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ABSTRACT

Prediction of short-term variations of vital boundary layer conditions at airports, such as visibility and cloud
base, is important to the safe and economic operation of airlines. Results of an experiment involving groups of
forecasters at three different locations across Australia are presented. The forecasters were asked to indicate
their degree of confidence that weather at the airport would be below ‘‘minimums’’ that would require aircraft
to carry adequate fuel to proceed to an alternate destination should they not be able to land. The results of the
trial are shown to closely obey a Gaussian model as used in signal detection theory (SDT). The data are fitted
to an accuracy-value model developed by Mason. The paper demonstrates the ability of forecasters to provide
reasonably reliable probability forecasts of significant events at airports. The potential value in reliable estimation
of the probability of low visibility and cloud base at aerodromes is estimated by using cost parameters for two
actual examples of flights into Melbourne and Townsville, Australia.

1. Introduction

The value of a weather forecast to a user is about
much more than accuracy. The most important aspect
of the design of a forecast delivery system is to optimize
the flow of the opinion of the forecaster directly to the
user. The user should then utilize this opinion in an
optimal way, given the relative costs of occurrence of
the event and protection from the event. In this paper
it is assumed that the user, in this case an airline, would
want to use the forecast in a way that optimizes the
economic outcome without compromising safety.

This issue of obtaining the maximum value from the
expertise of the forecaster is the main topic of this study.
Meteorological authorities have gone to great lengths
to measure weather forecast accuracy, but less focus has
been given to forecast value. Many papers have been
written on the subject of accuracy and value in weather
forecasts (e.g., Murphy 1977, 1985; Katz and Murphy
1997). These describe the extra value inherent in prob-
abilistic forecasts. More recently studies have been pub-
lished on the value of ensemble numerical forecasting
and its relative value with respect to increasing the res-
olution of models. Wilks (2001), Zhu et. al. (2002), and
Richardson (2000) use broadly similar methodology in
ascribing the value of probabilistic forecasts based on,
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inter alia, numerical ensembles, with respect to clima-
tology and perfect forecasts. Of interest for the current
study, Wilks found that forecasts exhibiting consistent
overforecasting (i.e., a low decision threshold) produce
greater value for situations with low cost–loss (C–L)
ratios. This is shown to be the case in this study for
airline costs. Most short-duration flights have very low
C–L ratios. Wilks also found that the use of probabilistic
methods achieved the greatest increase in value over
climatology, with respect to perfect forecasts, for fore-
cast probability densities typical of short-range fore-
casts. Zhu et al. use a relative operating characteristic
(ROC) area summary measure to demonstrate the value
of the multiple decision thresholds inherent in proba-
bilistic ensemble methods.

However, little or no attention to the issue of value
seems to have occurred in the field of aviation fore-
casting. Given the large financial impact that weather
forecasts have on airline operations, particularly ter-
minal aerodrome forecasts (TAFs), the topic would seem
to deserve some recognition.

The results of this paper will show that considerable
potential value is lost by the traditional method of pro-
viding weather information in TAFs in categorical form,
that is, as a binary, yes–no product. The current rules
do allow forecasters to use probabilities, for some el-
ements like thunderstorms and fog. For example they
can say ‘‘PROB30’’ for the occurrence, which means a
30% chance of occurrence. However, airlines are
obliged by regulations to carry the full fuel requirement
equivalent to a forecast of 100% confidence. So the use
of the PROB30 is redundant, and the forecast is effec-
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FIG. 1. Idealized probability distributions of the decision variable
x, f 0(x) preceding nonoccurrence, and f 1(x) preceding occurrence of
the predictand. Here, xc represents the decision criterion. The area
marked by vertical hatching indicates the probability of a false alarm
and the area of diagonal hatching represents the probability of a hit.
[From Mason (1982).]

tively completely categorical. Forecasters know this,
and also have some concept of the consequences of
missed events. It will be shown that they adopt quite
varying tactics, demonstrating a variety of attitudes to
these consequences. Forecasters are also able to use tem-
poral categorical variations to mean conditions when
formulating TAFs. If the mean conditions are above the
special lowest alternate minimum (SLAM), the term IN-
TER (TEMPO) refers to periods of less than 30 (up to
60) min below the SLAM. It is shown below that use
of these modifiers can be interpreted as crude proba-
bilistic forecasting.

2. Experiment design
Forecasters at three Australian forecasting offices

were asked to estimate their confidence, to the nearest
10%, that the weather at five different lead times will
be below the SLAM for a particular aerodrome. The
SLAM comprises values of cloud base and visibility, as
well as weather type, and is the level used to determine
fuel carriage for most passenger-carrying aircraft. The
lead times are 1, 3, 6, 12, and 18 h. Forecasters for-
mulated the probabilities at the same time they produced
the routine issue of the TAF. Only routine issues of the
TAF were tested. This was done so that the lead time–
skill relationship was not skewed. Nonroutine amend-
ments are usually issued to amend the TAF at short lead
times, and so counting these would probably bias the
skill in favor of the shorter lead times.

One purpose of the experiment was to demonstrate
the use of the signal detection theory (SDT) model of
forecasts for TAFs, and to ascertain whether the data
can be fitted to the Gaussian model as used by Mason
(1982). Another aim was to investigate differences in
the forecast tactics between individual forecasters, and
to demonstrate the effects of these differences on the
financial outcome to airlines.

Other studies, most notably Mason (1982), have
shown that probabilistic forecasts of elements like rain,
storms, and temperature closely fit the SDT model. But
in order to use Mason’s cost–value model (I. M. Mason
2001, personal communication and described below), it
was necessary to confirm that forecasters’ probability
estimates of poor weather at airports fit the Gaussian
assumptions of the SDT model.

The trial data were provided by forecasters at the
Victorian Regional Forecasting Centre (Vic RFC), the
Sydney Airport Meteorological Unit (SAMU), and the
Townsville Meteorological Office (TVL). All forecast-
ers were volunteers. Data have been accumulated at
Townsville since December 1999, at Vic RFC since
March 2000, and at SAMU from about April 2000. Data
have been analyzed up to September 2001.

3. Theory
a. Signal detection theory

The primary advantage of SDT is its ability to model
the effect of forecasters’ decision thresholds on accu-

racy. It provides a measure of a forecaster’s acuity, or
ability to discriminate between two signals, one just
noise, and one noise plus signal. For a treatment of SDT
as applicable to weather, the reader is referred to Mason
(1982). Other interesting applications of SDT in me-
teorology are described in Harvey et al. (1992) and Levi
(1985). Swets (1996) gives a full treatment of SDT in
general, with most applications being in the medical and
psychological fields.

The linchpin of SDT is the assumption that, prior to
a decision, there are two overlapping probability dis-
tributions: the weight of evidence for the event occur-
ring, and weight of evidence against the event occur-
ring. This is illustrated in Fig. 1, with f 1(x) representing
the evidence for the event, and f 0(x) the evidence
against. The y axis is the weight of evidence, the x axis
shows values of x, the decision threshold. The area un-
der the probability distribution for f 1(x) to the right of
xc, the critical decision threshold, is the probability of
a hit (hit rate). Similarly, the area under the f 0(x) curve
to the right of xc is the probability of a false alarm (false
alarm rate). If the forecaster becomes more conservative
(i.e., his critical decision threshold xc decreases or
moves to the left), both the hit rate and false alarm rate
increase. Conversely, if the forecaster becomes more
adventurous (i.e., less inclined to forecast the event),
the false alarm rate decreases, but so too does the hit
rate. Note that the separation of the means of the two
distributions is denoted as d’. This parameter can be
used as an index of skill as it defines the intrinsic ability
to discriminate between the two distributions.

The form of the distributions in Fig. 1 is assumed to
be Gaussian. Studies of human decision making under
conditions that produce uncertainty have demonstrated
Gaussian behavior. Mason (1982) showed this for
weather forecasts. This behavior is demonstrated for the
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TABLE 1. A 2 3 2 contingency table of event forecasts
and outcomes.

Forecast

Observed

No Yes

No
Yes

a
c

b
d

data in this experiment below. The Gaussian assumption
is also convenient in that the calculations fall out nicely.

The formal definition of hit rate, h, is Pr(Forecast 5
Yes | Event 5 Yes), that is, the probability that the event
is forecast given that it happens. This is the same as the
probability of detection (POD) as widely used in me-
teorology. Similarly false alarm rate, f , is Pr(Forecast
5 Yes | Event 5 No), that is, the probability that the
event is forecast given that the event does not happen.
Note that f is different from FAR, the false alarm ratio,
a term encountered in meteorology and often confused
with f . FAR in fact is Pr(Event 5 No | Forecast 5 Yes).

In the trial, forecasters were asked to indicate their
confidence of below SLAM weather at each lead time
to the nearest 10%, so that there are 11 different decision
thresholds from 0% to 100%. The hit rate and false
alarm rate can then be calculated for forecast probability
greater than or equal to each of the 11 different decision
thresholds. These are then plotted against one another
to produce a ROC. By way of example, the ROCs pro-
duced in this experiment are shown later (Figs. 5–7).

The diagonal on the ROC is the line h 5 f . On the
diagonal a forecaster has the same chance of a hit as a
false alarm, and so the diagonal is defined as zero skill.
A perfect forecast is indicated by a ROC from (0,0) to
(0,1) to (1,1). So a reasonable skill measure is the area
under the ROC curve. Mason (1982) calls this Az once
the Gaussian model is applied. Here, Az has been shown
to be independent of the climatological rate of occur-
rence (e.g., Mason 1989) and also, most importantly,
independent of the decision criterion xc (e.g., Harvey
et al. 1992). These are advantages of the SDT summary
measure Az. The dependence of some traditional skill
scores on decision thresholds is described in Swets
(1986, 1996), Mason (1989), and Harvey et al. (1992).

As mentioned in Harvey et al. (1992), Az is a measure
of potential forecast performance. As is demonstrated
in their paper, and in this study, the economic value of
the forecast depends on the decision criterion, xc, as
well as on the accuracy. As a measure of skill, Az qual-
ifies as a strictly proper score. This means that it is not
possible to optimize the score by hedging. Because con-
ventional skill scores are, to varying degrees, dependent
on decision threshold, a shrewd forecaster, after a little
research and experimentation, could optimize his or her
score by adopting a decision threshold that optimizes
the particular score by which he or she is being assessed.

Returning to the Gaussian distribution of the signal
detection model in Fig. 1, h and f can be expressed in
terms of the location of the decision threshold, xc, on
the x axis of the overlapping normal distributions. A
more expansive treatment of this can be seen in Mc-
Millan and Creelman (1991), Swets (1996), or Mason
(1982).

The likelihood ratio is defined as b 5 f 1(xc)/ f 0(xc).
If the mean of f 0 is set to zero, the mean of f 1 becomes
d9, the separation of the means. If the variances of the
two distributions are assumed to be equal, one can con-

nect xc and d9 as follows. From the formula of the
normal distribution,

2 2b 5 exp[20.5(x 2 d9) ]/exp(20.5x ) andc c

22 lnb 5 2x d9 2 d9 , so x 5 lnb/d9 1 d9/2.c c

From Mason (1982), the likelihood ratio b can be
expressed through Bayes’s theorem as a ratio of the odds
of the probabilities of the event at x 5 xc, p, to the
odds of the climatological probability, pc:

b 5 [p/(1 2 p)]/[p /(1 2 p )]c c

A link is thus available from forecast probability to
hit rates and false alarm rates, using as variables pc and
d9. Again assuming equal variances of the two distri-
butions, d9 can readily be calculated from the data in
the standard 2 3 2 contingency table of Table 1. Here,
d9 is just the difference between the normal deviates of
h and f . As h is an estimate of Pr(Forecast 5 Yes | Event
5 Yes), h 5 d /(d 1 b), and similarly f 5 c/(c 1 a).
The normal deviates of these can be calculated and sub-
tracted to yield d9. The degree of validity of the as-
sumption of equal variances in the context of this paper
will be discussed below.

b. Forecast value

In any forced choice, binary outcome (yes–no) fore-
cast situation, the outcome can be summarized by the
traditional 2 3 2 contingency, for example, Table 1.
The outcomes, for the sake of intuitive understanding,
are described as true positives (hits), true negatives (cor-
rect rejections), false negatives (misses), and false pos-
itives (false alarms).

Harvey et al. (1992) developed a relationship for ex-
pected value of a forecast, using the four conditional
probabilities from the contingency table, and the value
of each of the outcomes. They arrive at a relationship
for the expected value (EV) of a forecast. Substituting
terminology used in this paper for their terminology,
the relationship is

EV 5 hp V 1 (1 2 p ) f V 1 p (1 2 h)Vc TP c FP c FN

1 (1 2 p )(1 2 f )V , (1)c TN

where pc is the climatological rate of occurrence of the
event, or Pr(Event 5 Yes), the Bayesian prior proba-
bility; h is hit rate; f is false alarm rate; and VTN is the
value of a true negative, VFN the value of a false negative,
VFP the value of a false positive, and VTP the value of a



OCTOBER 2003 811K E I T H

FIG. 2. Plots of hit rate vs false alarm rate for individual forecasters
at Townsville, Vic RFC, and SAMU. Error bars are 95% confidence
intervals.

true positive. Both VFN and VFP have negative values and
are better called costs.

Equation (1) was derived independently by Mason
(2001, personal communication). He uses the fact that
perfect forecasts have h 5 1 and f 5 0, and so he
simplified (1) to provide an expression for the expected
cost of an imperfect forecast with respect to a perfect
forecast:

expected cost 5 (1 2 p ) f (V 2 V )c TN FP

1 p (1 2 h)(V 2 V ).c TP FN

Mason defines (VTN 2 VFP) as the false alarm cost,
the cost of incorrectly forecasting an event, and (VTP 2
VFN) as the miss cost, the cost of not forecasting an
event. Making this substitution,

expected cost 5 (1 2 p ) f (false alarm cost)c

1 p (1 2 h)(miss cost). (2)c

Note that by definition, miss cost does not include any
costs already incurred by a hit, or correct forecast of an
event. In the context of a TAF, an aircraft may not be
able to land regardless of whether the bad weather was
or was not forecast. The miss cost is only that cost
attributable to the event not being forecast over and
above the cost accrued if it had been correctly forecast.
False alarm cost is easier to ascribe, as there is no weath-
er-related cost attributable to a correct rejection, and it
is thus the cost of protective action. In the TAF situation,
this would be the cost to carry extra fuel and perhaps
lost payload.

Mason (2001, personal communication) has shown
that if (2) is differentiated with respect to p, the forecast
probability, and the result set equal to 0, the value of
p(opt), the value of the optimal forecast probability that
minimizes the expected cost, is defined thus:

p(opt) 5 CR/(1 1 CR), (3)

where CR is the cost ratio and equals the false alarm
cost divided by the miss cost.

Mason’s derivation of (3) goes as follows: differen-
tiating (2) with respect to p and setting the result to zero
gives

(1 2 p ) · (df /dp)CR 2 p (dh /dp) 5 0, soc c

dh /df 5 CR(1 2 p )/p .c c

It can been shown (e.g., Green and Swets 1974) that
the slope of the ROC, dh/df , is the same as the likelihood
ratio, b, at the corresponding value of xc. Substituting
[b/(p/(1 2 p)] for (1 2 pc)/pc gives

p 5 p(opt) 5 CR/(1 1 CR).

So, as one would logically expect, the optimum de-
cision threshold is a function of the costs of the out-
comes only. For a particular flight, the magnitude of the
expected cost will be determined by the skill d9 and pc,

but for a given d9 and pc the minimum value of expected
cost will be at p 5 p(opt).

4. Results and discussion

a. Differences between forecasters

Figure 2 shows plots of hit rate and false alarm rate
for individual forecasters at Townsville, Vic RFC, and
SAMU. These data are derived from the Bureau of Me-
teorology’s automated TAF verification system and are
based on 3–4 yr of verification data. The data are dif-
ferent from the experiment in this paper and were used
in order to achieve better error statistics. They are shown
merely to demonstrate the range of differences between
individuals. The values of h and f shown are a com-
posite of each whole hour of lead time up to 6 h; 95%
confidence limits are included. The confidence intervals
have been calculated from the formula quoted in Ste-
phenson (2000).

While most forecasters aggregate around particular
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FIG. 3. Number of forecasts of INTER and TEMPO, regardless of outcome, for three
forecasters at Townsville.

regions in the graph, each plot shows forecasters with
markedly different decision thresholds. In Fig. 2, fore-
casters A, C, and E show considerably less aversion to
the risk of a miss than forecasters B, D, and F, respec-
tively. For example, forecaster A has a smaller hit rate
than B, and a much smaller false alarm rate. Therefore,
A is operating at a higher decision threshold than B;

that is, he or she is less cautious than B. The effect of
the variation of the decision threshold on the cost out-
come is described below.

In each set of data shown in Fig. 2, the difference in
the decision threshold between the outliers is more
marked than are differences in skill. This suggests that
any difference in value may be caused more by varia-
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FIG. 3. (Continued )

tions in decision threshold than by differences in skill,
keeping in mind the usual shape of a line of equal skill
on a ROC. The section above on forecast value shows
how minimizing the cost of the uncertainty in the fore-
cast depends on using an optimal decision threshold.

Climatological rates of below SLAM events at most
Australian airports are typically around 0.02. As such,
there is not adequate data from the experiment in this
paper with which to carry out an analysis on individual
forecasters. There are four entries daily for each TAF,
and given that there can be up to eight or nine forecasters
involved, there may be only 10 to 20 events for each
forecaster for each lead time. To acquire enough data
for analysis of individual forecasters would take several
years. It is hoped to acquire enough of the probability
forecasts over time at Townsville, where data acquisition
continues, to enable ROC analysis on individuals. None-
theless some conclusions can be made as to an individ-
ual’s proclivity to forecast below SLAM weather more
or less than others, simply by analyzing Pr(Forecast 5
Yes) for all confidence levels. This is irrespective of
whether the event happened or not, and comparison as-
sumes a reasonably constant frequency of occurrence
among the group over the period. Only gross and ob-
vious differences between individuals are discussed.
This analysis is shown for three forecasters at Towns-
ville in Fig. 3, and for two forecasters at Vic RFC in
Fig. 4. There were not enough events forecast at SAMU
to enable such an analysis.

At Townsville, ALT (alternate) is not forecast all that
often, due to the climatology. Below minimum events
are mostly precipitation induced and convective in na-
ture so, unlike say fog, there are usually occasional

breaks in the precipitation. So the analysis in Fig. 3 is
confined to INTER and TEMPO forecasts. At Mel-
bourne, however, most of the below SLAM weather is
due to fog and low cloud, which tends to be persistent
over a period of hours. Forecasts of TEMPO are not
made very often because precipitation-induced events
are usually brief. So the analysis in Fig. 4 is confined
to INTER and ALT forecasts.

Data on the three individual forecasters from Towns-
ville in Fig. 3 demonstrate considerable variation in their
perceived confidence of below minimum conditions,
and their inclination to forecast below minimum con-
ditions. Each forecaster had issued well in excess of 200
forecasts. The total number of actual occurrences of
below minimum conditions at all the target times is
listed in the last column. Generally all three are less
conservative at short lead times for both INTER and
TEMPO forecasts; that is, the required confidence for
the forecast of the event is higher at short lead times
than longer lead times. Of interest is the large range of
decision thresholds for forecaster C, especially for
TEMPO forecasts, compared to the others. Both A and
B rarely perceive a confidence greater than 50% at lead
times greater than 1 h, whereas C for TEMPO forecasts
exhibits a broad almost uniform spread of confidence
across the whole range of probabilities. Forecaster C
also tends to forecast TEMPO at a higher rate than the
others, in line with his perceived confidence. By con-
trast, forecaster A is more inclined to forecast INTER
conditions even though his perceived confidence is
much the same, or even a little less, than the others.

The clustering of the decision thresholds around cer-
tain percentages for forecasting INTER and TEMPO can
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FIG. 4. Number of forecasts of INTER and ALT, regardless of outcome, for two forecasters at
Vic RFC.



OCTOBER 2003 815K E I T H

FIG. 5. ROCs for Townsville, with 95% confidence limits for Az.
Here, a is the y intercept of the plot of normal deviates of h and f
on binormal axes, and b is the slope of a best fit straight line of the
plot of the normal deviates.

FIG. 6. As in Fig. 5 but for ROCs for Vic RFC.

also be interpreted as the forecasters using these tem-
poral variations as de facto probabilities. At Townsville,
INTER forecasts cluster around 20%–30%, and TEMPO
forecasts around 30%–40%. As forecasters are required
to express the forecast in a categorical manner, above
or below the airport minimum, they can express their
confidence with INTER or TEMPO. For example, if
forecaster C thinks there is a 30% chance of below
minimum conditions 6 h ahead, he will generally fore-
cast INTER conditions, but if he thinks there is 60%
chance, he will generally forecast TEMPO. Discussions
with Townsville forecasters generally revealed a strong
tendency to forecast TEMPO if they thought thunder-
storms or heavy showers would be frequent and wide-
spread, and INTER if the thunderstorms would be iso-
lated. Logically, if a forecaster thinks the poor weather
could last up to 60 min, and so forecasts TEMPO, he
or she believes there is more chance of below minimum
conditions at a particular time than if he or she thinks
the poor weather will last only up to 30 min; and fore-
casts INTER. So the temporal variations of INTER and
TEMPO can also be interpreted as crude probability
forecasts.

Referring now to Fig. 4 and the analysis for two fore-
casters at Vic RFC, there is a significant difference in
the percentage confidence levels for forecasts of ALT
between the two. One would expect the distribution for
ALT forecasts to be bimodal. A forecast of a probability

of 30% or 40% of fog or thunderstorms (phenomena
that can preclude landing) is considered by the safety
regulators as an alternate forecast. Forecaster A exhibits
this bimodality, whereas the distribution for forecaster
B is clustered about 50%. Forecaster B shows generally
much higher probabilities for ALT forecasts. For both
forecasters, the higher probabilities for ALT forecasts
compared to INTER forecasts are very apparent.

The above discussion of the differences between fore-
casters is not meant to imply any specific effect on the
economics of airline operations. The only purpose of
this analysis is to demonstrate that there are obvious
differences in the approach taken by different forecast-
ers.

b. ROCs

Figures 5–7 show ROCs for Townsville, Vic RFC,
and SAMU, respectively. These are maximum likeli-
hood best fit curves based on the Gaussian model. They
show Az values generally decreasing with lead time.
Exceptions are two small and insignificant reversals, one
at Townsville between 12- and 18-h lead time, and the
other between 1 and 3 h at SAMU. Both reversals are
within the 95% confidence limits. The ROCs for SAMU
are based on a number of events insufficient to make
any firm conclusions about variation of skill with lead
time. Data acquisition is continuing at SAMU. The 95%
confidence limits for SAMU are very broad, and these
ROCs are only presented for the sake of completeness.
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FIG. 7. As in Fig. 5 but for ROCs for SAMU.

FIG. 8. Lead time vs hit rate for Townsville and Melbourne.

For Townsville and Vic RFC, however, it can be stated
with reasonable confidence that skill decreases with lead
time.

Figure 8 shows the relationship between hit rate and
lead time for Townsville and Vic RFC (Melbourne) for
both the forecasts and persistence. The hit rate for the
forecast is calculated from the best fit ROC at the same
false alarm rate calculated for persistence. The (h, f )
pairs for persistence plot toward the bottom left of the
ROCs, where the hit rate varies strongly with small
changes in false alarm rate. Fixing the value of f thus
enables a sensitive comparison of h. Persistence in this
context means that if the initial conditions at the airport
are below (above) the alternate minimum, the persis-
tence forecast for all lead times is for below (above)
the alternate minimum.

The persistence ratings on the ROCs for the Towns-
ville and Melbourne data are interesting when compared
to the findings by Harvey et al. (1992). Using the same
method, they found that forecasts of convection at Sta-
pleton International Airport, Denver, Colorado, with
lead times of 1 h and less failed to match persistence.
The data in that study and the current experiment are
quite similar. Both involve short-term forecasts at air-
ports and both have operational significance to aircraft
operations. The results of the two experiments suggest
that forecasts at lead times of less than about 3 h cannot
beat persistence. The performance at a lead time of 3
h at Townsville fails to match persistence. Forecast skill

in the Tropics at all timescales is known to be inferior
to that in higher latitudes. This is of course due to the
sporadic nature of events. At Vic RFC the performance
at the 3-h lead time is a little better than persistence.

Figures 9–11 are plots of the normal deviates of hit
rate and false alarm rate, for each lead time, for Towns-
ville, Vic RFC, and SAMU. Note that there is no plot
for SAMU for 12- and 18-h lead times. Due to the rare
nature of the events at Sydney, there were very few high
confidence estimates at the longer lead times. Each point
on the graphs is the value of the normal deviates of an
(h, f ) pair at a different decision threshold. The degree
of linearity of these plots is a measure of the validity
of the assumption of normality of the original distri-
butions of hit rate and false alarm rate. Further, it can
be shown (e.g., Green and Swets 1974) that the slope
of the plot of normal deviates of h and f is equal to the
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FIG. 9. Plots of normal deviates of hit
rate and false alarm rate for Townsville
for each lead time.

ratio of the standard deviations of the two distributions
for and against the event. The proximity of this slope
to unity gives a measure of the appropriateness of using
d9 as a measure of accuracy. Values of the slope are
given as b in the legend of Figs. 6–8. As can be seen,
the slope is between 0.99 and 1.31 for Townsville and
Vic RFC for lead times of 3, 6, and 12 h. These lead
times cover the period that is generally the most im-
portant for aviation operations. Use of d9 is computa-
tionally easier and more pleasing than using Az, which
is a more robust measure of accuracy. It is not intended
that the cost results derived using d9 be used as an exact
figure, but more as a neat illustration of the relative
benefit of using probabilistic TAFs.

c. Reliability diagrams

Reliability diagrams for Townsville, Vic RFC, and
SAMU are shown at Figs. 12–14, respectively. The re-
liability diagrams for Townsville and Vic RFC show
clear overforecasting. The pattern of the overforecasting
is similar to that observed by Murphy and Daan (1984).
The poor reliability at SAMU is of concern. The rare
nature of the events is undoubtedly a factor at Sydney.

It is difficult to give high confidence to a rare event,
especially at the longer lead times. The high impact of
missed events at Sydney is probably also a factor.

It is tempting to use the knowledge of the past bias
of individuals to recalibrate future forecasts toward
greater reliability. Harvey et al. (1992), in a study of
very short lead time (,560 min) forecasts of storms,
split the data into high and low activity days and showed
the effect of stress on Az and xc. The split was a simple
median division. They found that on high activity days,
the decision threshold was more cautious, that is, a (low-
er) xc. The study suggests that the forecasters’ xc is not
constant, and will vary depending on what Harvey et
al. call stress. The factor causing the variation of xc to
a more cautious value is possibly the forecasters’ in-
creased perception of a risk of adverse consequences
when, in this case, the forecasters have a higher expec-
tation of storms impacting on aircraft operations. Large
amounts of data on individuals would be required to
determine how their decision threshold varies with the
weather situation, time, mood, etc. Another impediment
to recalibration of probabilities produced by forecasters
is the fact that, with TAFs, the events are usually in-
frequent. It would take several years to capture enough
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FIG. 10. Plots of normal deviates of
hit rate and false alarm rate for Vic RFC
for each lead time.

FIG. 11. Plots of normal deviates of
hit rate and false alarm rate for SAMU
for 1-, 3-, and 6-h lead times.
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FIG. 12. Townsville reliability diagrams.

data to be able to recalibrate individual forecasters. By
that time the forecasters would probably have trans-
ferred or retired. Murphy and Daan (1984) showed that,
even with minimal feedback, forecasters can learn to
improve their own reliability. Recalibration of auto-
mated forecasts produced by statistical or numerical
methods would be less of a problem.

5. Cost analysis

Costs were provided by Qantas Airways for a flight
from Singapore to Melbourne. The actual figures are
commercially confidential, but the methodology for cal-
culating the false alarm cost and miss cost is described
using symbols for the dollar amounts.

When the flight plan is done prior to the flight leaving
Singapore, the Melbourne TAF forecasts either alternate
(ALT) conditions, INTER or TEMPO deteriorations in
the weather, or good conditions above the alternate min-
ima. For the sake of the current exercise, INTER and
TEMPO forecasts are ignored. INTER forecasts (30 min
of holding fuel) are absorbed into the company’s re-
serve, and at Melbourne TEMPO is forecast only rarely.
If the Melbourne TAF forecasts below alternate con-
ditions, the aircraft takes on sufficient fuel to make an
approach into Melbourne, and then to fly back to Ade-
laide if it cannot land at Melbourne. Adelaide is near
the track about 300 mi NW of Melbourne. In this case
the pilot will usually make an approach into Melbourne,
knowing he or she has enough fuel to abort and fly back
to Adelaide. If the Melbourne TAF forecasts conditions
above the alternate minima, the pilot usually flies on to
Melbourne and lands. However if the weather at Mel-

bourne is below the alternate minima when the flight
reaches Tailem Bend (TBD), a point on track abeam
Adelaide, the pilot will divert to Adelaide.

The costs required in order to calculate the false alarm
cost and miss cost are shown in Table 2. The false alarm
cost is readily available from this information, being the
‘‘cost to carry’’ the extra diversion fuel of $C. Calcu-
lation of the miss cost is more complex. Remember that
the miss cost is that cost caused by a diversion over and
above that cost accrued if the below minimum weather
was correctly forecast, that is, above the cost of a hit.
The cost of a hit depends on whether the pilot can ac-
tually land at Melbourne when the weather is below the
alternate minimum. If the pilot can land safely at Mel-
bourne when the forecast is a hit, then there is no extra
cost over the false alarm cost of $C. However if he
cannot land, then the aircraft must fly to Adelaide, and
return to Melbourne when able to land there. The cost
of the diversion is $(C 1 H 1 E 1 F) minus $I for
fuel that is not used. Then the question arises: what
proportion of the time that the weather is below the
alternate minimum can the pilot still land?

Every airport has a level below the alternate minimum
to which a pilot may descend, at which time he or she
aborts if visual reference of the airstrip has not been
attained. This level is called the instrument landing sys-
tem (ILS) minimum. Thirty years of synoptic obser-
vations were analyzed for the Melbourne airport. It was
found that of the number of occasions that the alternate
minimum was breached, 28% of these also breached the
ILS minimum, thus precluding landing. So the calcu-
lation of hit cost proceeds thus:
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FIG. 13. Vic RFC reliability diagrams.

FIG. 14. SAMU reliability diagrams.

average hit cost

5 (0.72 3 $C)

1 [0.28 3 $(C 1 H 1 E 1 F 2 I )] and

the average miss cost

5 $(C 1 H 1 E 1 F 2 I ) 2 average hit cost.

Inputting actual dollar values,

CR 5 false alarm cost/miss cost 5 0.132, and

p(opt) 5 CR/(1 1 CR) 5 0.117.

From the Bureau of Meteorology’s TAF verification,
a typical value of the (h, f ) pair is (0.75, 0.12) for Vic
RFC forecasters at a lead time of 6 h. Using the as-
sumption of equal variances, pc 5 0.02 and d9 5 2.1
(typical skill measured at Vic RFC in the experiment at
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TABLE 2. Relevant costs for flights from Singapore to Melbourne.

Cost to carry diversion fuel
Cost to divert from Melbourne to Adelaide
Landing and handling fees at Adelaide
Cost of fuel flying Adelaide to Melbourne
Cost of unused fuel TBD into Melbourne

$C
$E
$F
$H
$I

FIG. 15. Cost vs decision threshold for a Singapore to Melbourne
flight. FAC 5 $1390, MC 5 $10 535, d9 5 2.1, and pc 5 0.02.

FIG. 16. Cost vs skill for a Singapore to Melbourne flight.

6- and 12-h lead time), the closest value of the forecast
probability that produces (h, f ) values nearest (0.75,
0.12) is about 0.02. So one can say that the forecasters
at Vic RFC are operating with an effective average prob-
ability of about 0.02 as their decision threshold for this
forecast.

Refer back now to (2) and use the false alarm cost
and miss cost calculated for this flight. Figure 15 is a
plot of cost versus decision threshold for this flight. At
a decision threshold probability of 0.02, the cost of the
uncertainty in this forecasts is $231. If the forecast was
reliably made at the optimum decision threshold, 0.117,
the cost would have been $128. So a perfectly reliable
forecast of the probability of below alternate minimum
conditions would, in the long run and at the same skill,
save about $103 per flight for the Singapore to Mel-
bourne route. This is about 45% of the total cost of the
uncertainty of the forecast.

Consider now the reliability diagrams for Vic RFC
in Fig. 13. Assume a forecaster at Vic RFC forecast at
a decision threshold of 0.117 for the Singapore to Mel-
bourne flight. From the reliability diagrams, he or she
would expect roughly 0.07 as the frequency of occur-
rence in the long run. This can then be considered as
the effective decision threshold. A decision threshold of
0.07 leads to a cost of $135. So for this flight, even the
moderately reliable forecasts as currently produced
would provide most of the savings (41%) gained by
perfectly reliable TAFs (45%).

Figure 16 shows, for the same flight, how the modeled
cost of the forecast varies with d9, the index of skill.
The two graphs are for the optimum decision probability
of 0.117, and for the estimated actual decision threshold
0.02. The large difference in cost outcome for the two
different decision probabilities is obvious, especially at
low skill. Note that if the decision threshold is optimal,
a decrease in skill does not matter all that much in
economic terms. Therefore one could suggest that using
near-optimal decision thresholds is more important than
increasing skill, especially for low skill forecasts. The
optimal decision threshold is solely a function of the
operating costs of a particular flight and, thus, varies
between flights. So reliable estimation of the probability
of occurrence of the event must be applied to each flight
in order to optimize savings, and the cost parameters
for each flight used to determine whether extra fuel is
required.

Note that the method of calculating the miss cost uses
a quite crude climatology. The factor of 0.28, being the
ratio of the time conditions are below the ILS minimum

to that below the alternate minimum, is for all times of
the day and months. A superior value for the miss cost,
and thus CR and p(opt), could be obtained if there were
adequate data to determine a matrix of these factors for
different times and months. This would undoubtedly
increase the potential for savings by using probabilities.
Furthermore, if the conditional probability of weather
below the ILS minimum given that the weather is below
the alternate minimum could be forecast with a skill
better than climatology, a more accurate p(opt) value
could, on average, be calculated on a case-by-case basis.

Figures 17 and 18 are the same two graphs for a
shorter flight of duration about 2 h, between Brisbane
and Townsville. The false alarm cost is $200, the miss
cost $4800, pc 5 0.01, and the measured d9 for Towns-
ville forecasters was 2.0 at 3-h lead time. The measured
average decision threshold for the group was 0.015, and
taking into account the reliability diagram, the ‘‘effec-
tive’’ threshold would be about 0.01, even more con-
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FIG. 17. Cost vs decision threshold for a Brisbane to Townsville
flight. FAC 5 $200, MC 5 $4800, d9 5 2.0, and pc 5 0.01.

FIG. 18. Cost vs skill for a Brisbane to Townsville flight.

servative than that for Melbourne forecasters. At this
threshold, the cost of the errors in this forecast is $38,
and at the optimal decision threshold of 0.04 the cost
is $27. So, in relative terms, the savings accrued by the
use of probabilities is less for the shorter flight than for
the longer, international flight. This is undoubtedly be-
cause of the relatively high false alarm cost, that is, the
cost of carrying fuel over a long distance unnecessarily.
Miss costs involve significant components that are fixed
and do not depend on route length. Another interesting
comparison between the two flights is the effect of a
more adventurous (higher) decision threshold. The cost
rises much more quickly from the minimum for the
shorter flight as the decision threshold rises than for the
long flight. In Fig. 17, if the decision threshold rises
above 0.25, the cost savings accrued by using proba-
bilities are lost. So the ‘‘sweet spot’’ for savings using
probabilities is less than for the long flight.

6. Forecast system design

Meteorologists are judged on the outcome of fore-
casts, so it is reasonable to assume that they want to
achieve the highest possible accuracy. On the other hand
the desired outcome for commercial users of the forecast
is to use the forecast to optimize the outcome of their
particular enterprise.

Brown and Murphy (1987) studied the particular case
of fire weather forecasts of credible interval temperature
ranges, relative humidity, and wind speed. They found
bias in the forecast of fire weather elements toward
values that produced more caution, that is higher po-
tential fire rate of spread. At higher wind speeds and
lower relative humidities, forecasters are extremely cau-
tious with their probability estimates. To quote from the
abstract of that paper: ‘‘The forecasts also exhibit mod-
est but consistent biases which suggest that the fore-
casters are influenced by the impacts of the relevant

events on fire behavior. These results underscore the
need for probabilistic fire-weather forecasts.’’

On the other hand, Winkler and Murphy (1979) and
Murphy et al. (1989) looked at the reliability of credible
interval temperature forecasts. Murphy and Winkler
(1992), Hamill and Wilks (1995), and Murphy and
Winkler (1976) studied probability of precipitation and
temperature interval probability forecasts. A common
element in all these studies was that there were no ap-
parent safety or economic consequences to the estimates
of probability. In all these studies the estimates were
quite reliable; that is, the observed frequency of events
closely resembled the forecast probability.

So it seems that forecasters can generally formulate
reliable estimates of probability of occurrence when the
outcomes do not have known consequences that affect
the decision. On the other hand, if the outcomes have
a safety connotation, or if a particular outcome can im-
pact adversely on the forecaster, considerable overfore-
casting can occur. It is interesting that forecasters rarely,
in fact never to the author’s knowledge, have to write
a report on a forecast error due to a false alarm on a
TAF. However a missed event often triggers a ‘‘please
explain.’’

Much has been written in the meteorological literature
about probabilistic forecasting, in particular about its
inherent value. Murphy (1977) discussed the relative
value of climatological, categorical, probabilistic, and
perfect forecasts. Murphy expressed forecast value as a
function of the cost–loss ratio. He demonstrated that the
value of the probabilistic forecasts was the same as the
categorical forecasts when the cutoff probability used
to define the categorical forecasts was about equal to
the cost–loss ratio. At other values of the cost–loss ratio,
the value of the probabilistic forecasts was greater. Ma-
son (2001, personal communication) pointed out that
the ratio CR/(1 1 CR) is equivalent to the traditional
cost–loss ratio. Returning to the earlier nomenclature
for forecast value, VTN 5 0, VFN 5 L, VFP 5 C, and VTP

5 C, where L is the loss due to an event and C is the
cost of protection. By definition CR 5 (0 2 C)/(C 2
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L), and the optimal decision threshold, p(opt) 5 CR/(1
1 CR) 5 C/L, the cost–loss ratio. So the decision
threshold that maximizes economic value is seen to be
the same in the signal detection environment as that
determined originally by authors in earlier papers.

Over the years there have been some attempts to cope
with uncertainty in the TAF. Forecasters can specify in
a TAF the probability of occurrence of fog and thun-
derstorms, these being elements that will probably pre-
clude landing. The problem with this methodology is
that the probability is ignored operationally, and legally
airlines are bound to carry the extra fuel irrespective of
the probability estimate. Several years ago, in order to
correct what was perceived as excessive fuel usage in
the United States and Europe where there are many
suitable alternates, the International Civil Aviation Or-
ganization changed the rules and forecasters were in-
structed to mention only probabilities of occurrence of
30% and above on TAFs. In other words, the system
was changed in a way that attempted to raise forecasters’
decision threshold. In Australia, for example, many cau-
tious forecasters in tropical areas were often forecasting
10% chance of thunderstorms, which was often a re-
alistic estimate given the isolated and sporadic nature
of these thunderstorms. When the instructions were
changed, most forecasters just changed 10% to 30%
(personal communication and experience!), because the
perceived consequences had not changed.

As this change naturally tended to cause more misses,
Qantas and the Bureau of Meteorology initiated the
Code Grey system. This forecast is issued for major
Australian airports during the afternoon, valid overnight
and the next morning. Its purpose is to alert airlines to
even the slightest chance of fog, even if this is only
1%–2%. As the miss cost for Quantas’ international
flights is high, they then carry fuel over and above that
required by the categorical TAF. So Qantas realizes the
value in the knowledge of a small probability of a sig-
nificant event. If forecasters really operated on a deci-
sion threshold of over 0.30, the results would obviously
be highly suboptimal. But this is what ‘‘the system’’
expects of them, and so they are caught in something
of a dilemna.

It can readily be seen that the current TAF system is
the result of a legalistic evolution to a system of cate-
gorical forecasting. The system takes no account of the
probabilistic nature of forecasters’ thought processes, in
particular the variable decision threshold that is driven
by consequences and individual forecaster’s attitudes to
those consequences.

7. Conclusions

Considerable economic benefit through lower fuel us-
age is potentially available to airlines if TAFs were ex-
pressed as estimated probabilities of breaching the al-
ternate minimum. This would enable airlines to unlock
the value in forecasters’ ability to provide reasonably

reliable estimates of the probability of occurrence of
these events. The amount of benefit would depend on
three main factors:

1) The ability of airlines to accurately specify the miss
cost and false alarm cost for every flight. The de-
cision process for the two flights given as examples
is a straightforward and simple example. Many
flights have multiple possible alternate destinations
and PNR decision points. An example of the possible
complications is a flight from Tokyo to Perth, Aus-
tralia, operated by Qantas with a Boeing 767 (B767).
This flight is near the limit of endurance for a B767.
If the Perth TAF has an alternate requirement and
the flight is carrying a full payload, the pilot must
land at Darwin to take on extra fuel. So the false
alarm cost increases dramatically due to payload
considerations. The effect is to raise p(opt) from 0.02
to around 0.20, an order of magnitude greater. While
many flights are simple, single-point decisions like
the two examples, others are more complex, and con-
siderable effort would be required by airlines to spec-
ify the full suite of costs.

2) The willingness of regulators to allow airlines to plan
fuel requirements from a probabilistic forecast. For
this to happen, it would be necessary to prove that
probabilistic TAFs provide a commercial benefit to
airlines and do not impact negatively on safety. To
this end, a trial is commencing, in conjunction with
Qantas and American Airlines. Costs will be devel-
oped for several flights from each airline. About an
hour before departure, forecasters will estimate the
probability of weather being below the alternate min-
imum at arrival time. A comparison will be made of
the economic outcomes of this method of planning
fuel and the traditional categorical TAF.

3) The ability of forecasters to achieve reliability with
their probability estimates. The study in Murphy and
Daan (1984) shows that forecasters can learn and
that their probability estimates can become more re-
liable. The results of their experiment suggest that
even better changes in reliability could be obtained
with more frequent feedback to forecasters.
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