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ABSTRACT

The question of who is the “best” forecaster in a particular media market is one that the public frequently asks. The
authors have collected approximately one year's forecasts from the National Weather Service and major media presen-
tations for Oklahoma City. Diagnostic verification procedures indicate that the question of best does not have a clear
answer. All of the forecast sources have strengths and weaknesses, and it is possible that a user could take information
from a variety of sources to come up with a forecast that has more value than any one individual source provides. The
analysis provides numerous examples of the utility of a distributions-oriented approach to verification while also pro-
viding insight into the problems the public faces in evaluating the array of forecasts presented to them.

1. Introduction Driscoll (1988) discussed the relationship of tele-
vised weather forecasts to those available from the
The purpose of a weather forecast should be to hBlational Weather Service (NWS) from a small num-
people make better weather-information-dependdyer of sites around the United States for forecasts of
decisions. The public can obtain weather forecas¢sd time up to 36 h. He found that the accuracy of
from numerous different sources, typically from temperature forecasts and probability of precipitation
government weather service and from the news n{PoP) forecasts was not greatly different for the tele-
dia. To optimize weather-information-dependent deasters and the NWS. Thornes (1996) showed results
cisions, one obviously would want information thadf a study of the accuracy of public forecasts in the
would help them get the most value out of the for&nited Kingdom, but it was based primarily on one
casts. Although the relationship between quality gkrification parameter, the “percent correct.” As
forecasts and the value of forecasts is complex (e durphy (1991) pointed out, the large dimensionality
Murphy 1993; Roebber and Bosart 1996), the qualitfthe verification problem means that single measures
of the forecasts represents a reasonable starting pahtfforecast quality can be misleading. Brooks and
Unfortunately, information on the quality of publidoswell (1996) illustrated this idea with an example
weather forecasts is difficult, if not impossible, tof the information available from what Murphy and
obtain? Winkler (1987) described asdéstributions-oriented
approach to forecast verification.
To help fill (ever so slightly) this vast data void,

" . . . Wye set out to record and verify public weather fore-
n general, there is a complex relationship between the quall . .

and value of forecasts (Murphy 1993), but analysis of the qualtSts for the Oklahoma City area for a 14-month time
is a reasonable place to start. We plan to carry out an experinfe@tiod. Our purpose here is to illustrate some aspects
using a model of electrical utility load forecasting to consider tigf the differences in the forecast sources for a single

value for at least one user. location. In passing, we will show the utility of using
Corresponding author addresktarold Brooks, National Severe::nforma;uor.]t:]rom mc_)r]? thant.oneBsource todp;/cl)du%e a
Storms Laboratory, 1313 Halley Circle, Norman, OK 73069. orecast wi more_ In. ormation (Brown an urp y
E-mail: brooks@nssl.noaa.gov 1996). The analysis is by no means comprehensive,
In final form 19 May 1997. but it is illustrative of the power of diagnostic fore-
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cast verification techniques to provide insight into the6 h). Minimum temperature forecasts were verified

forecast process both for the user and the forecastin the time period from 0000 to 1500 UTC. In the
following sections, when measures are presented from
more than one source (for comparison purposes), only

2. Analysis procedures those days when forecasts were recorded from all the
sources were used.

Forecast data were collected from five different It is important to note that it is relatively easy for
sources: evening forecasts from the three network TWeather-interested” forecast users in the Oklahoma
stations, a daily newspaper with early morning deliGity market to receive forecasts from all of the sources
ery, and the Oklahoma City NW&ach source issuesdescribed for any individual day. Many of the local
a local forecast for Oklahoma City for at least 5 dayadio stations use forecasts produced either by a tele-
in advance. The NWS forecast used was the local fovesion station or by the NWS. In general, the weather
castissued around 1600 LT. The TV station forecastsgments on the local news begin at slightly different
used were those presented during the late afternoimées, so that simply by changing channels at the ap-
evening newscasts and were tape recorded. Maximprapriate times, the forecasts can all be seen during the
and minimum temperature forecasts (up to 5 days aheE8l)0 LT news broadcast. In addition, one station re-
were evaluated for all five sources. Precipitation forpeats the forecast from 1800 LT news during a
casts were evaluated only for those sources that pt830 LT broadcast, and another station repeats its most
duced numerical 24-h PoPs for day 1 through dayétent newscast continuously on a cable TV channel
(two media sources). Because there is no way to asailable on basic cable television stations through-
sign numerical values to such “forecast products” ast the Oklahoma City area.

a single graphic of a cloud with a few raindrops un-

derneath it, for example, or phrases such as “kind of

crummy” or “hopefully, rain” or “maybe, even rain,”3. Measures-oriented verification

we are unable to verify the other media forecast

sources for precipitation. The data collection periad Temperature

ran from 4 January 1994 to 6 March 1995, with com- We have examined forecast quality using mea-

plete forecasts for all sources out to 5-day lead tiraeres-oriented performance statistics [see Murphy and

collected on 338 days, and out to 7-day lead time ffinkler (1987) and Brooks and Doswell (1996) for a

the two sources producing 7-day PoP forecasts on 824cussion of measures-oriented verification and

days. Verification data came from the observations\ailks (1995) for definitions] for the entire period of

the Oklahoma City airport (OKC). Maximum tem+ecord (Table 1). One result consistent for all forecast

perature forecasts were verified for the time pericburces is (as expected) that accuracy decreases as

from 1200 to 0300 UTC (UTC = local standard timfrecast lead time increases. Another result is that there
are significant relative differences in accuracy among
the different forecast sourc&Bor minimum tempera-

2We have no way of knowing how independent the different forteL-”eS’ forecast source (FS) 2 has the lowest mean ab-

cast sources are. Presumbably, the media sources use the l@\_%]é'te error (MAE) for a_‘” periods, Wh_”e FS 4 has the
forecast as an input into their forecasting process or, at the vBighest MAE for all periods. For maximum tempera-
least, look at the same numerical guidance products that are adsires (Table 1b), there are significant differences for
able to NWS forecasters, but we cannot know that for certain. \ffge first time period (day 1), with smaller differences

wrote letters to each of the media sources asking questions al;raytthe other time periods. Once again, FS 2 had the
their procedures and forecast descriptors, but received only Er ) :

reply. Therefore, we have had to make interpretations of so gveSt MAE for all time pe”Od_S’ except for d_ay 4. Al .
aspect of the forecasts, particularly the meaning of PoP in the Hf¥l€cast sources had a consistent warm bias to their

dia forecasts. When no answer was received, we assumed figsyiperature forecasts, especially FS 4.
used the same definition as the NWS, although the phrasing of The development of a forecast that is the mean of

the forecasts implies that a different time period (24 h for the megjp five sources (MEAN) leads to a forecast that has
and 12 h for the NWS) is used in the forecasts. Based on the char-

acteristics of the forecast PoP, we do not believe this decision has

a significant impact on the interpretation of the forecasts. Nevef———

theless, the appearance of undefined terms represents a diled#oathe protection of all concerned, the four media sources have
for forecast users. been assigned numbers 1-4 randomly.
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TasLE 1. Overall measures-oriented performance results for temperature forecasts for all 338 days with forecasts for all sources
(FS 3) at all lead times. DA is days ahead, MAE is mean absolute error, T is total for all 5 days. Errors are in °F.

FS1 FS1 FS 2 FS 2 FS 3 FS 3 FS 4 FSu NWS NWS Mean Mean
DA MAE Bias MAE Bias MAE Bias MAE Bias MAE Bias MAE Bias

(a) Minimum temperature

1 2.9 0.2 2.7 0.3 2.8 0.4 3.2 1.0 2.9 0.6 2.7 0.5
2 3.9 0.1 3.4 0.3 3.7 0.5 4.0 1.4 3.6 0.9 3.4 0.6
3 4.9 0.0 4.2 -0.1 4.6 0.2 5.0 15 4.8 0.1 4.2 0.3
4 5.4 0.0 4.9 -0.1 5.1 0.2 5.7 1.4 5.5 0.q 4.9 0.3
5 55 0.1 53 0.0 5.6 0.2 6.1 1.4 5.8 0.1 53 0.3
T 4.5 0.0 4.1 0.1 4.3 0.3 4.8 1.4 4.5 0.3 4.1 0.4

(b) Maximum temperature

1 3.9 0.3 3.6 0.2 3.8 0.6 4.2 0.7 3.8 0.6 3.7 0.5
2 5.2 0.1 4.8 0.1 4.8 0.8 5.1 0.9 4.8 0.8 4.7 0.6
3 6.2 -0.3 5.8 -0.1 5.9 0.5 5.9 0.7 5.9 0.3 5.6 0.2

4 6.7 -0.3 6.7 0.0 6.6 0.4 6.4 0.6 6.7 0.4 6.3 0.2
5 7.2 -0.3 7.1 0.3 7.2 0.7 7.3 1.0 7.5 0.7 6.9 0.5
T 5.8 -0.1 5.6 0.1 5.7 0.6 5.8 0.8 5.8 0.6 5.4 0.4

lower MAE than any of the individual forecast sourcggnd the scope of this paper. The media forecasts (not

for maximum temperature for day 2 and beyond. Tlsbown) show similar behavior, highlighting the diffi-

overall MAE for all maximum temperature forecastsulty of cool-season temperature forecasting, at least

by MEAN is 0.2°F lower than for the most accuratin Oklahoma City. The minimum temperature fore-

individual source. The mean forecast does not irasts have less extreme seasonality for all forecast

prove over FS 2 for minimum temperatures at aspurces (not shown).

time period, except at day 5. Thus, even for a simple

measure of accuracy, different strategies must be Precipitation

employed by users seeking the most accurate forecasi frequently used measure of the accuracy of prob-

possible. ability of precipitation forecasts is the Brier score
We computed seasonal accuracy statistics as wgrier 1950). The Brier score (BS) is the mean-squared

For the NWS, the MAE for maximum temperaturerror of probability forecasfs wherex = 0 if it does

forecasts was highest during the winter (Table 2). Thet rain andk = 1 if it does. A perfect forecast has a

seasonal difference is large enough that a day 5 fdBeier score of 0:

cast during the summer has a lower MAE than a day

1 forecast during the winter. Note also the difference N

in performance between the two winters. The fore- (f; - xi)2

casts, particularly at days 2—4, were much better in the BS= = . (1)

second winter. The reasons for this difference are be- N
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—Oo—F3#1 —=—F3#2

40
TasLE 2. MAE for NWS maximum temperature forecasts by

days ahead (DA) and season. Winter1 is first winter of dataset and, |
winter2 is second winter.
20

DA Winterl Spring Summer Autumn Winter2 . ;|

1 5.2 3.9 2.4 3.4 4.4 r
2 6.9 5.6 2.9 4.2 50 7

a0 L
3 8.7 6.7 3.2 55 5.9

Lead Time
4 10.2 7.2 3.3 6.0 6.6 Fic. 1. Brier skill score (in percent) for PoP forecasts by lead
time for FS 1 and FS 2. Positive values indicate improvement over

5 10.4 7.9 4.0 6.5 8.0 climatology.
T 8.3 6.2 3.1 5.1 6.0

expectthe long-range PoP to approach the climatologi-
cal frequencyinstead, with the exception of FS 2's day
The Brier skill score (SS) is the percentage improvg_forecast, the forecast PoPs approach.zero. Indeec_i, the
ment relative to a climatological baseline: use of 0% as forecast value generally increases with

leadtime and so does the frequency of occurrence of

precipitation with a zero PoP, until it almost reaches
@) the value of the sample climatological frequency of
precipitation (Table 3).

55:100x¥

where BS is the Brier score with a constant climato-

logical forecast and BSs the Brier score of the fore-4. Distributions-oriented results

cast system being compared to it. Positive (negative)

values of the skill score indicate the percentage im- Distributions-oriented approaches provide a much

provement (worsening) of the forecast source comeher picture of the characteristics of a forecast sys-

pared to climatology. tem (Murphy and Winker 1987; Brooks and Doswell
The SS of both FS 1 and FS 2 get worse with ih996). In general, one wishes to describe the joint

creasing lead time (Fig. 1). This is to be expected dsstribution of forecasts and observations. For the

typically, the forecasts get harder with time. By dayrBimber offorecast sources and variables uncien-

for FS 1 and day 4 for FS 2, the skill scores for the

forecasts become 5% (or less) better than climatology.

In other words, the forecasts would be almost as ac- —o—Fsil  —e—Fse2

curate if climatology was used in place of the actual,; _

forecast at those lead timeBy day 7, the forecasts

are 15% and 7% worse than climatology for FS 1 and" ¢

FS 2, respectively.
The primary reason for the poorer skill scores Qfs T
long lead time is the increasingly dry bias of the fore-,, |

casts as lead time increases. The mean PoP of the fore-
casts decreases with lead time (Fig. 2). One woulds |

0

1 2 3 4 5 6 7
“This comparison uses the long-term (1961-90) climatology for head Time

each day. The sample climatology for these forecasts was 20.9%Fic. 2. Mean forecast PoP by lead time for FS 1 and FS 2.
while the long-term average across all days for Oklahoma CityHerizontal heavy line indicates long-term climatological fre-

23.7% quency of precipitation.
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sentedtemperatures at or just below freezing. In gen-
TasLE 3. Frequency of use of 0% PoP (0% usage) and obser@%LWhen a particular forecast is made, the modal ob-
frequency of precipitation for 0% PoP (observed frequency) fgrervationwill be in the same 5°F bin. There is one
FS 1 and FS 2 by lead time. . . . . ) .
exception tahis and it occurs with forecasts just above
freezing (33°-37°F). Ithat case, the mode observa-
FS1 FS1 FS2 FS2 tionis inthe bin at or below freezing. Table 4 shows

0% Obs 0% Obs the highbias in the forecasts, overall, but it is particu-
DA usage frequency usage frequency . . .
larly pronounced around freezing. In some situations
1 53.0 41 505 31 (e.g.,when preC|p|ta't|on is expected), this error seems
to have the potential to cause problems for public
2 56.7 8.8 52.6 59 safety.
The day 4 maximum temperature forecasts dem-
3 64.5 121 54.8 114 onstrate another useful application of the distributions-
4 .l 114 . T oriented approach to \./eI’IfICQtIOH.' To |IIustrate_ gno_ther
way of reducing the dimensionality of the verification
5 62.9 14.4 52.6 11.2 problem, we have defined the forecast as being a fore-
cast of the departure from climatology and then binned
6 66.0 17.9 56.4 13.3 the forecasts and observations into 5°F bins, centered on
values divisible by 5. All departures greater than or
7 72.6 20.2 43.6 20.0

equal to 25°F are put into the +25°F bin. Comparisons
of FS 2 and FS 4 are particularly interesting (Table 5).
Note that the day 4 maximum represents the only 1 of
sideratiorhere (five sources with 10 temperature foréhe 10 temperature forecasts (maximum and mini-
castsgives 50arrays, even without the precipitatiormum) for which FS 2 does not have the lowest MAE,
or intercomparisons of different sources or combinand in fact, FS 2 has ttéghestMAE for this fore-
tions offorecast variables), it is prohibitive to shoveastvariable (see Table 1). In this case, FS 4 has the
all of the distributions. Here, we will focus on a feduowest MAE. However, if we consider the number of
highlights from a distributions-
oriented approach and through

the use of methods to stratify Tasie 4. Day 1 NWS low-temperature forecasts (fcst.) and observations (obs). Data
forecasts (I\/lurphy 1995)_ values represent 5°F bins centered on temperature at beginning of row/column; for example,
there were 11 cases of observations of 28°-32°F and with forecasts of 33°-37°F. Note that
first and last rows/columns (20°F, 45°F) include all temperatures below and above that value.
Here, p(f) and p(x) represent the marginal probabilities of forecasts and observations for
each category.

a. Temperature

Much can be learned from
looking at the joint distributions
of temperature forecasts and ob-
servations [j(f,x); see Murphy Obs
et al. 1989]. As an example,
Table 4 shows the day 1 low-
temperature forecasts from the 20 14 2 0 0 0 0 0.045
NWS. Forecasts and observa-
tions have been grouped into 5°F
bins, centered on values divis-Fest. | 30 2 8 13 3 1 0 0.076
ible by 5° The centering was

20 25 30 35 40 45 p(h)

25 5 7 3 0 0 0 0.042

chosen so that one bin repre- 33 0 3 i 10 7 0 0.087
40 0 0 3 6 16 7 0.090
45 0 0 0 0 8 227 | 0.660

*Doing this reduces the dimensionality
of the verification problem, as dis- px) | 0.059 0.056 0.084 0.053 0.090 0.067 | 1.000
cussed by Murphy (1991) and Brooks
and Doswell (1996).
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TasLE 5. Contingency table for observations and forecasts of day 4 maximum temperature anomalies for (a) FS 2 and (b) FS 4.
Column headings are observed temperature changes and row headings are forecast anomalies in °F. Last row (column) is number
observations (forecasts) in each bin. Bold values indicate forecasts and observations in the same temperature bin. Momber at bo
right is percentage of total forecasts in correct bin.

(@) FS 2
Obs

-25 -20 -15 -10 -5 0 5 10 15 20 25 N®

-25 1 1 1 0 0 0 0 0 0 0 0 3

-20 0 1 1 1 1 0 0 1 0 5

-15 2 1 6 1 2 6 0 0 0 0 0 18

-10 2 1 5 8 6 3 6 3 0 0 0 34

Forecast -5 1 1 4 13 17 8 10 4 2 1 0 61
anomalies 0 1 1 4 9 17 24 17 8 0 0 0 81
5 1 0 0 5 6 17 21 15 7 2 2 76

10 1 0 0 1 4 1 7 14 2 5 0 35

15 0 0 0 0 0 3 3 7 2 3 2 20

20 0 0 0 0 0 1 0 3 1 0 5

25 0 0 0 0 0 0 0 0 0 0 0 0

N(x) 9 6 21 38 53 62 65 52 16 12 4 28

(b) FS 4
Obs

-25 -20 -15 -10 -5 0 5 10 15 20 25 N®

-25 0 0 0 0 0 0 0 0 0 0 0 0

-20 1 1 1 0 0 0 0 0 0 0 0 3

-15 2 3 3 3 1 1 0 2 0 0 0 15

-10 1 0 7 8 6 5 4 1 0 0 32

Forecast -5 2 1 7 8 13 9 10 3 1 0 0 54
anomalies 0 2 1 3 13 22 25 14 8 2 1 0 91
5 0 0 0 5 8 16 17 19 5 3 2 75

10 0 0 0 1 5 17 15 6 2 0 49

15 1 0 0 0 0 1 3 4 1 5 2 17

20 0 0 0 0 0 0 0 1 1 0 2

25 0 0 0 0 0 0 0 0 0 0 0 0

N(x) 9 6 21 38 53 62 65 52 16 12 4 25
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forecasts ircorrect 5°F bins, FS 2 has the largest nurpertantly, since the variance of maximum tempera-
ber ofcorrect forecasts of any source (95 cases or 28Ues isgreater than that of minimum temperatures (the
in the correct bin, and FS 4 has the fewest (84% or 25%tandarddeviation of observed minimum temperatures
The apparent inconsistency between these two resiittghis dataset is 7.9°F and that of the observed maxi-
occursbecause FS 2 has the most forecasts more tham temperatures is 9.3°F). Given the other results,
two categories away from the observations (54% ibrseems the maximum temperatures were harder to
16%), and FS 4 has the fewest (41% or 12%). Thisrecast during this 14-month period.
although FS 2 isnore likely to be nearly correct, itis  All of the television forecasters have the opportu-
alsomore likely to be in serious errdkny ranking by nity to use the NWS forecast as input into their fore-
accuracy depends upon thefinition of accuracy casts’ so we have considered the quality of the
used.As a result, it is not surprising that competinfprecasts when the private-sector forecasts disagree
forecastsources can all claim to be the most accuratzongly with the NWS. To do this, we have stratified
without “fudging” the data. As pointed out by Murphythe forecasts by counting the number of times the pri-
(1993),the issue of which forecast has the madtie vateforecast disagreed with the NWS forecast and was
to a user depends upon that user's needs and senstigser tothe observations when the forecasts disagreed
ties. It islikely that different users may find the foreby 5°F or more (Table 7). Only FS 2 increases the
castsfrom different sources to be most valuable. number of disagreements monotonically with increas-
The variety of forecasts available to consumers ing lead time of the forecast, if both maximum and
the area can, potentially, lead to confusion. In effeatinimum temperature forecasts are combined (i.e.,
not considering the day 6 and day 7 forecasts that degy 1 minimum, day 1 maximum, day 2 minimum,
available from some of the television stations, theday 2 maximum, etc.). Here, FS 2 also improves on
are 25 forecasts of a given day’s maximum and mitire NWS forecast significantly (at the 99% confidence
mum temperature. One way of combining all thesevel) for 3 out of the 10 forecast periddBhere is a
forecasts is t@onsider the accuracy of the mean of ttsdight tendency, in general, for the media forecasts to
25 forecasts as the level of agreement between the foremore accurate for disagreements at long lead times
castschanges. To do so, we have calculated the vddays 4-5) compared to short lead times (days 1-2).
ance of the 25 forecasts for each day (i.e., the fiVhis is particularly obvious for FS 1's maximum tem-
forecasts from each of the four media sources and gegature forecast, where the souréetecasts are sig-
NWS) and compared it to the error of the mean of all
25 forecastsThe variance of the forecasts is correlated
to the absolute error of the mean forecast at a 99ffe newspaper forecast is created by a private company under
confidence level for both the minimum (correlatiopontract to the paper. We do not know for certain when the fore-
coefficient = 0.24) and the maximum (0.44) temperaasF is made. The NWS forecast information may or may not be
Fulable to them.

ture. Thus, when the forecasts agree with each Otrijg»ignificance testing was done using a Monte Carlo technique,

they are mL_JCh more_ likely to be nearly CorreCt_ th%@ing 100 000 trials of flipping a simulated coin the number of
whenthey disagree with each other. To look at this fufmes that a forecast source disagreed with the NWS and count-

ther, we have divided the forecasts into those casesghow frequently the number of “heads” occurred by chance.
which the variance of the forecasts is less

than or greater than 10H he MAE in-
creases with variance (Table 6). It is in- TasLe 6. Variance and MAE of mean temperature forecasts for cases with
teresting to note that the variance in theriance of forecasts < 10°gow variance) and > 10%Khigh variance).
high-temperature forecasts is quite a bit

larger than in the low-temperature fore- Min Min Max Max
casts. Here, 182 forecasts met the low- temp temp temp temp
variance criterion for the minimum variance MAE variance MAE
temperaturdorecast, while only 149 did

so for the maximum temperature fore- Overall 11.9 3.7 16.1 5.0

cast.Other things being equal, one might
expect more variance in tmeaximum

temperaturdorecasts, since they have aHigh variance 19.5 4.6 24.6 6.4
slightly longer lead time, and, more im-

Low variance 5.3 2.9 5.4 3.4
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_ _ _ _ more and compared it to the
TaBLE 7. Percentage of time when a given forecast source disagreed with the NW, g;? of the other forecasts

5°F or more and was more accurate. Total number of disagreements in parentheses 4] .

(italic) numbers indicate that the source was better (worse) than the NWS in casgfag? e 8)' Asm|ght be eXpeCtec_j’
disagreement at a 95% confidence interval; underlining indicates 99% confidence intdRdleneral, a forecast that dis-
agrees by that much from any

other is likely to be wrong. Here,
FS 3 is the only source that does
not dosignificantly worse statis-
tically than the mean of the other
FS1  57(14) 33(41) 46(76) 60(77)  57(96)| 52(304) forecasts when it disagrees with
the others. It also finds itself in
FS2 69 (13) 45(20) 68 (63) 71 (80) 55(95) | 63(271) that situation less often than any
of the other private forecasts,
perhaps indicating that the fore-
FS4  52(27) 41(38) 50(100) 46(107) 46(13})  47(405) CASLErs preparing FS 3's fore-
castsare more conservative than
(b) Maximum temperatures the other private forecasters.
Table 8b also reinforces the ear-
FS1 ~ 29(21) 30(47) 49(65)  51(80) 60(127) | 50(340) fier discussion about the interest-
ing day 4 maximum temperature
forecast for FS 2. Here, FS 2
FS3 40 (20) 39 (29) 58 (54) 64(61) 60(72) | 56(236) takes more risks on that element
than anyother forecast source on
does worse than the mean fore-
cast at a 99% confidence level.
nificantly worse than the NWS for days 1 and 2 and Overall, we see an increase in error of the mean
significantly better at day 5 (Table 7b). For the mof&irecast with increasing variance of the forecasts and
part, however, the question of whether the private forsignificant differences in the performance of the vari-
castsare more accurate than the NWS, by this meaus forecast sources when they disagree strongly with
sure, represents little more than a coin flip. We offére NWS. These facts indicate the need for weather-
no speculations about whether specific forecast striaformation-sensitive users in the public to attempt to
egies lead to the patterns, or lack thereof. At the numllect information from a variety of sources to get the
ment, they are a curiosity, although it seems obvioo®st complete picture of the likely evolution of the
that an understanding of the kinds of situations Weather. The relationship between variance and fore-
which they improve (or do not improve) on the NW§ast error suggests that it is possible to quantify the
forecast would be critical to any of the private-sectancertainty in the forecasts and, perhaps, to derive a
forecasters, if they are interested in improving thEobabilistic temperature forecast from the information.
quality of their forecasts. Clearly, no one source is sufficient to provide all of the
A more general aspect of this problem that foreseful information available within the media market.
castusers have to deal with on a regular basis is what
to do with conflicting forecasts from the medid®. Precipitation
sources. We have broken the forecasts out into those Contingency tables for precipitation can be used
casesvhen any one of the forecast sources goes “datconstruct reliability diagrams (Wilks 1995), indi-
on a limb” and disagrees with all the others by 5°F oating how well the observed frequency of an event
matcheghe forecast probability. To get larger sample
sizes, we have summed the forecasts over all 7 days

8Due to slightly different timings of the evening news presentg- . . .
tions, the forecast portion of the television weather presentaticf‘gsr FS 1 and FS 2 (Fig. 3). The general dry bias is

frequently start at different times, and it is possible for someoi@adilyapparent and is related to the tendency to over-
changing channels rapidly to see all the television forecasts frotie the 0% PoP. The observed frequency of precipita-
newscasts nominally at the same time. tion for both sources with a PoP of zero is ondhder

DA 1 2 3 4 5 Total

(a) Minimum temperatures

FS3 50 (16)  43(21)  58(54)  61(51) 56 (73 56(217)

FS2 56 (27)  52(42)  50(83) 49 (100) 62(112) | 54 (364)

2174 Vol. 78, No. 10, October 1997



of 12%, and in fact, precipitation
TaBLE 8. Same as Table 7 except for when given forecast source disagreed with all other

was observednore frequently ; .
forecast sources by 5°F or more, in comparison to mean forecast of other sources. Note that

0
Whoen FS 2 forecast 0 /00 PoP Taﬁ\ere are no cases in which the source that disagreed with the others outperformed the mean
10% PoP. Overall, 86% (72%)at a statistically significant level.

of the forecasts of FS 1 (FS 2)

were either 0% or 20%, th_e fore- 1 5 3 4 5 Total
castvalue nearest the climato-

logical frequency. From Fig. 3 O RS

the observed frequency of rair

for both sources for both of tho'se ES 1 0(3) 22(10) 24(18) 39(13) 31(13) 27(57)
values was such that the points

fell near the no-skill line, indi- FS2 —(0) 50(2) 60(5) 64(14) 42(12) 55(33)
cating that the forecasts contrib-

uted only marginally to skill, if FS3 50(4) 25(4) 43(7) 40(5) 46(13) 42(33)
at all (Wilks 1995). Thus, the g, 40(5) 449)  11(18) 8(13) 30(20) | 23(65)
most common forecasts pre-

sented to the public show little Nws 0(1) —(0) 25(4) 22(9) 27(11) | 24(25)
or no skill compared to climatol- _

ogy. Reliability diagrams for =~ (P) Maximum temperatures

days 1, 4and 7 (Fig. 4) show the "o, 04 21(15 43(7 33(13 3222) | 296
tendency for the reliability curve ) (15) @ (13 (e2) b
to become “flatter” as lead time Fs2 50(6) 50(4) 29(17)  21(25) 53(15) 35(66)
increases. This reflects the fact

that the observed frequency of FS 3 0(3) 50(2) 50(8) 46(11) 56(18) 48(42)
precipitation for all forecast val-

ues approaches the climatologi- FS4 25(12) 440) 24(21) 35(23) @0 | 32(82)
cal frequency at longer lead nws  100(1) 0(2) 10(10) 38(8) 22(23) | 23(44)
times.

Curiously, FS 2 maintains an
almostconstant frequency of use

of 15% at all lead times, but drops the use of 10% & Discussion
ter day 5. It has a dramatic increase in the number of
20% forecasts at day 7, going from 71 at day 6 to 117 Many forecast sources are available to the public via
at day 7. Unfortunately, the number of cases wherdghie NWS and the media. The significant disagreements
rains on those forecasts increases only from among their forecasts inevitably leads to the question
(29.6%) to 2218.8%). At the same time, the numbeof “who isthe best?” Based on our analysis, we believe,
of forecasts with a PoP of 0% decreases from 181a® discussed by Murphy (1993), that this question is
140, but the frequency of precipitation on those forsimplistic and the rich amount of information from
casts increases from 13.3% to 20.0%. Thus, the @elwen acursory verification process implies that there is
served frequency of rain on 0% PoPs from FS 2rie universally correct answer to that question. Every one
actually higher than the frequency for 20% PoPs @itthe sources has its strengths and weaknesses, even

day 7.

without discussing issues such as hazardous weather

Typically, FS 2 produced a “wetter” forecast, albreparedness. Specifically, for the media sources, they
though itwas still dry compared to climatology. Abouhad the following strengths and weaknesses:
23% of FS 2's forecasts are PoPs exceeding the cli-
matological frequency of precipitation, whereas onll) FS 1 had the least biased temperature forecasts but
12% of FS 1's forecasts are “wet.” This difference had the highest MAE for maximum temperature
extends up to the highest probabilities, with FS 2 us- forecasts.
ing PoPs exceeding 60% 22 times (8 after day 1), &) FS 2 had the lowest MAE for 9 of the 10 tempera-
cluding a day 3 100% PoP. In contrast, FS 1 used PoPgure lead times but has the largest MAE for the day
4 maximum forecasts. It was also the nidsly

exceeding 60% only 13 times (never after day 1).
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to be correct when it disagreed with NWS forecasts
for minimum temperatures. For the longest lead
time forecasts, the observed frequency of precipi-
tation on forecasts of 0% PoPs is higher than the
observed frequency for 20% PoPs.

3) FS 3 was the most likely to be correct when it dis-
agreedwith NWS forecasts for maximum tempera-
turesand was the most likely to be correct when it
disagreeahith all of the other sources overall for tem-
peraturforecasts. Itvas the most conservative fore-
cast source, disagreeing with the NWS temperature
forecast much less often than any of the other sources.

4) FS 4 was the least accurate minimum temperature
forecast at every lead tintmit was the most accu-
ratefor the day 4 maximum.
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o 2 3 &0 80 100 Examination of the forecasts from sources avail-
Faricas! Fof able to the public provides fertile ground for verifica-
s P oA 823 o4 @E w17 & & 1 1 tion specialists. More importantly, it should allow the
Faez  11ew 98 439 e oz 61 42 o 5 2 5 forecasters to evaluate their own strengths and weak-
Fic. 3. Attributes diagram for all 7 days lead time forecasts foresses and help in improving their products, if the
FS 1and FS 2. Diagonal line indicates perfect reliability. Shadggjality of these forecasts is a primary concern. From
area is region where forecasts contribute positively to skill WiWhat we have seen, many of the weaknesses could be

respect to climatology. Numbers below figure indicate number of d iv. O f obvi .
forecasts at each PoP from 0% to 100% by 10%. In addition, p_rgprove very easlly. Une area or obvious improve-
2 used 5% 1 time and 15% 103 times. Total number of forecad1€Nt would be to have the long-term PoP forecasts

is 2247. tend toward climatology, rather than zero. Another
easy improvement would be to produce unbiased tem-
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Fic. 4. Same as Fig. 3 except for individual lead times: (a) day 1 (FS 2 used 5% 1 time and 15% 15 times), (b) day 4 (FS 2 used
15% 16 times), (c) (facing page) day 7 (FS 2 used 15% 16 times). Total number of forecasts is 321 for each plot.
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perature forecasts for the various lead times. Given thiahs that are inconsistent with the numbers presented
we have been able to see this, it seems that the souirceise forecast (e.g., “Our next chance of precipitation
under examination 1) have not verified their own forés towards the end of the week, but for now, I'll go with
casts, or 2) their perception of what the public warjtsst an increase in cloudiness. So, you'll need to keep
is different than providing the highest quality forecasijatching to see how things develop.”). This approach
or 3) they believe that the value of their forecastsgan only lead to confusion in the minds of the fore-
high even if the quality is not. Given the wide rangeast users, the public. We find it particularly distress-
of needs of the users of publicly available forecasts ang given the results of Murphy et al. (1980) and Sink
the complex relationship between quality and valu@,995) indicating that the public understands and pre-
it seems unlikely that the last goal could be accoffiers numerical, rather than verbal, probability of pre-
plished in any easy way. Neither of the other two opipitation forecasts.

tions is satisfying from the public perspective. It is
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racy. While this is plausible from their perspective, ﬁriscoll, Allan Murphy, and anonymous reviewers for their help-
. . ul comments.
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