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ABSTRACT

The purposes of this paper are to describe a dynamic model for repetitive decision-making in the cost-
loss ratio situation and to present some theoretical and numerical results related to the optimal use and
economic value of weather forecasts within the framework of the model. This model involves the same
actions and events as the standard (i.e., static) cost-loss ratio situation, but the former (unlike the latter) is
dynamic in the sense that it possesses characteristics (e.g., decisions, events) that are related over time. We
assume that the decision maker wants to choose the sequence of actions over an n-occasion time period that
minimizes the total expected expense. A computational technique known as stochastic dynamic programming
is employed to determine this optimal policy and the total expected expense.

Three types of weather information are considered in studying the value of forecasts in this context: 1)
climatological information; 2) perfect information; and 3) imperfect forecasts. Climatological and perfect
information represent lower and upper bounds, respectively, on the quality of all imperfect forecasts, with
the latter considered here to be categorical forecasts properly calibrated according to their past performance.
Theoretical results are presented regarding the form of the optimal policy and the relationship among the
total expected expenses for these three types of information. In addition, quality/value relationships for
imperfect forecasts are described.

Numerical results are derived from the dynamic model for specific values of the model parameters. These
results include the optimal policy and the economic value of perfect and imperfect forecasts for various time
horizons, climatological probabilities, and values of the cost-loss ratio. The relationship between the accuracy
and value of imperfect forecasts also is examined.

Several possible extensions of this dynamic model are briefly discussed, including decision-making problems
involving more actions and/or events, more complex structures of the costs and losses, and more general
forms of imperfect forecasts (e.g., probability forecasts).

1. Introduction

Many decision-making problems that are sensitive
to weather information are repetitive in nature, in
the sense that they involve identical or similar deci-
sions made on a sequence of occasions. The frost-
protection and fallowing-planting problems are two
examples of such situations (e.g., Katz et al., 1982;
Brown et al., 1984). These situations generally possess
characteristics that are related over time; that is, the
current decision depends on previous decisions and

{ The National Center for Atmospheric Research is sponsored
by the National Science Foundation.
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past weather events and, in turn, affects future deci-
sions and their consequences. Clearly, repeated ap-
plication of a static decision-making model would
not be appropriate in such situations. Instead, a
dynamic model is required in order to take relation-
ships among the relevant characteristics into account.

Since 1950, meteorologists have devoted consider-
able attention to a simple decision-making problem
commonly referred to as the “cost-loss ratio situation”
(e.g., Thompson, 1952, 1962; Thompson and Brier,
1955; Murphy, 1977). In essence, this problem in-
volves a decision maker who must decide whether or
not to protect an activity in the face of uncertainty
as to whether or not adverse weather will occur. In
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formulating decision-making models in the cost-loss
ratio situation, it has been assumed heretofore that
either 1) the decision is made on a single isolated
occasion or 2) similar decisions are made on two or
more occasions but the characteristics of the situations
on these occasions are unrelated. Since repetitive
decision-making situations generally do not satisfy
the latter assumption (as noted earlier), it would be
desirable to have a dynamic model suitable for ap-
plication in this context.

The primary purposes of this paper are 1) to
describe a dynamic model for repetitive decision
making in the cost-loss ratio situation and 2) to
present some theoretical and numerical results related
to the optimal use and economic value of weather
forecasts within the framework of this model. Section
2 contains a description of the dynamic model and
the types of forecasts of interest here. This section
also illustrates the model using a two-occasion situa-
tion. Section 3 describes the general solution procedure
for this dynamic decision-making problem and sum-
marizes theoretical relationships between the eco-
nomic value of different types of forecasts. Numerical
results derived from the dynamic model are presented
in Section 4, including optimal strategies for the
decision maker and the economic value of forecasts
for various values of the model parameters. Section
5 consists of a discussion and conclusion. The deri-
vations of some theoretical results summarized in
Section 3 are included in two appendices.

2. The dynamic model
a. Basic model and assumptions

We are concerned here with an individual who
must decide on each of n occasions (e.g., days)
whether or not to protect an activity in the face of
uncertainty as to whether or not weather adverse to
the activity will occur on that occasion or on future
occasions. Specifically, this situation involves two
actions (protect, do not protect) and two events
(adverse weather, no adverse weather). The period
over which these decisions must be made is referred
to as the “horizon.” A cost C is incurred on each
occasion that protective action is taken, and it is
assumed that taking protective action precludes in-
curring any losses on that occasion (i.e., the activity
is completely protected). If protective action is not
taken and adverse weather occurs, then the decision
maker suffers a loss L. It is assumed that this loss
can be incurred at most once (i.e., it is a complete
loss from which no recovery is possible) and that O
< C < L < co. Finally, if protective action is not
taken and adverse weather does not occur, then no
loss is incurred.

The individual or decision maker is assumed to
want to minimize the rotal expected expense over the
entire n-occasion horizon, and thus he/she will choose
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the strategy or sequence of actions (i.e., protect, do
not protect) over this period that will lead to such a
minimum.' Total expected expense is the probability-
weighted average of the expenses that might be in-
curred during the n-occasion horizon. The criterion
of minimizing total expected expense—or, equiva-
lently, maximizing total expected return—requires
that the decision maker be risk neutral (i.e., that the
decision maker’s utility function be linear in monetary
expense; see Winkler and Murphy, 1985).

b. Types of, expense of, and value of forecasts: Some
definitions

Three types of information or forecasts are of
interest here: 1) climatological information; 2) imper-
fect forecasts; and 3) perfect information. In order to
describe these types of information in appropriate
detail, it is convenient to introduce the following
notation:

(1) Events and climatological probabilities—

6 is a random variable denoting the occurrence
(6 = 1) or nonoccurrence (6 = 0) of adverse weather;

Dps = P{6 = 1} is the climatological (e.g., long-
term historical or “prior””) probability of adverse
weather.

(ii) Forecasts—

Z is a random variable denoting a (categorical)
forecast of adverse weather (Z = 1) or no adverse
weather (Z = 0);

Dz = P{Z = 1} is the probability of a forecast
of adverse weather;

P = P{6 = 1|Z = 1} is the conditional (or
“posterior’”) probability of adverse weather given a
forecast of adverse weather;

po = P{6 = 1|Z = 0} is the conditional (or
“posterior”) probability of adverse weather given a
forecast of no adverse weather.

The quality of the imperfect forecasts is fully
described by the two conditional probabilities p, and
Po. Without any loss of generality, it can be assumed
that po < p, < p, (this relationship implies that
adverse weather is more likely to be preceded by a
forecast of adverse weather than by a forecast of no
adverse weather). Then, from the definition of con-
ditional probability,

Ds — Do .

= -, 1
Dz 71 — Do (1)
Hence, only three parameters—py, py, and p,—are
needed to characterize the imperfect forecasts. Since
the probabilities p, and p, indicate the likelihood of

! It will be demonstrated by example in Section 2c that the nzive
strategy of minimizing the immediate expected expense on each
individual occasion is not equivalent to minimizing the total
expected expense over the entire time period.
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occurrence of adverse weather given categorical (i.e.,
nonprobabilistic) forecasts of adverse weather and no
adverse weather, respectively, the imperfect forecasts
can be considered to be categorical forecasts properly
calibrated according to their past performance (i.e.,
adverse weather has occurred a proportion p; of the
occasions in the past with a forecast of adverse
weather and a proportion p, of the occasions in the
past with a forecast of no adverse weather). Alterna-
tively, this formulation of imperfect forecasts can be
viewed as a special case of probability forecasts in
which only two probabilities, po and p,, are used (cf.
Winkler er al., 1983).

Climatological information corresponds to the lim-
iting case of imperfect forecasts for which p; = p,
= p,. We shall denote the minimum total expected
expense over an n-occasion horizon associated with
climatological information and imperfect forecasts by
EAn) and Eg(n), respectively. Moreover, Ed(n) is
used in this paper as a benchmark against which to
compare the minimum total expected expense asso-
ciated with other types of information. Thus, if VAn)
denotes the value of imperfect forecasts over the n-
occasion horizon, then

Vin) = EAn) — En). 2)

Perfect information, on the other hand, corresponds
to the limiting case of imperfect forecasts for which
Py = 1, pp = 0, and necessarily p; = py. If Efn)
denotes the minimum total expected expense over
the n-occasion horizon associated with this type of
information, then

Vi(n) = E{n) — Eg(n). 3

Perfect forecasts are of interest here because Epx(n)
and V(n) represent lower and upper bounds, respec-
tively, on the expected expense and value of all
imperfect forecasts. Relationships among these quan-
tities are discussed in greater detail in Section 3d.

¢. An illustration: The two-occasion (n = 2) horizon

For simplicity, we consider here a two-occasion (n
= 2) horizon. The sequential decision-making problem
in this situation is depicted in the form of a decision
tree in Fig. 1. In this tree, decision points (or nodes)
are denoted by squares and event nodes are denoted
by circles. At each decision node the decision maker
must decide whether to protect (4 = 1) or not to
protect (4 = 0), and at each event node the uncertainty
concerning the events is resolved by the occurrence
of adverse weather (§ = 1) or no adverse weather (6
= (). The probability of adverse weather is taken
here to be the climatological probability p,; that is,
in this example we are considering only the case of
climatological information.

A sequential decision-making problem is analyzed
by starting with the final-period decision and working
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F1G. 1. Decision tree for two-occasion (n = 2) dynamic cost-loss
ratio situation, with climatological information.

back to the initial-period decision. This process is
known as “backward induction,” or “averaging out
and folding back” (e.g., Raiffa, 1968). In the situation
represented in Fig. 1, the decision on the second
occasion is analyzed first. But since occasion 2 is the
final occasion, this decision is a single-period decision
which is uninfluenced by any future decisions. There-
fore, the optimal action on occasion 2 is dictated by
the result obtained for the static cost-loss ratio model;
namely, protect (4 = 1) if p, > C/L and do not
protect (4 = 0) if py < C/L. Knowing that this
strategy will be optimal on occasion 2, we can move
back to the initial decision on occasion 1.

First, suppose that p, > C/L, which means that the
preferred decision will always be to protect on occasion
2 (unless, of course, there is no choice on occasion 2
because the loss L was incurred on occasion 1). As a
result, if the decision maker protects on occasion 1,
the overall expected expense will be 2C (the decision
maker will protect on both occasions and a cost C
will be incurred on each occasion). If the decision
maker does not protect on occasion 1, the overall
expected expense will be p,L + (1 — pg)C [with py,L
corresponding to the probability p, of suffering the
loss L on occasion 1 and (1 — p,)C corresponding to
the probability 1 — p, of no adverse weather occurring
on the first occasion and then protecting on occasion



804

2]. Thus, the decision maker should protect on oc-
casion | if

2C < poL + (1 — pp)C,
which simplifies to
pe > CHL —.C).

Note how the anticipation of the second-occasion
decision changes the critical value of p, on the first
occasion from C/L to a larger value C/(L — C). If
C/L < py < C/(L — C), then the decision maker
should not protect on occasion 1 but should plan to
protect on occasion 2 (if adverse weather does not
occur on occasion 1, of course). If p, > C/(L — C),
then the probability of adverse weather is high enough
to warrant taking protective action on both occasions.
It may be of interest here to note that minimizing
immediate expected expense—a strategy consistent
with repeated application of the static model—yields
a total expected expense of 2C in this case. However,
this expected expense is not necessarily the minimum

_expected expense over the two occasions [if C/L
< ps < C/L — C), then the minimum expected
expense is ppL + (1 — pg)C, which is less than 2C].

Next, consider the case in which p, < C/L. On
occasion 2, the preferred decision should be not to
protect. Moving back to occasion 1, the decision
maker finds that protecting on occasion 1 leads to an
overall expected expense of C + py L (C for protecting
on the first occasion and pyL for the probability of
suffering the loss L on the second occasion, when no
protection will be used). Not protecting on occasion
1 yields an overall expected expense of p,L + (1
— pe)Ps L [psL corresponding to the probability p, of
suffering the loss on occasion 1 and (1 — pppvsL
corresponding to the probability p(1 — ps) of surviving
the first occasion but suffering the loss on the second
occasion). On occasion 1, then, the decision maker
should protect if

C+ pyL <psL + (1 — py)psL,
which reduces to
Pl — pg) > C/L.

But this inequality cannot hold since we have assumed
in this case that p, < C/L, which implies that

Pl — pg) < ps < C/L.

Therefore, the decision maker should not protect on
either occasion if p;, < C/L.

An alternative way to analyze sequential problems
is to evaluate overall strategies, where a strategy
consists of a sequence of choices on the occasions of
concern (this approach is not feasible for the general
n-occasion problem). For example, in the two-occasion
sequential cost-loss ratio situation, there are four
possible overall strategies: protect on both occasions,
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protect on occasion 1 but do not protect on occasion
2, do not protect on occasion ! but protect on
occasion 2 if L is not incurred on occasion 1, and do
not protect on both occasions. These four strategies
are listed in Table 1 along with their total expected
expenses and the values of p, for which each strategy
is optimal. Each total expected expense is determined
by taking the terminal expenses associated with the
branches corresponding to the strategy and weighting
these expenses by the probabilities of reaching these
particular end points. The values of p, for which ¢ach
strategy is optimal agree with the results obtained in
the sequential analysis; for example, under no cir-
cumstances should the decision maker protect on
occasion 1 but not on occasion 2.

For a numerical example, suppose that C = $30
and L = $100. Then the decision maker should
protect on occasion 1 if p, > C/L — C) = 0.429, as
compared with protecting if p, > C/L = 0.300 under
the static model. Moroever, if we assume that p,
= 0.400, then the decision maker should not protect
on occasion | but should protect on occasion 2. The
total expected expense associated with this strategy is
peL + (1 — py)C = $58, which is less than the total
expected expense associated with the strategy of pro-
tecting on both occasions (namely, 2C = $60). The
general solution to the n-occasion sequential cost-
loss ratio problem 1is described in Section 3.

3. Solution procedures and theoretical results

Expressions for the total expected expenses of the
various types of weather information are needed to
obtain quantitative estimates of the value of weather
forecasts in the dynamic cost-loss ratio decision-
making situation. In this section a computational
method is described for determining the optimal
actions and associated minimum total expected ex-
penses for the general n-occasion time period decision-
making problem. Some theoretical results also are’
presented concerning the nature of the optimal actions
and the relationship between the quality and value

TaBLE 1. Total expected expenses for climatological infor_mation
and values of p, for which respective strategies are optimal in two-
occasion sequential cost-loss ratio situation.

Action
Total expected  Values of p, for which

Strategy Occasion | Occasion 2 expense strategy is optimal
1 A=1 A=1 2C CL—C)<p<1*
2 A=1 A=0 C + peL None**
3 A=0 A=1 plL+ (1 ~-p)C C/L<ps<Cf(l—C)
4 A=0 A=0 [1—-(—pPL 0<p,<C/L

* Since C/(L — C) > 1 if C/L > ', strategy 1 is never optimal if C/L
> Y,
** Since p,L + (1 — p)C < C + p,L for all values of py, strategy 2 is never
optimal.
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of weather forecasts. The derivations of these theo-
retical results are included in Appendices A and B.
The dynamic cost-loss ratio situation constitutes a
special case of a general class of dynamic decision-
making models known as Markov decision processes
(Ross, 1970, Chap. 6). For such a class of models, a
computational technique known as stochastic dynamic
programming (White, 1979; Ross, 1983) can be em-
ployed to determine the optimal actions and total
expected expenses. Dynamic programming is based
on the concept of “backwards induction” introduced
in the illustration of the special case of a two-occasion
(i.e., n = 2) time period in Section 2c. This technique
has been employed to quantify the value of weather
forecasts for a more complex dynamic decision-
making model representing the so-called fruit—frost
situation (Katz et al., 1982; Stewart et al., 1984).
We note that it is possible to derive analytical
expressions for the minimum total expected expenses
for each of the different types of weather information
for the general n-occasion time period problem. How-
ever, such expressions are quite complicated and the
dynamic programming technique has the additional
advantage that it can be readily adapted to handle
generalizations of the dynamic cost-loss ratio model.
Such generalizations might include changing the na-
ture of the dynamics (e.g., by assuming proportionate
losses rather than a single complete loss) or changing
the nature of the weather forecasts (e.g., by considering
forecasts that are presented in' probabilistic terms).

a. Climatological information

We let Eq(k) denote the minimum total expected
expense for the last k occasions of a n-occasion time
period decision-making problem (k = 1, 2, ..., n)
when only climatological information is available and
given that no loss L has yet been incurred. For the k
= 1 case (i.e., the static cost-loss ratio situation), it
is easy to show (as observed in Section 2¢) that

Ec(1) = min(p, L, C). 4

Then for the k = 2 case, using the fact that the k
= ] case already has been solved with EA(1) given by
(4),

Ec(2) = min[(1 — p)Ec(1) + poL, C + Ec(1)].  (5)

The first term on the right-hand side (rhs) of (5)
represents the total expected expense over the last
two occasions when protective action is not taken on
the next to last occasion. With probability 1 — p,,
adverse weather will not occur on the next to last
occasion and the total expected expense will be the
expected expense on the last occasion; with probability
Dy, the loss L will be suffered on the next to last
occasion. The second term on the rhs of (5) represents
the total expected expense when protective action is
taken on the next to last occasion. A cost C is
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incurred, and the total expected expense is this cost
plus the expected expense for the last occasion.
Generalizing to the k = 2 case simply involves
substituting Ec(k — 1) in place of E¢(1) in (5) and
yields

Ec(k) = min[(1 — p)Ec(k — 1)
+poL, C+ Ec(k — 1), (6)

k=2,3,..., n. We note that, with the convention
that E-(0) = 0, (6) holds for the case of k = 1 as
well. Hence, by means of the recurrence relation (6),
Ec(k) can be computed iteratively for k = 1, 2,
.., A

At each occasion of the decision-making process,
it is of interest to record the action that minimizes
the rhs of (6). A rule that specifies the optimal action
as a function of the available information is called
the optimal policy. It is shown in Appendix A that
the optimal policy, given only climatological infor-
mation, is of the following form:

(i) do not protect on the first # — k¢ occasions;
(ii) protect on the last k¢ occasions;

for some k¢, 0 < k¢ < n. The exact number of
occasions k¢ on which it is optimal to protect depends
on the parameters C/L and p, of the decision-making
process (see Appendix A). The structure of the optimal
policy has the intuitive explanation that, if an indi-
vidual can only afford to protect on k. occasions,
then it is better to postpone protecting as long as
possible within the n-occasion time period, avoiding
unnecessary protection in the event that a loss L is
incurred.

b. Perfect information

We let Efk) denote the minimum total expected
expense for the last k occasions of a n-occasion time
period (k = 1, 2, ..., n) when perfect information is
available and given that no loss L has yet been
incurred. For the k = 1 case (i.e., the static cost-loss

ratio situation),
E1) = pyC, 7

since 1) protection is always optimal for C < L when
the perfect forecast indicates the occurrence of adverse
weather and 2) adverse weather occurs with probability
Ds. Then for the k = 2 case, using the fact that the k
= 1 case has already been solved with Ex(1) given
by (7),

EK2) = (1 = p)EK1) + py min[L, C + EL1)]. (8)

The first term on the rhs of (8) represents the total
expected expense over the last two occasions given
that adverse weather will not occur on the next to
last occasion (in which case it is, of course, optimal
not to protect), weighted by the probability 1 — p, of
no adverse weather occurring. The second term rep-
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resents the corresponding expense given that adverse
weather will occur on the next to last occasion,
weighted by the probability p, of adverse weather
occurring, with the two terms inside the minimum
representing the expenses for not protecting and
protecting, respectively. Generalizing to the k-occasion
case simply involves substituting Exk — 1) in place
of Ex(1) in (8) and yields

Ep(k) = (1 = p)Eek — 1)

+ pymin[L, C+ Exk — 1)], (9)
k=1,2,...,n, with the convention that Ex0) = 0.
Hence, by means of the recurrence relation (9), Exk)

can be computed iteratively for k = 1,2, ..., n.
It is shown in Appendix A that the optimal policy,
given perfect information, is of the following form:

(i) do not protect on the first n — kp occasions;

.(i1) protect on the last kp occasions whenever 6
for some kp, 1 < kp < n. The exact number of
occasions kp on which it is optimal to protect, when-
ever 6 = 1, depends on the parameters C/L and p,
(see Appendix A). This form of optimal policy is the
same as that for climatological information, except
that k- < kp (see Appendix A); that is, protection is
optimal at least as early in the time period when
perfect information is available, because protection is
needed only on those occasions on which adverse
weather will occur.

¢. Imperfect forecasts

We let Ek) denote the minimum total expected
expense for the last k occasions of a n-occasion time
period (k = 1, 2, ..., n) when imperfect forecasts
are available and given that no loss L has yet been
incurred. For the k = 1 case (i.c., the static cost-loss
ratio situation),

EL1) = (1 — pz) min(pyL, C) + p, min(p, L, C).
(10)

Here Ex(1) is similar to the corresponding expression
(4) for climatological information, except that two
terms appear instead of one. These two terms arise
because of the two different conditional probabilities
of occurrence of adverse weather py and p,, depending
on whether or not adverse weather is forecast. The
first term is weighted by the probability 1 — p; of a
forecast of no adverse weather and the second term
is weighted by the probability p, of a forecast of
adverse weather.

Then for the k = 2 case, using the fact that the k
= 1 case already has been solved with E(1) given by
(10),
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El2) = (1 — pz) min[(1 — po)EK1) + poL, C
+ EZ1)] + pz min[(1 — p)E1) + p, L, C + E{1)).
(11

The first term on the rhs of (11) represents the
minimum total expected expense over the last two
occasions when no adverse weather is forecast on the
next to last occasion (i.e., Z = 0), whereas the second
term represents the corresponding expense for the
case of a forecast of adverse weather on the next to
last occasion (i.e., Z = 1). The two terms are weighred
in the same manner as in (10). Generalizing to the
k-occasion case simply involves substituting Eg(k
— 1) in place of EL(1) in (11) and yields

Edk) = (1 = pz) min[(1 = po)Egk — 1) + poL, C
+ Edk — 1)] + pz min[(1 — p))Efk — 1)
+p L, C+ Edk— 1)], (12)

k=1,2,...,n, with the convention that Ex{0) = 0.
Hence, by means of the recurrence relation (12),
EKk) can be computed iteratively for k = 1, 2,
.., N
It is shown in Appendix A that the optimal policy,
given imperfect forecasts, is of the following form:

(i) do not protect on the first # — kr occasions;

(ii) protect on occasions n — kz + 1 through »
— k'= whenever Z = 1;

(iii) protect on the last k= occasions;

for some ky and ks, 0 < ke < kp < n (ks < kg

because p, < p;; see Appendix A). The exact values

of kr and k= depend on the parameters C/L, p,, po,
4,

and p, (see Appendix A).

This form of optimal policy is somewhat similar
to a combination of the optimal policies for clima-
tological information and perfect information. As in
the case of climatological information, for the last
k'’r occasions it is always optimal to protect. As in
the case of perfect information, it is optimal to protect
whenever adverse weather is forecast on the last kg
occasions. Figure 2 presents a comparison of the
forms of optimal policies for these three types of
weather information. It is shown in Appendix A that
the four quantities that specify the different optimal
policies satisfy the ordering

ke < kc<kp<ke.

(13)

Thus, Fig. 2 illustrates an ordering among the three
forms of optimal policies that must always hold.

d. Quality/value relationships

One of the primary purposes of studying the dy-
namic cost-loss ratio decision-making situation is to
investigate the nature of the relationship between the
“quality” (i.e., some measure of the correspondence
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(a) Climatological information

Do not protect Protect

E 777777777777
] ﬂ'kc n
Occasion
{b) Perfect information
Do not
protect Protect if ®@=1
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r 1
| ﬂ‘kp

Occasion

(¢) Imperfect forecasts

Do not protect

—T T

Protect if Z=1 Protect
RSESRESORRE: WA/,

n-kg n

n-ke

= rm

Occasion

FIG. 2. Structure of optimal policies for (a) climatological infor-
mation, (b) perfect information, and (c) imperfect information.

between forecasts and observations of adverse weather/
no adverse weather) and the “value” of forecasts. We
now describe some general characteristics of quality/
value relationships that will always hold. In Section
4, empirical quality/value curves are calculated for
specific numerical values of the parameters; namely,
the cost-loss ratio C/L, the climatological probability
ps of adverse weather, and the number of occasions
n in the time period of the model.

Imperfect forecasts of the form considered in this
paper are characterized by the two conditional prob-
abilities of adverse weather, p, and p,, depending on
whether or not adverse weather is forecast. In dealing
with such forecasts, it is convenient to make one
additional assumption; namely, that p, = ps. That
is, adverse weather is assumed to be forecast with the
same long-run frequency as its long-run frequency of
occurrence. This condition can be thought of as a
kind of “reliability in the large.” With the imposition
of the requirement that p, = p,, the two conditional
probabilities are related by

po = (1 = p))ps/(1 — po)l (14)

[see (1)]. Thus the imperfect forecasts can be char-
acterized by the single parameter p,, in addition to
the climatological, and in this case predictive, prob-
ability p,.

A natural ordering among the values of the different
types of weather information holds for the dynamic
cost-loss ratio decision-making model. Specifically,
as shown in Katz et al. (1981) for the case of a more
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general Markov decision process, the total expected
expenses satisfy the ordering

Eyn) < Efn) < Ed(n). (15)

In terms of the concept of the value of information
as measured relative to climatological information,
(15) implies that the value of imperfect forecasts
satisfies

0 < Vn) < Vin). (16)

The inequality (16) means that, on the one hand,
imperfect forecasts cannot be of negative value (ig-
noring the costs, if any, of preparing and/or acquiring
the forecasts) and, on the other hand, imperfect
forecasts cannot be any more valuable than perfect
information. This result is essentially a special case
of a fundamental theorem of Blackwell (1953) con-
cerning the comparative value of experiments. White
(1966) also has shown that the value of imperfect
forecasts is always nonnegative in the case of an
“infinite horizon” problem (i.e., letting the number
of occasions # in the time period tend to infinity) for
a Markov decision process. Hilton (1981) reviews
currently existing results concerning the value of
information in a more general decision-theoretic set-
ting.

We mention one further result concerning quality/
value relationships for the dynamic cost-loss ratio
decision-making model. Under the assumption that
Pz = Dy, any measure of the quality of forecasts is
simply a function of the conditional probability p; of
adverse weather given a forecast of adverse weather.
Here quality is necessarily an increasing function of
D1, since p, ranges from p, for climatological infor-
mation to one for perfect information. It can be
shown that

OEAn) _ o a7
i
or equivalently,
VA 5 o, (18)
ap,

That is, the value of the forecasts cannot decrease as
the quality increases, which is again a special case of
a theorem of Blackwell (1953). On the other hand,
(18) does not imply anything about the nature of the
quality/value relationships for the dynamic cost-loss
ratio model, except that value is necessarily an in-
creasing function of quality. The exact quality/value
relationships for the #-occasion time period problem
are quite complex nonlinear functions and they are
difficult to derive analytically.

However, in the case of a static cost-loss ratio
decision-making model (i.e., » = 1), a quality/value
relationship can be derived analytically (see Appendix
B). As illustrated in Fig. 3, even in this nondynamic
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g pe(L‘C)
;nl slope=pgL
0 —
Po c/L 1
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FIG. 3. Value of imperfect forecasts in static cost-loss ratio
situation, Vi(1), as a function of p, for (a) p, > C/L and (b) p,
< C/L.

case the quality/value relationship is nonlinear, with
the value of imperfect forecasts being zero for p,
between p, and a certain threshold, p¥ say, and then
increasing linearly for p; between pf and one. Specif-
ically, it is shown in Appendix B that

0, if <p < *‘,
V()= { 1 Do <Dy <Di (19)
pL(py—pY), if pt<p<l],
where ‘
if L,
ot = {C/L, l De < CJ 20)
1 —(C/L)[(1 — pe)/pe), if pe> C/L.

4. Numerical results

In this section we present some numerical results
derived from the n-occasion time period dynamic
model of the cost-loss ratio situation. Two specific
cases are used to illustrate the results; 1) Case A: py
= pz = 0.2 and C/L = 0.3, and 2) Case B: p; = pz
= 0.4 and C/L = 0.3.2 Note that p, < C/L in Case
A, whereas p, > C/L in Case B. The results presented
here relate primarily to optimal policies and the value
of different types of information.

2 Without loss of generality, we can take L = 1. This choice of
L is equivalent to translating total expected expense (value) into
total expected expense (value) per unit loss. This transformation is
employed in presenting the results in Figs. 5 and 6.
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a. Optimal policies

Optimal policies for Cases A and B are depicted
in Figs. 4a and 4b, respectively, for a n = 16 occasion
time horizon. In Case A (Fig. 4a), protection is naver
taken for climatological information (i.e., k¢ = C for
p = 0.2), whereas protection is taken when Z = 1
on the last 12 occasions of the time period for perfect
information (i.e., kp = 12 for p; = 1.0). For imperfect
forecasts (i.e., for 0.2 < p, < 1.0), the number of
occasions on which protection is taken when Z = 1
(i.e., kr) increases as p, increases (i.e., as the quality
of the imperfect forecasts improves). Note that it is
never optimal to protect-when Z = 0 in Case A (i.e.,
k= = 0). These results are, of course, consistent with
the relationships between k¢, kp, kr, and k’r described
in Section 3c [see (13)].

For Case B, the optimal policy as a function of p,
is depicted in Fig. 4b. In this case, protection is taken
on the last occasion of the time period for climato-
logical information (k¢ = 1), whereas protection is
taken when Z = 1 on the last 6 occasions of the time
period for perfect information (kp = 6). As p; increases,
the number of occasions on which protective action

a
1.00} . . . . . . . . . . » .
090} e e e e e e e e
osof e e e e e e .
070} e e e e
p, 060} e e e .
o050 , . .
oso} ..
o030}
o.20}
1 1 ] I | { I 1 i L 1 1 1 1 L }
I 2 3 4 5 6 7 8 9 10 il 12 13 14 15 16
n
b
100} .« e e e e
0.85}- e e e e
" o.70f .« e
o .« v
055 . .
. x
o040l x
0.25}
[ 1 1 i 1 1 1 1 | 1 1 | i 1 .
I 2 3 4 5 6 7 8 9 10 1f 12 13 14 15 16

n

FIG. 4. Optimal policies for n = 16 time horizon for various
values of p,. (a) Case A: p, = pz = 0.2 and C/L = 0.3. (b) Case B:
ps = pz = 0.4 and C/L = 0.3. A dot denotes “protect when Z
= 1” and a cross denotes “protect when Z = 1 or Z = 0.” The
absence of a symbol indicates that the optimal action is “clo not
protect.”
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is taken when Z = 1 remains constant or increases,
as expected. Note that when p; < 0.55 protective
action should be taken on the last occasion of the
time period irrespective of whether Z = 1 or Z = 0
(because py > C/L = 0.3 when p, < 0.55). Thus, for
forecasts of low quality (i.e., low values of p;), the
probability of adverse weather following a forecast of
no adverse weather is still high enough to justify
taking protective action.

In a comparison of the optimal policies in Cases
A and B (cf. Figs. 4a and 4b), it can be seen that
protective action begins later in the time period for
Case B than for Case A. Specifically, when Z = 1,
protective action is taken on approximately one-half
as many occasions in Case B as it is in Case A (for a
given value of p;). However, because of the higher
value of p; = pz in Case B, adverse weather is
expected to occur more frequently and is forecast
(i.e., Z = 1) on twice as many occasions in Casec B
as in Case A. Thus, protective action will be taken
on approximately the same number of occasions in
both cases, and the expected portion of the total
expense associated with taking protective action is
therefore approximately the same in the two cases.

b. Value of forecasts
1) QUALITY/VALUE RELATIONSHIPS

The value of imperfect forecasts Vi(#) as a function
of p, for Cases A and B is depicted in Figs. Sa and
5b, respectively, for n = 1, 2, 5, 10 and 16. Since p,
represents an indicator of the quality of the forecasts
(i.e., quality increases as p; increases), the curves in
Fig. 5 describe the quality/value relationships in the
respective cases for the indicated time horizons. In
particular, it should be noted that Vin) = Vyn)
when p; = 1.0.

First, as mentioned in Section 3d, V«(n) remains
constant or increases as p, increases in both cases.
Moreover, Vi{(n) is a nonlinear function of p, for all
time horizons, including the static (n = 1) situation.
With regard to the latter, V(1) consists of two line
segments in both cases [cf. (19) and Fig. 3]. In
Case A(B), V(1) = 0 for p; < 0.3(0.55) and then
VK1) increases linearly for p, > 0.3(0.55) to V(1)
= (0.14(0.18) when p; = 1. When n > 1, the relation-
ship between Vi(n) and p, is obviously nonlinear.
Overall, these quality/value curves exhibit the same
general characteristics in both Case A and Case B.

It is important to recognize that situations involving
different time horizons (i.e., different values of n)
represent different decision-making problems, in the
same sense that different values of the cost-loss ratio
C/L represent different decision makers. Thus, com-
parisons of Vi(n) as a function of p, for different
values of the time horizon » must be interpreted
with some care. Notwithstanding this caveat, it is of
some interest to compare the quality/value curves in
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Fig. 5 for different values of the time horizon n. For
large values of p, (i.e., for relatively high quality
forecasts), Vi«{(n) increases as » increases for small
values of 7 (i.e., for n < 5 in Case A and for n < 2
in Case B) and then V«n) decreases for larger values
of n (i.e., for n > 5 in Case A and for n > 2 in Case
B). This initial increase in value results from substan-
tial differences between the optimal policies dictated
by the forecasts and the optimal policies dictated by
climatological information (p, = p,) for such values
of n [the differences in optimal policies are less
pronounced in the static (# = 1) situation]. As the
time horizon # increases still further for these values
of p,, the optimal policy based on the forecasts
necessarily involves taking protective action on a
smaller percentage of the occasions (otherwise the
total expected expense associated with taking protec-
tive action would become undesirably large), and this
policy corresponds more closely to that associated
with climatological information.

For smaller values of p, (i.e., for forecasts of lower
quality), the optimal policy associated with the fore-
casts approaches the optimal policy associated with
climatological information even more rapidly (than
it does for larger values of p;) as the time horizon n
increases, with the result that the “changeover” from
increasing Vi(n) to decreasing Vx(n) occurs for smaller
values of n. In the limit as n becomes large, the
optimal policy based on imperfect forecasts ap-
proaches that based on climatological information,
and the value of the forecasts approaches zero. This
result can be explained heuristically by recognizing
that the total expected expense for all types of infor-
mation approaches L as n becomes large (or, equiv-
alently, that the probability of suffering the loss L
approaches one as n becomes large, regardless of the
quality of the information).

Comparison of the quality/value curves for Cases
A (py < C/L) and B (ps > C/L) reveals some overall
similarities and some specific differences. With regard
to the latter, it is of interest to note that, irrespective
of the length of the time horizon n, the value of the
forecasts Vi(n) in Case A is zero for p; < 0.30. In
Case B, on the other hand, V«(n) = 0 for p, < 0.55
when n = 1, whereas Vi«{n) > 0 for p, > 0.40 for
larger values of n. That is, in this latter case forecasts
of relatively low quality are of some value in situations
involving longer time horizons, whereas such forecasts
are of no value in the static (n = 1) situation.

2) VALUE VERSUS COST-LOSS RATIO

The value of imperfect forecasts V{(n) as a function
of the cost-loss ratio C/L for Case A is depicted in
Fig. 6 for selected values of forecast quality p; and
time horizon ». In the static n = 1 situation (Fig.
6a), the curves for the various values of p, each
consist of line segments with positive and negative
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slopes, respectively. Specifically, V(1) increases lin-
early from C/L = 1 — p, to C/L = 0.2 and then
VK1) decreases linearly from C/L = 0.2 to C/L
= p,. Thus, the maximum value of V(1) is attained
at C/L = p, = 0.2. In the static situation, then,
imperfect forecasts are of greatest value for decision
makers whose cost-loss ratios are equal to the cli-
matological probability of adverse weather. For lcnger
time horizons, the curves (Figs. 6b, ¢, and d) indicate
that the maximum value of Vg(n) shifts toward
smaller values of C/L as » increases. For example,
the maximum value of Vx(10) occurs near C/L
= 0.10. Thus, as » increases, imperfect forecasts are
of greater value for decision makers with cost-loss
ratios somewhat less than p, than for decision makers
with cost-loss ratios equal to p,.

It is also of interest to note in Fig. 6 thatl the
“sensitivity” of Vi(n) to changes in forecast quality
increases as the time horizon increases in length for
a broad range of values of the cost-loss ratio. That
is, the differences between the curves for two particular
values of p, increase as »n increases. In absolute terms,
then, improvements in quality will lead to larger
increases in value for some decision makers (i.e., for
some values of C/L) when n is large than when n is
small (however, recall that the value of all forecasts
approaches zero as n becomes still larger). On. the
other hand, the shift in these curves (Fig. 6) toward
lower values of C/L as n increases indicates that the
value of the forecasts to decision makers with large
values of C/L decreases quite rapidly as »n increases.
Examination of these relationships for Case B yields
qualitatively similar results, and these figures were
omitted to conserve space.

5. Discussion and conclusion

This paper has described a dynamic model for
repetitive decision-making in the cost-loss ratio situ-
ation. As such, the model represents a potentially
useful generalization of the familiar static model of
this situation. However, many other extensions of
both the static and dynamic models are possible.
With regard to the former, Epstein (1969) has de-
scribed a static model for a N-action, N-event gener-
alization of the standard cost-loss ratio situation, and
the value of weather forecasts within the framework
of this model has recently been investigated by Mur-
phy (1985a). Here, we briefly discuss several possible
extensions of the dynamic model formulated in this
paper.

One extension of this model would involve changing
the nature of the dynamics by assuming a different
structure for the expenses within the framework of
the two-action, two-event situation. For example,
instead of a single complete loss when protective
action is not taken and adverse weather occurs, the
expense incurred under these conditions could be



MAY 1985

070~ a

060

050
040 r—
V(1)
0.30 L

0.20-

0.10

0.00
00

070 ¢

0.60

050

040
Ve (5)

0.30

0.20

0.10

0.00!
00 02 04 06 08 1.0

Cc/L

MURPHY, KATZ, WINKLER AND HSU

811

070+ b

060

050

040}
Ve (2)

030

0.20

0.10

0.00!
00

c/L

070 F d

0.60

0.50

040
Ve (10)

0.30

0.20

0.10

FIG. 6. The value of imperfect forecasts V(n) as a function of C/L for selected values of p, for Case A:
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considered to be only a partial loss. Alternatively, the
loss might be treated as recoverable in part over time
rather than as complete and final. Another possible
extension would consist of employing decision-making
criteria other than that of minimizing total expected
expense. For instance, one such criterion might pre-
scribe that the decision maker choose actions in such
a way as to postpone the occurrence of a (complete)
loss as long as possible. In a related vein, it is
frequently appropriate in sequential decision-making

problems to discount future expenses (or returns).
Thus, it would be of interest to compare the optimal
policies and value-of-information estimates obtained
when such a discount factor is included in the dynamic
maodel with the results presented here for the nondis-
counted case. Moreover, in situations involving large
or catastrophic losses, it generally is desirable to take
the decision maker’s attitude toward risk into account
in determining optimal policies and the value of
information. Thus, maximizing expected utility might
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be a more appropriate decision criterion in this
context than minimizing expected expense.

Another type of extension of the model considered
in this paper would consist of the formulation of a
dynamic model for a decision-making problem in-
volving more than two actions and/or events. For
example, various levels of protection and degrees of
adverse weather might be considered. In this regard,
it would be of interest to formulate a dynamic model
for the N-action, N-event generalization of the cost—
loss ratio situation originally described by Epstein
(1969). Finally, it would be desirable to investigate
the optimal policies and value of information for
more general forms of imperfect forecasts than the
calibrated categorical or “primitive” probability fore-
_casts considered here (see Section 2b). Examples of
these more realistic imperfect forecasts include the
objective and subjective probability of precipitation
forecasts currently produced on an operational basis
by the National Weather Service (e.g., see Murphy,
1985b).

In conclusion, it should be recalled that the static
cost-loss ratio model, despite its obvious simplicity,
has served as a useful prototype of many “one-shot™
weather-information-sensitive decision-making prob-
lems. We believe that the dynamic cost-loss ratio
model described in this paper may play a similar role
for repetitive decision-making problems. Moreover,
it should be noted that the static model is simply a
special case (the one-occasion time period) of the
dynamic model. Clearly, it would be desirable to
investigate this dynamic model further by applying it
to specific real-world decision-making problems in
which weather forecasts could be used to make more
effective and efficient decisions.
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APPENDfX A
Structure of Optimal Policies
1. Climatological information

From (6), it is optimal to protect on the kth
occasion from the end of the time period if

C+ Ectk— 1)< (1 =~ p)Ec(k — 1) + p,L;

that is, if
C <plL — Ec(k — 1)). (A1)

It can be shown that E(k) is a nondecreasing function
of k, with an asymptotic limit of L. Thus, a value of
k exists, k¢ say, such that

C<pdL — Ec(k—1)] for
C> pL — Ectk — 1)] for

k < ke,

ke <k<n,
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which establishes the structure of the optimal policy
with climatological information.

2. Perfect information

From (9), it is optimal to protect on the kth
occasion from the end of the time period if
CH+Edk—-1)<L;
that is, if
C<L—Enk—1). (A2)
Here Ep(k) can be shown to be a nondecreasing

function of k, with an asymptotic limit of L. Thus, a
value of k exists, kp say, such that

C<L—-Egk—1) for
C>L—Egfk—1) for

k < kp,

kp<k$n,

" which establishes the structure of the optimal policy

with perfect information.

3. Imperfect forecasts
a GivenZ =1

From (12), it is optimal to protect on the kth
occasion from the end of the time period if

C+Edk—1)<(1 —p)Edk — 1)+ p,L;

that is, if
C<plL - Edk - 1)}, (A3)

Ex(k) can be shown to be a nondecreasing function
of k, with an asymptotic limit of L. Thus, a value of
k exists, say kg, such that the optimal policy is of the
form:

(i) do not protect on the first n — ky occasions
whenever Z = 1;

(ii) protect on the last kr occasions whenever Z
= 1.

b. Given Z = 0 .
From (12), it is optimal to protect on the kth

-occasion from the end of the time period if

C+ Elk— 1)< — p)Efk — 1) + poL;

that is, if
C < po[L — Efk — 1)]. (A4)

Thus, a value of k exists, k= say, such that the
optimal policy is of the form:

(i) do not protect on the first n — k occasions
whenever Z = 0;
(ii) protect on the last k’» occasions whenever Z
= 0. :

Since py < py, it follows that
PolL — Eqk — )] < ph[L — Edk — 1)].
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Thus (A3) and (A4) imply that k% < kr, which
establishes the structure of the optimal policy with
imperfect forecasts.

4. Relationships among optimal policies

Since p, < p; <
follows that

PolL — Ec(k — D] <

1 and Epk) < Egk) < Ec(k), it

pilL — Egk — 1)]
< L — Edk — 1).

Thus (A1), (A2), and (A3) imply that k¢ < kp < kp.
Since (6) and (12) imply that Ec(k) = Efk) =
for k < min(kc, k%) and since py < py, it follows that

polL — Edk — 1)]
< p[L — Ec(k — 1)], for k— 1< min(ke, k5.
Thus (Al) and (A4) imply that k> < k, which
establishes (13).
APPENDIX B

Quality/Value Relationship for Static Cost-Loss
Ratio Situation

In this situation, we are given that n = 1 and p;

= p, [i.e., that (14) holds].
Case 1: p, > C/L. Using (14), (10) can be expressed
as

C, if py<p <1 —=(C/L)(1 — po)/pel
Ep(1) =< (1 — ppsL + pyC,
if 1 —(C/DI(1 — pa/pe) < p1 < 1.(B])

Then, applymg (2) (4), and (B1), the value of imper-
fect forecasts is given by

0, if pp<p<1-— (C/L)[(l — Do)/ Ds]
C(1 — ps) — (1 — pI)pe L,
if 1 —(C/L)(1 — po/pe] <p1 < 1. (B2)

Case 2: p; < C/L. Using (14), (10) can be expressed
as

Ve(l) =

(1 —pdpeL + pC, if C/L<p <],
E(1) = {
ng, if Do <D < C/L.
(B3)
Then, applying (2), (4), and (B3), the value of imper-
fect forecasts is given by
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V(1) =

L-0C), if C/L<p <1,
{Pe(Pn ), 1 / Dy (B4)

0, if Do <D < C/L

Finally, we note that both (B2) and (B4) can be
expressed in the general form (19).
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