like real 
forecasts (e.g., similar areal coverage), the practical 
maximum value of CSI for that situation, given the 
nature of the forecast, can be obtained.  Thus, the 
simple artificial forecast can be used to estimate the 
upper and lower bounds on the performance measure.  
For this example, for σ = 3, the CSI ranges from ~0.12 
to 0.30 with the maximum at threshold probabilities 
between ~15-25%.  For comparison, considering a 
convective outlook forecast of slight risk, or higher, to 
be a "yes" forecast, the value of 
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Fig. 3: Morning convective outlook and observed severe 
weather locations (dots) for 24 hour period beginning 
1200 UTC 26 April 1991.  Light shading indicates slight 
risk and darker shading high risk. 
 
CSI for the early convective outlook on 26 April 1991 
(covering the same time period as the events shown in 
Fig. 1) was 0.18.  This is ~33% of the way to the value 
of the PP forecast.The outlook area was shifted slightly 
to the west of the optimal location (Fig. 3). 

 
3. IDEALIZED DATA 
 

In order to investigate a wide variety of 
conditions, we can construct idealized event location 
data sets and look at the results of the PP forecasts 
associated with them.  We have used two primary 
parameters in making the idealized data sets over a 60 
x 60 domain--the density of coverage and whether the 
data are randomly distributed or if they are constrained 
to be more likely to occur near the diagonal and near 
the center of the domain.  The idea behind the 
"constrained" data is to mimic severe weather outbreak 
situations.  

As examples of the what can be learned from 
this effort, we present results from cases with dense 
coverage (~13% of the points in the domain, 
approximately the same effective coverage as for the 26 
April 1991 outlook) and sparse coverage (~2%) for both 
random and constrained distributions. 

Although the overall coverage in the dense 
constrained case is approximately the same as in the 
26 April 1991, the points in the idealized case are more 
concentrated.  As a result, the CSI saturates at a 
relatively low threshold value and stays at about the 
same level for a wider range of threshold values than 
for the real data (Fig. 4).  Note that there is also a 
smaller difference between the CSI curves for σ =1 and 
3 for the idealized case than for the real case.  We 
interpret this as being an effect of the greater 
concentration of points.  In the equivalent real world 
situation, where the forecaster has strong reason to 
believe that the events will be concentrated in a 
particular area, long lead-time (i.e., low confidence)  
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Fig. 4:  As in Fig. 2, except for idealized situation with 
"dense" coverage (~13% of a 60 x 60 domain).  
"Random" indicates event locations are randomly 
distributed, while "constrained" is for the same number 
of event locations with constraints applied to the 
locations so that they lie along the diagonal of the 
domain near the center.  This distribution resembles 
severe weather outbreaks.  Numbers in parentheses (1 
or 3) indicate value of σ  for that curve. 
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Fig. 5:  As in Fig. 4, expect for "sparse" coverage (~2% 
of a 60 x 60 domain). 
 
forecasts can be almost as accurate as shorter lead-
time forecasts. When there is no reason for a forecaster 
to constrain where events will occur, as in the random 
case, absolute performance is lowered.  Just as 
significantly, however, the difference in peak 
performance between σ =1 and 3 increases. This 
makes intuitive sense for the parallel real world 
situation, resulting from higher confidence in location 
being possible at shorter lead time.  Finally, the flatness 
of the CSI curve in the random case over thresholds 
from 0 to 20% illustrates the small range in forecast 
performance that are likely in situations where all that a 
forecaster knows is that severe weather will occur and 
doesn't have any reason to distinguish where it will 
occur.  In such extremely difficult forecasts, the practical 
range of forecast performance is small. 



 
 
 

When the coverage is less dense, a somewhat 
different picture appears (Fig. 5).  In these cases, the 
random distribution allows for a high-certainty PP 
forecast that has a better CSI over a narrow range than 
for the constrained case.  This is apparently because of 
the ability of the PP forecast to avoid false alarms.  As σ 
increases, however, there is very little, in terms of 
performance as measured by CSI, that the PP forecast 
does.  For σ = 3, there are no probabilities of 10% or 
greater, so that all forecasts are for "no" event and the 
CSI=0.  For the constrained case with σ = 3, there is a 
broader range where positive CSI exists, due to the 
clustering of points brought on by the constraint that, in 
effect, means that a particular point is more (less) likely 
to have an event if its neighboring points have (does not 
have) an event, than in the completely random case.  
Thus, having some knowledge of where events might 
occur allows for better absolute forecast performance at 
long lead time. 

 
4. CONCLUDING THOUGHTS 
 

The PP forecast for artificial data mimics many of 
the intuitive aspects of real forecast situations.  As 
reasons to believe that events will occur at a particular 
location (e.g., constraint on location, density of 
coverage of events, forecaster confidence) increase, 
the absolute forecast performance increases.  Also, 
when there is reason to believe where events will occur, 
there is a wider range of possible forecast performance.  
In other words, forecasters can demonstrate skill 
depending on their ability to identify conditions that 
constrain the likely locations of events. 

The PP forecast also provides a range of 
reasonably achievable forecast performance.  By 
comparing an actual forecast to the range expected 
from the PP forecast, we can estimate how far along the 
continuum from no-skill to perfect the forecast was.  
Note that this evaluation does not depend on any 
particular measure;  the PP forecast can be used as the 
basis to provide bounds on any method of evaluating 
forecasts.  In particular, it would be highly desirable to 
develop reliable asymmetric scoring rules for evaluating 
2x2 contingency tables.  CSI has the disadvantage of 
penalizing forecasters equally for missed detections 
and for false alarms.  In many situations, the perceived 
costs of those two errors may well be very different.  
Methods that consider those differences are currently 
under development (Briggs, personal communication).   

We plan to evaluate a long series of outlook and 
watch products from the SPC using the PP forecast as 
a basis for evaluation.  Primary obstacles include 
methods for transforming the PP forecast into the 
polygonal form of watch products and in determining an 
appropriate value of σ for the different products.  If 
those obstacles can be overcome, however, the PP 
forecast holds promise as a method for providing a 
consistent basis for evaluating the complete range of 
severe weather guidance products. 

Another possible application of the PP forecast is 
in using them to consider a probablistic interpretation of 
events in conjunction with probabilistic forecasts.  While 
the PP forecast has an inherent probaiblistic 
interpretation, events are typically viewed as 

dichotomous.  Frequently, however, there may be 
reason to put more or less confidence in spotter reports 
and the absence of a report of an event does not 
necessarily mean that the event did not occur.  For 
instance, radar "detections" of severe weather in 
locations where there are no spotters could be 
interpreted as having some probability of associated 
severe weather greater than 0.   Then, the joint 
probability distribution of forecasts and events could be 
evaluated in the manner suggested by Murphy and 
Winkler (1987). 
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