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ABSTRACT

A method for visually representing multiple measures of dichotomous (yes–no) forecast quality (probability

of detection, false alarm ratio, bias, and critical success index) in a single diagram is presented. Illustration of

the method is provided using performance statistics from two previously published forecast verification studies

(snowfall density and convective initiation) and a verification of several new forecast datasets: Storm Pre-

diction Center forecasts of severe storms (nontornadic and tornadic), Hydrometeorological Prediction Center

forecasts of heavy precipitation (greater than 12.5 mm in a 6-h period), National Weather Service Forecast

Office terminal aviation forecasts (ceiling and visibility), and medium-range ensemble forecasts of 500-hPa

height anomalies. The use of such verification metrics in concert with more detailed investigations to advance

forecasting is briefly discussed.

1. Introduction

Demand for forecasts occurs in any endeavor for

which the future is of interest and is unknown, thus ex-

tending beyond the natural sciences to business, eco-

nomics, transportation, and sports (e.g., Jolliffe and

Stephenson 2003). Even where certainty exists, as with

Benjamin Franklin’s oft-quoted observation concerning

death and taxes, the details remain of interest. Hence,

the existence of actuarial tables and retirement plan-

ning, both of which can be considered forms of ‘‘cli-

matology.’’ In the domain of weather sensitive human

activities, the need for meteorological forecasts has

motivated progress in meteorological science since the

nineteenth century (e.g., Gribbin and Gribbin 2004;

Willis and Hooke 2006).

Obstacles to meteorological forecast progress arise in

three categories: scientific, such as incomplete under-

standing of atmospheric phenomena and their intrinsic

chaotic nature; technical, as with limits to computer

power and the resolution of a specific observing plat-

form; and political, for example, the sparseness of ob-

servations at certain temporal–spatial scales and the

structures of forecast services themselves. Systematic

forecast verification can assist in overcoming such ob-

stacles by allowing the quality of the forecasts to be

assessed and, through appropriate feedback, to revise

and hopefully improve procedures. In particular,

Ramage (1993) notes that the posing and testing of

hypotheses is a natural activity in a forecast setting. As

verification results come in, hypotheses can be revised

or discarded based on the new information.

It is here, however, that difficulties emerge. As has

been amply discussed in the literature, forecast verifica-

tion is a complex and multidimensional problem (e.g.,

Murphy 1993; Brooks and Doswell 1996; Katz and

Murphy 1997; Wilks 2006; Morss et al. 2008 and many

others). Distribution-oriented verification approaches

(Murphy and Winkler 1987; Murphy et al. 1989; Brooks

and Doswell 1996), which retain the relationships be-

tween forecasts and observations, are more comprehen-

sive than measures-oriented methods in representing the

many aspects of forecast quality (Murphy 1993). Despite

this, summary measures, although necessarily incom-

plete, may be convenient in many circumstances and

remain in frequent use (Jolliffe and Stephenson 2003). It

is clear that summary measures of forecast quality are the
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start rather than the endpoint of investigations intending

to understand and improve performance.

In this study, a 2 3 2 contingency table is constructed

from dichotomous (yes–no) forecasts and well-known

quality measures are derived from the entries of this

table (Fig. 1). In section 2, it is shown that several of

these commonly used measures are mathematically re-

lated and can be geometrically represented in a single

diagram. As such, the accuracy, bias, reliability, and skill

(obtained by plotting a measure of accuracy relative to a

reference forecast) can be simultaneously visualized

and the underlying relationships easily understood.

Results from two previously published verification da-

tasets [snow density by Roebber et al. (2003) and con-

vective initiation by Fowle and Roebber (2003)] and

four new datasets (severe convection, heavy rainfall,

terminal aviation forecasts, and medium-range forecasts

of 500-hPa height anomalies) using these measures are

presented in this manner in section 2. A summary is

presented in section 3.

2. The geometric relationship between POD, FAR,
CSI, and bias

Taylor (2001) exploited the geometric relationship

between three measures of model performance—

correlation, normalized root-mean-square difference,

and variance—to represent them in a single diagram.

For a good model, the correlation between forecasts

and observations is high, the root-mean-square differ-

ence is small, and the variances are similar. The position

of the model point in the diagram relative to the ob-

served reference gives an immediate visualization of

accuracy. Lambert and Boer (2001) independently ob-

tain a similar result.

One can proceed in a similar fashion with dichoto-

mous (yes–no) forecasts. The forecasts and corre-

sponding observations in such a system result in a 2 3 2

contingency table (Fig. 1). Key quality measures in this

system, the probability of detection (POD), false alarm

ratio (FAR), bias, and critical success index (CSI; also

known as the threat score), are then defined:

POD 5
A

A 1 C
, (1)

FAR 5
B

A 1 B
, (2)

bias 5
A 1 B

A 1 C
, and (3)

CSI 5
A

A 1 B 1 C
. (4)

With some algebraic manipulation, POD, FAR or its

equivalent, success ratio (SR 5 1 2 FAR), bias, and CSI

can be related as follows:

CSI 5
1

1
SR 1 1

POD� 1
and (5)

bias 5
POD

SR
5 tan u, (6)

where u is the angle from the abscissa. Equation (5) was

previously derived by Schaefer (1990).

Figure 2 is an example of a diagram so constructed.

For good forecasts, POD, SR, bias, and CSI approach

unity, such that a perfect forecast lies in the upper right

of the diagram. Deviations in a particular direction will

indicate the relative differences in POD and SR, and

consequently bias and CSI. As with the Taylor (2001)

diagram, an immediate visualization of differences in

performance is thus obtained. Further, skill can be as-

sessed by plotting the forecast quality measure relative

to a reference forecast (climatology, persistence, or any

other desired baseline).

It is important to note that for a 2 3 2 contingency

table, there are three degrees of freedom. For example,

Stephenson (2000) shows that the four elements of the

2 3 2 contingency table (A–D in Fig. 1) can be com-

pletely expressed by three distinct verification mea-

sures: the hit rate, false alarm rate, and bias. In this

sense, the formulation expressed by Eqs. (1)–(6) and its

related diagram is incomplete in that it neglects the

number of times for which a null event is forecast and no

event occurs (element D of the contingency table). In

rare event forecasting, however, neglecting this term

can be useful since skill can be inflated by verification of

the abundant and often trivial nonevents. In particular,

Doswell et al. (1990) show that two common measures

of forecast quality, the true skill statistic (TSS) and the

Heidke skill score (HSS), approach the POD and a

simple function of the CSI, respectively, in the limit as

element D becomes large. In instances where the fore-

cast event of interest is less rare, however, it may be

important to account for nonevents in the verification.

FIG. 1. The 2 3 2 contingency table.
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One approach might be to augment the above verifi-

cation with the percent correct rejections,

PCR 5
D

B 1 D
, (7)

or other measures that account for element D of the

contingency table (e.g., Doswell et al. 1990). As always, it

is essential to recall that there is no universal approach to

verification but rather that the procedure selected needs

to match the specific objectives of the study.

Regardless, some important verification concepts can

be readily visualized in the diagram. Doswell (2004)

summarized the duality of error, an idea elaborated by

Hammond (1996) within the context of meteorological

forecasts, by stating that ‘‘at a given level of forecast

accuracy for the system, false negatives can only be

reduced by increasing the false positives and vice

versa.’’ Consider a fixed level of accuracy, as measured

by the CSI, of, say, 0.30. For bias 5 1.0, POD and SR are

equal. Moving along the 0.30 contour in Fig. 2, it is clear

that as SR increases, POD decreases and vice versa; that

is, the slope of the contours is always negative. At the

same time, of course, the bias increases or decreases in a

completely determined fashion.

Second, it is important to understand the influence of

sampling variability on the scores and, in order to assess

skill, to reference the forecasts to some baseline. For

large samples, one can estimate the distribution of the

probabilities about the true values of each entry in the

contingency table based on the central limit theorem

and Gaussian statistics. In particular, the 95th percentile

range for the probability of a given entry in the table goes

as N�0.5, where N is the sample size. It is possible to

estimate variability in the scores owing to sampling

without resorting to normal statistics using a form of

FIG. 2. Performance diagram summarizing the SR, POD, bias, and CSI. Dashed

lines represent bias scores with labels on the outward extension of the line, while

labeled solid contours are CSI. Sampling uncertainty is given by the crosshairs and

reference ‘‘sample frequency’’ forecasts (where available) are in gray. Shown are 48-h

forecasts of convective occurrence (bold square; Fowle and Roebber 2003), SPC

forecasts of significant severe weather (filled square) and significant tornadoes (filled

triangle), HPC 6–24-h forecasts of heavy precipitation (amounts in excess of 12.5 mm

in 6 h) for cold (open circle) and warm (filled circle) seasons, heavy and light snow

densities from a neural network [boldface multiplication and plus symbols, respec-

tively; Roebber et al. (2003)], TAFs from NWS WFOs (bold half-filled circle), and

MOS (gray half-filled circle).
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bootstrapping. The process is simple: create a new sam-

ple of the same size as the original with the same number

of observed (A 1 C) and forecast (A 1 B) ‘‘yes’’ entries,

and the same number of observed (B 1 D) and forecast

(C 1 D) ‘‘no’’ entries. However, the sequence is other-

wise random and in this sense represents a kind of cli-

matological forecasting. By computing the accuracy

measures for 1000 such samples, and sorting and ex-

tracting the 25th and 975th values, one can construct the

95th percentile range for the measure of interest. The

sampling variability so defined is represented in Fig. 2 for

POD and SR by the ‘‘crosshairs’’ and this can be used to

see the effect on CSI (note: the severe convection and

heavy rainfall forecasts, for which we do not have the

element D, are not represented in this way). Addition-

ally, this procedure will provide a baseline measure of

accuracy based on the sample frequency, which can then

be compared against the forecasts of interest to provide a

measure of skill (also plotted in Fig. 2).

For the short-range forecast data (Fig. 2), most of the

points are clustered toward the center of the diagram,

relatively close to the bias 5 1.0 line. Moving along this

line from the lower left to the upper right of the diagram

indicates an increase in absolute forecast accuracy. As

discussed in Hammond (1996) and Doswell (2004),

the aim of research and forecaster training is to increase

the accuracy, that is, to move toward the upper right of the

diagram. Optimal increases in accuracy are obtained by

moving at 458, that is, by maintaining unbiased forecasts

through simultaneous increases in detection and reduc-

tions in false positives.

Next, we turn to several illustrative examples (see

Table 1 for the scores and the appendix for the contin-

gency table elements). Roebber et al. (2003) develop a

neural network procedure by which, given the vertical

profiles of temperature and moisture, surface wind, and

liquid equivalent precipitation amount, one can diag-

nose snowfall density. Such information is crucial to

making accurate forecasts of snow accumulation. The

value of this procedure was studied within the context of

municipal snow removal for the 2004–05 and 2005–06

cold seasons (Roebber et al. 2007) and in winter 2007–

08 was adopted by the National Oceanic and Atmo-

spheric Administration’s Hydrometeorological Predic-

tion Center (NOAA/HPC). Considerable skill for this

task is indicated by the separation of the neural network

and sample frequency scores for heavy and light snow

densities (Fig. 2; Tables 1 and A1). Despite similar

PODs, however, the neural network has higher accur-

acy for light snow density owing to the smaller bias, a

propitious result since snowfall accumulation will be

larger for lighter snow densities for a given amount of

liquid equivalent. It is also evident that heavy snow

density in the test sample is a relatively rare event,

composing only 10% of the total cases, compared to

45% for light snow density.

Fowle and Roebber (2003) used a real-time mesoscale

model with 6-km grid spacing to produce explicit fore-

casts of convective occurrence and mode in southern

Wisconsin. These forecasts were then verified using

radar reflectivity data. The surprisingly high accuracy

for 48-h forecasts of convective initiation in the target

region is evident (Fig. 2; Tables 1 and A2). The data

show that the very few false alarms occur at the cost of a

slight underforecasting of actual convective events,

which composed 44% of the cases. In this instance, the

accuracy of the model in anticipating nonevents is im-

portant as well, showing a 94% correct rejection.

Next, we consider NOAA/HPC heavy precipitation

forecasts, defined as liquid equivalent precipitation in

TABLE 1. Forecast quality measures for verification datasets. Additional measures (PCR, TSS, GS, and HSS) are provided for

comparison (see text for details). The 95th percentile sampling error estimates for each of the measures are provided.

Dataset POD SR Bias CSI PCR TSS GS HSS

Network light snow 0.63 6 0.07 0.69 6 0.07 0.91 0.50 6 0.05 0.77 6 0.05 0.40 6 0.12 0.26 6 0.06 0.41 6 0.12

Network heavy snow 0.61 6 0.15 0.41 6 0.10 1.49 0.32 6 0.07 0.90 6 0.02 0.51 6 0.17 0.27 6 0.07 0.42 6 0.14

48-h convective occurrence 0.82 6 0.08 0.94 6 0.10 0.87 0.78 6 0.08 0.94 6 0.10 0.75 6 0.18 0.60 6 0.09 0.75 6 0.18

SPC severe 0.49 0.69 0.71 0.40 NA NA NA NA

SPC tornado 0.48 0.54 0.89 0.34 NA NA NA NA

NWS TAF 0.65 6 0.00 0.60 6 0.00 1.08 0.46 6 0.00 0.96 6 0.00 0.61 6 0.00 0.42 6 0.00 0.59 6 0.00

MOS TAF 0.54 6 0.00 0.54 6 0.00 1.01 0.37 6 0.00 0.96 6 0.00 0.50 6 0.00 0.33 6 0.00 0.50 6 0.00

HPC precipitation (warm) 0.24 0.30 0.78 0.15 NA NA NA NA

HPC precipitation (cold) 0.37 0.34 1.10 0.21 NA NA NA NA

Reforecast positive 5 day 0.24 6 0.01 0.28 6 0.01 0.85 0.15 6 0.01 0.82 6 0.00 0.06 6 0.01 0.03 6 0.00 0.06 6 0.01

Reforecast positive 7 day 0.21 6 0.01 0.27 6 0.01 0.78 0.14 6 0.00 0.84 6 0.01 0.05 6 0.01 0.03 6 0.00 0.05 6 0.01

Reforecast positive 10 day 0.14 6 0.01 0.29 6 0.01 0.47 0.10 6 0.01 0.90 6 0.01 0.04 6 0.01 0.03 6 0.00 0.05 6 0.01

Reforecast negative 5 day 0.30 6 0.01 0.26 6 0.01 1.15 0.16 6 0.01 0.76 6 0.00 0.06 6 0.01 0.03 6 0.00 0.06 6 0.01

Reforecast negative 7 day 0.27 6 0.01 0.26 6 0.01 1.05 0.15 6 0.01 0.78 6 0.00 0.06 6 0.01 0.03 6 0.00 0.05 6 0.01

Reforecast negative 10 day 0.21 6 0.01 0.26 6 0.01 0.80 0.13 6 0.01 0.83 6 0.01 0.04 6 0.01 0.02 6 0.00 0.05 6 0.01
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excess of 12.5 mm within a 6-h period at a site. Raw

forecast and observed precipitation data were obtained

from the NOAA/HPC National Precipitation Verifica-

tion Unit Quantitative Precipitation Forecast (NPVU-

QPF) verification dataset for January 2001–July 2005 for

all forecasts within 1000 km of HPC. These data contain

32-km gridded observations and HPC forecasts at time

ranges of 6–24 h (see the Web site http://www.hpc.

ncep.noaa.gov/npvu/help/remap.shtml for details). All

6-h observed or forecast precipitation events in excess of

12.5 mm are included in the analysis. A stratification

based on cold season only forecasts (October–April),

when forecast accuracy tends to be somewhat higher (see

www.hpc.ncep.noaa.gov) is included.

The data (Fig. 2; Tables 1 and A3) demonstrate the

meteorological challenge of forecasting heavy precipi-

tation, a problem that is exacerbated in the warm season

when convection dominates. It is notable that much of

the accuracy increase from the warm to cold season is

attributable to increased POD, which is again a signa-

ture of the change from thunderstorms to precipitation

systems that organize on larger scales.

Significant severe weather reports for 2000–04 from

the NOAA/Storm Prediction Center (SPC) Severe

Thunderstorm Database are also examined. These re-

ports are subdivided into nontornadic and tornadic

events. Following Hales (1988), a nontornadic (hail or

wind) event is considered significant if it meets any of

the following criteria: 33 m s21 or greater wind, 5-cm

diameter or greater hail, one or more fatalities, three or

more injuries, or damages in excess of $50,000. A tor-

nadic event is considered significant if it meets any of

these criteria: F1 or greater tornado, one or more fa-

talities, three or more injuries, or damages in excess of

$50,000 [the tornadic criteria are relaxed to include F1

tornadoes, since these observations are still considered

to be relatively robust; Verbout et al. (2006)].

Forecast watches (type, valid period, and latitude–

longitude of the bounding rectangle) are obtained from

a database maintained by the SPC. A severe watch is

verified if any significant nontornadic severe weather

report occurs within its boundaries during the valid

time, while tornado watches are verified with reports of

significant tornadoes within its boundaries during the

specified interval. All cases within 1000 km of SPC are

examined. Note that this verification procedure means

that an event at a given date and time inside a watch box

counts as a ‘‘hit’’ but that N events outside of a box will

count as N ‘‘misses.’’

There is a slight increase in accuracy for SPC forecasts

of significant severe weather relative to tornadic forecasts

(Fig. 2; Tables 1 and A4). Event detection is the same,

however, so this difference is entirely owing to a reduc-

tion in false alarms. Despite this, there is a slight un-

derforecasting bias for both types of forecasts. The

relative abundance of false positives for tornadic storms

may represent the perceived penalty of missing a weather

event, with the risk of casualties noted by Doswell (2004).

An alternative explanation, which we cannot discount,

however, is that the underforecasting bias is an artifact of

the above verification method that can result in multiple

misses for a given box.

Terminal aviation forecasts (TAFs) issued by all

available NWS WFOs in the CONUS for 2003–05 are

examined. Scheduled-only TAFs were verified using the

‘‘operational impact scheme for flight category’’ in the

first 6 h of the TAF. A 2 3 2 contingency analysis for

critical threshold data (ceiling ,1000 ft or visibility ,3

mi versus ceilings $1000 ft and visibility $3 mi) is used.

As a reference, these forecasts are compared to those

derived from the model output statistics (MOS). Nota-

ble is the lack of bias in both sets of TAF forecasts (Fig.

2; Tables 1 and A5), but the substantial increase in ac-

curacy of the NWS forecasts relative to MOS (the

sampling variability is negligible for these large samples;

see Table 1). Since the forecasts are relatively unbiased,

the human forecast skill in the TAF forecasts is ob-

tained both through increases in detection and reduc-

tions in false positives. Note that this again represents a

rare-event type of forecast, with only 8% of the sample

meeting the critical threshold criteria.

Illustration of the temporal effects on forecast quality

can also be accomplished with the verification diagram.

A natural application is medium-range dichotomous

forecasts of a quantity of interest; a ‘‘trajectory’’ is

traced out in the diagram space corresponding to the

evolution of forecast quality, trending toward clima-

tology at the greatest range. To demonstrate this aspect,

the NOAA Climate Diagnostic Center’s 15-member

ensemble forecast archive (Hamill et al. 2006), gener-

ated from the NOAA/NCEP Global Spectral Model

(GSM; specifically, the operational version of the MRF

that was in place from January to June 1998) is con-

sidered. All 500-hPa forecasts for December–February

for 1979–2003 at 5-, 7-, and 10-day ranges are examined

in the hemispheric band from 358 to 458N. At every 108

longitude, a 500-hPa anomaly is computed relative

to the 1979–2003 mean. If the ensemble forecast or

observed anomaly is at least one standard deviation

from the climate normal, then it is characterized as a

positive or negative anomaly depending on the sign of

the departure (Fig. 3; Tables 1 and A6). Based on these

criteria, slightly more than half of the verified dates and

longitudes exhibit no anomalies and for a given positive

or negative forecast, only about 22% of the sample

would be considered an event.
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Two aspects of the verification are immediately ob-

vious. First, all of the forecasts exhibit relatively low

skill (note that the climatological forecast, by defini-

tion, is no anomaly and therefore has a POD and a CSI

of zero) but the negative anomaly forecasts are supe-

rior, owing to a higher POD. Second, the loss of skill

with increased forecast range in both cases is largely

owing to a decreased POD, while SR remains rela-

tively constant from 0.29 to 0.26 and percent correct

rejections increase (note that the loss of detection and

skill culminates in a climatological forecast of zero skill

and 100% correct rejections for anomalies of either

sign). These differential performance issues between

positive and negative anomalies are not highlighted by

metrics like the TSS, GS, and HSS (Table 1) and may

suggest a clue toward GSM physics that bears further

attention.

3. Summary

Measures-oriented verification methods remain in con-

siderable use in many areas of forecasting, most particu-

larly in the evaluation of dichotomous (yes–no) forecasts.

In this note, we show that POD, FAR, bias, and CSI are

geometrically related and consequently can be plotted in

a single diagram. This visual representation is in general

preferable to simple tables for ease of interpreting the

statistics. Examples showing verification results plotted

in this manner are provided for a range of forecasting

applications, including snowfall, convective initiation

within an area, severe convective type (nontornadic and

tornadic), heavy rainfall, terminal aviation forecasts

(ceiling and visibility), and medium-range ensemble

500-hPa height anomalies. While such examinations

cannot reveal the origins of skill, they can point the way

toward the more detailed investigations that are re-

quired to advance forecasting in the face of ongoing

scientific, technical, and political obstacles.
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FIG. 3. Performance diagram as in Fig. 2, but for the ensemble forecast positive

(plus symbol) and negative (X) 500-hPa height anomalies. Shown are three forecast

ranges, as indicated by the superscripts: 5, 7, and 10 days. Sampling variability, which

is small, is omitted in this diagram. See text for details.
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APPENDIX

Forecast Contingency Tables
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