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1. Introduction

In their paper, Buizza et al. (1999, hereinafter referred
to as BHLG) present and discuss various attributes of
the quantitative precipitation forecast (QPF) perfor-
mance of the European Centre for Medium-Range
Weather Forecasts ensemble system. The verification
tools used are signal detection theory measures, reli-
ability diagrams, the Brier score and skill score, the
threat score, and the root-mean-square error. The veri-
fication data consisted of short-range (0–24 h) forecasts
from the full-resolution model. In an appendix, BHLG
justify the use of model data as ‘‘observations’’ on the
basis that point precipitation observations are represen-
tative of smaller scales than model QPF output. Com-
parative summary results are presented for four 3-month
seasons, for a model grid domain covering Europe. Var-
iability in the performance is assessed for two smaller
domains, as a function of time, and as a function of
projection time. The variability in performance is also
assessed as a function of the threshold chosen for prob-
ability estimation from the ensemble output. An inter-
esting feature of the paper is the presentation of several
case studies, which facilitate the synoptic interpretation
of the relative operating characteristic (ROC) values.

My comments on this paper relate mostly to the ROC
curve and its use and interpretation. The ROC is rela-
tively new to meteorology, having been brought into the
field as a verification tool by Mason (1982). Its use has
become more widespread since the advent of ensemble
forecasting. In Murphy and Winkler’s (1987) framework
for probability forecast verification, the ROC fits into
the ‘‘likelihood-base rate’’ factorization of the joint dis-
tribution of forecasts and observations, which implies
a stratification of the joint distribution according to the
observation. Specifically, the ROC curve and two as-
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sociated summary measures, the area under the curve
(AZ) and the separation of the two conditional distri-
butions (DZ), seek to assess the ability of a diagnostic
system to separate cases where a signal is present from
cases where only noise is present. In the application to
precipitation forecasting described in BHLG, the ‘‘sig-
nal’’ is the occurrence of 12-h precipitation amounts
over a threshold, and the diagnostic system is the en-
semble system, which forecasts a probability distribu-
tion of precipitation amounts at each forecast time. Sig-
nal detection theory is fully described in Swets and
Pickett (1982), and its application to meteorology was
explored by Mason (1982).

I have two specific comments, discussed in the fol-
lowing sections. The first relates to the method of com-
putation of the ROC, and the second relates to the in-
terpretation of the ROC area in terms of the skill of the
forecast.

2. Computation of the ROC

Figure 1 of BHLG indicates the plotted points of the
empirical ROC have been joined by straight lines. This
practice is inconsistent with previous published results
of Mason (1982) and Swets (1986), both of which in-
dicate that, for a wide variety of applications, the ROC
is linear in terms of the standard normal deviates cor-
responding to the hit rate and false alarm rate, and are
curved in linear probability space. Joining the points of
the ROC by straight lines thus will lead to an under-
estimate of AZ, the magnitude of which will depend on
the distribution of points across the range of the ROC.
In BHLG, where ROCs are estimated for four thresholds
of precipitation occurrence from plots of hit rate versus
false alarm rate, the tendency is for the points to cluster
toward the lower-left corner as the threshold increases,
resulting in greater underestimation of AZ for higher
thresholds than for lower thresholds. Assuming that all
the ROC areas reported in BHLG were estimated as
demonstrated in their Fig. 1, the differences in ROC
areas for the different thresholds (e.g., Figs. 1a, 5, 6a,
8, and 9a,b) would be expected to be mainly due to
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FIG. 1. Relative operating characteristic curves for day 3 European
area 12-h precipitation forecasts, summer 1997, for thresholds 1, 2,
5, and 10 mm.

FIG. 2. Relative operating characteristic curves for day 5 European
area 12-h precipitation forecasts, summer 1997, for thresholds 1, 2,
5, and 10 mm.

variations in the degree of underestimation of the true
ROC rather than to real differences in the ability of the
ensembles to discriminate between occurrences and
nonoccurences of precipitation amounts above the
threshold. BHLG have used Stanski et al. (1989) to
guide their computation of the ROC. As one of the
authors of Stanski et al. (1989), I can admit that the
ROC example (Fig. 4.2) in that publication does show
points connected by straight lines, which could be mis-
leading. In that case, however, the points are well dis-
tributed across the range of the ROC, which would min-
imize the magnitude of the error.

To help me investigate this issue, Dr. Buizza has gra-
ciously supplied me the data that was used to construct
his Fig. 1, along with other data used to obtain results
reported in BHLG. I recalculated the ROCs for the four
thresholds 1, 2, 5, and 10 mm, for both 3 and 5 days,
using a program obtained from I. Mason (1987, personal
communication) that is based on the procedures outlined
in Swets and Pickett (1982). This program calculates
the standard normal deviates corresponding to the em-
pirical hit rates and false alarm rates, then fits a straight
line by the least squares method. Tests of goodness of
fit are also computed, such as the Student’s t-value for
significance tests on the slope and the correlation be-
tween the two variables. For ease of plotting in linear
probability space, the fitted ROC is transformed back
to probability values at 100 equally spaced points. It
should be noted that the only assumption that is made
by fitting the ROC in this way is that the underlying
distributions before occurrence and nonoccurrence of
the events can be transformed to normal by a monotonic
transformation; the underlying distributions do not
themselves need to be Gaussian (Swets 1986).

The fitted ROCs are shown in Fig. 1 for day 3 fore-
casts and in Fig. 2 for day 5 forecasts, for the European
area, for summer, 1997. For 1 and 2 mm, the fit was

extremely good; the correlation was 1.0 to three figures.
For 5 and 10 mm, the correlation dropped slightly, but
was never lower than 0.98. This confirms the previous
experience of Swets (1986) and Harvey et al. (1992)
that empirical ROCs are very close to linear in normal
deviate space. The level of significance, however,
dropped more quickly. At 10 mm, the fit was significant
only to the 99% confidence level, while at 20 mm, a fit
could not be obtained. This is a reflection of the ten-
dency of the points to cluster near the lower-left corner
of the ROC for the higher thresholds, forming a weaker
basis by which to determine the full ROC. Beyond 10
mm, there were not enough occurrences of the event to
determine the distribution before occurrences with suf-
ficient reliability.

I also recomputed ROC curves for the data from sum-
mer 1996, again for day 3 and day 5. Precipitation oc-
currences were less common in 1996 than in 1997 at
all thresholds (as forecast by the full-resolution model);
thus, the 1996 data presented greater problems to obtain
an acceptable ROC. For the 10-mm threshold, the t-test
results indicated significance only to the 80% level.
Once again, the difficulty is that lower ‘‘observed’’ fre-
quencies of the event prevent a reliable description of
the conditional distribution of probability forecasts pre-
ceding its occurrence, regardless of how frequently the
model attempts to predict it.

All the results obtained are shown in Table 1, in com-
parison with the results obtained by BHLG. The figures
in the table support the following comments.

1) Values of the area AZ are generally higher than those
obtained by BHLG. This is a consequence of fitting
a smooth curve instead of approximating the curve
with a set of straight lines. Compared to experience
with ROC areas for precipitation these values are
generally in the typical range (Swets 1988), if one
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TABLE 1. Comparison of fitted and BHLG ROC areas and DZ for summer 1996 and 1997 data, for Europe, days 3 and 5. Differences are
computed as (fitted 2 BHLG) in all cases.

Day 3 Day 5

Threshold (mm)
Fitted ROC area, summer 1997
BHLG area, summer 1997
Difference

1
0.866
0.832
0.034

2
0.876
0.825
0.051

5
0.884
0.778
0.106

10
0.851
0.697
0.154

1
0.787
0.764
0.023

2
0.793
0.755
0.038

5
0.787
0.690
0.097

10
0.745
0.585
0.160

Fitted ROC area, summer 1996
BHLG area, summer 1996
Difference

0.870
0.820
0.050

0.869
0.794
0.075

0.860
0.694
0.166

0.863
0.593
0.270

0.795
0.759
0.036

0.797
0.732
0.065

0.736
0.633
0.103

0.620
0.520
0.100

DZ, summer 1997
BHLG DZ, summer 1997
Difference

1.567
1.220
0.347

1.633
1.210
0.423

1.688
0.887
0.801

1.471
0.454
1.017

1.127
0.677
0.450

1.158
0.653
0.505

1.126
0.381
0.745

0.933
0.124
0.809

DZ, summer 1996
BHLG DZ, summer 1996
Difference

1.589
1.190
0.399

1.587
1.060
0.527

1.526
0.551
0.975

1.544
0.179
1.365

1.164
0.711
0.453

1.176
0.628
0.548

0.894
0.245
0.649

0.434
0.026
0.408

Fitted ROC area difference, 1997–1996
BHLG area difference 1997–1996

20.004
0.012

0.007
0.031

0.024
0.084

20.012
0.104

20.008
0.005

20.004
0.023

0.051
0.057

0.125
0.065

DZ difference 1997–1996
BHLG DZ difference 1997–1996

20.023
0.030

0.047
0.150

0.163
0.336

20.074
0.275

20.037
20.034

20.018
0.025

0.232
0.136

0.499
0.098

considers the 10-mm category to represent a
‘‘storm.’’ However, the Swets (1988) values are all
for short-range forecasts compared with observa-
tions, while the present results are for medium-range
forecasts compared with short-range model output.
One would expect AZ to be lower in the medium
range, but higher when the forecasts are compared
with output from a higher-resolution version of the
same model. Any false alarms and missed events
exhibited by both the full-resolution model and the
ensemble model will not be accounted for in the
present verification results.

2) The difference between the fitted area and the BHLG
area increases with threshold. As noted above, this
too is expected because the plotted points tend to
cluster toward the lower left-hand corner of the curve
for higher thresholds.

3) The separation distance (DZ) statistics are consistent
with the AZ statistics. This is expected from the
theory of the ROC: The greater the DZ value, the
smaller the overlap of the two distributions, and the
greater the signal detection ability of the system.

4) Area AZ changes little over the range of thresholds
from 1 to 10 mm. In other words, the ROC appears
to be nearly invariant under a change of threshold
of the physical variable, for a given dataset. Chang-
ing the threshold amounts to sampling the ensemble
probability distribution at different values of the ran-
dom variable, and the set of probabilities generated
will vary monotonically with the threshold for each
forecast. The calculation of the ROC involves sam-
pling the probability distribution for a given precip-
itation threshold over the whole sample at different
probability thresholds (usually deciles), again mono-
tonically. These procedures are essentially equiva-
lent and it is therefore not surprising that the ROC
varies little for different precipitation thresholds.
Nevertheless, there is some indication from the re-

sults that the system does a poorer job of discrimi-
nating at the higher thresholds for the 1996 data
especially. While at first this might seem inconsistent
with the previous argument, the monotonic trans-
formation of probabilities applies to the distribution
over the whole sample. It is still possible that the
transformation leads to a poorer separation of means
after partitioning into the two conditional distribu-
tions.

5) There is much less evidence in these results to sup-
port a substantial impact of the system upgrade be-
tween 1996 and 1997, as claimed by BHLG. Of the
eight ROC areas computed for summer 1996 and
summer 1997 (four for each of day 3 and 5), only
four of these show a positive trend between 1996
and 1997, and all changes are small with the excep-
tion of 5 and 10 mm for day 5. Bearing in mind that
the 1996 day 5 result for 10 mm was not statistically
significant, there is some evidence that the newer
system more clearly detects the signal for occur-
rences of 5 or more and 10 or more mm of rain in
12 h. This might indicate that the higher-resolution
ensemble system retains the sharpness of the forecast
precipitation distribution further into the forecast pe-
riod than did the older system, compared to the full-
resolution model. The impact is clearly not substan-
tial, however.

The implications of these results for the discussion
and conclusions presented in BHLG are substantial.
First as suggested above, in Figs. 1a,b, 5, 6a,b, 8, and
9, revised curves should be higher and lie closer to-
gether. The magnitude of underestimation of AZ will
be sensitive to the location of the last point on the em-
pirical curve, which may vary greatly from case to case.
As shown above the difference can be as much as 0.25
or so, enough to obscure differences due to variations
in the signal detection ability of the forecast system.
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Although the analysis shown above relates only to the
summer data, I would expect similar effects to apply to
the winter data, specifically in Figs. 15 and 16a,b.

Second, the comparison between 1996 and 1997 per-
formance would also be affected (Figs. 10a and 10b in
BHLG). Since precipitation occurrence was a rarer event
in 1996 than in 1997 for the summer data, one would
expect greater underestimation of the true ROC for the
1996 data, which would possibly lead to a false indi-
cation of improvement between the two years. Indeed,
this is consistent with the results presented above, which
show little change between 1996 and 1997, except for
the 10-mm threshold. While a complete reanalysis
would be needed to confirm this, the results suggest that
the two curves in Fig. 10a would lie on top of each
other, and both be higher, and the two curves in Fig.
10b would be much closer together, meaning that the
gain in signal detection is less than the 3 days indicated
in BHLG.

While it is often considered better to use nonpara-
metric methods in verification, because no assumptions
are involved, all the previous experience reported in the
literature supports the validity of the normal–normal
model in signal detection theory as providing a more
accurate and stable estimate of the ROC than a linear
nonparametric method. The results presented here con-
form well to the previous work in this field and lead to
somewhat different conclusions from those contained in
BHLG.

3. Interpretation of the area under the ROC in
terms of forecast skill.

Stanski et al. (1989) suggest that a minimum thresh-
old of 0.7 serves as a reasonable lower limit for mean-
ingful skill of the forecast in the signal detection theory
context. This value is mentioned several times in BHLG.
This guide was intended to apply to realistic situations

where model output is compared to observations. Al-
though the choice of a specific threshold value aids in
comparative assessment of the results, it is easy to forget
that the results in this case are generated by comparing
the ensemble forecasts with forecasts from a higher-
resolution version of the same model. Inevitably, this
would lead to artificially high values of all the verifi-
cation scores, and it is unknown how the score values
would ‘‘map’’ to the real world if observation data or
at least output from a completely independent model
were used for verification. Perhaps a higher threshold
should be used to allow for the impact of using model
output as verification data. The statement at the end of
section 3 of BHLG (‘‘Concluding, these results . . .’’)
may turn out to be true but for the wrong reasons. Fur-
thermore, in this context, claims such as ‘‘gain in pre-
dictability up to three days,’’ as stated in the abstract,
must surely be artificial. If it is atmospheric predict-
ability that is referred to, how can this be judged when
no atmospheric data are used in the verification?
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