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ABSTRACT

This paper explores the relationship between the quality and value of imperfect forecasts. It is assumed that
these forecasts are produced by a primitive probabilistic forecasting system and that the decision-making problem
of concern is the cost-loss ratio situation. In this context, two parameters describing basic characteristics of the
forecasts must be specified in order to determine forecast quality uniquely. As a result, a scalar measure of
accuracy such as the Brier score cannot completely and unambiguously describe the quality of the imperfect
forecasts. The relationship between forecast accuracy and forecast value is represented by a multivalued function—
an accuracy/value envelope. Existence of this envelope implies that the Brier score is an imprecise measure of
value and that forecast value can even decrease as forecast accuracy increases (and vice versa). The generality
of these results and their implications for verification procedures and practices are discussed.

1. Introduction

Meteorologists frequently use measures such as the
mean square error and mean absolute error to evaluate
the performance of forecasters or forecasting systems.
For example, the Brier score (Brier, 1950)—the mean
square error of probabilistic forecasts—has been em-
ployed in many operational and experimental pro-
grams to determine the accuracy of such forecasts. In
addition, forecasting systems that produce probabilistic
forecasts are often compared in terms of their respective
Brier scores (or corresponding skill scores). In these
studies, it is implicitly assumed that smaller Brier scores
are indicative of forecasts of higher quality. Moreover,
the Brier score has frequently been used as a surrogate
for a measure of the economic value of forecasts, in
the sense that smaller Brier scores are also assumed to
correspond to forecasts of greater value.

The primary purposes of this paper are to demon-
strate that, in general, no single measure of performance
such as the Brier score can completely and unambig-
uously describe forecast quality and to show that each
numerical value of the Brier score is associated with a
range of economic payoffs even in simple decision-
making problems. This latter resuit implies that the
Brier score is an imprecise measure of value and,
moreover, that forecast value can actually decrease as
the Brier score decreases (i.e., as accuracy increases).
These results appear to have important implications
for the practice of forecast verification and for the use
of traditional measures of performance as indicators
of forecast value.

To analyze the relationships between measures of
the performance of forecasting systems and measures
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of the value of such systems it is necessary to identify
a specific decision-making problem within which to
perform the analysis. Here we consider the familiar
prototype problem usually referred to as the cost-loss
ratio situation (Thompson, 1962; Murphy, 1977). In
section 2 we briefly describe this problem, the types of
forecasts of interest, and the expected expenses asso-
ciated with the use of these forecasts. The quality and
value of the forecasts are discussed in section 3. This
section identifies the basic determinants of forecast
quality, specifies a particular measure of forecast ac-
curacy—the Brier score—and discusses its inherent
deficiencies as a measure of quality, and defines mea-
sures of value. In section 4 we explore the relationship
between these measures of accuracy and value and il-
lustrate this relationship by examining specific nu-
merical examples. Section 5 contains a brief summary
of the principal results, as well as a discussion of their
generality and their implications for verification pro-
cedures and practices.

2. Basic considerations: Cost—loss ratio situation, types
of forecasts, and expected expenses

The cost-loss ratio situation is a decision-making
problem involving two possible actions—protect (a
= 1) and do not protect (¢ = 0)—and two possible
evenis—adverse weather (w = 1) and no adverse
weather (w = 0). The decision maker is assumed to
incur a cost C (>0) if protective action is taken, a loss
L (>0) if protective action is not taken and adverse
weather occurs, and no cost or loss otherwise. It is con-
venient to transform these expenses into expenses per
unit loss, by dividing each expense by L. The trans-
formed expenses associated with the four possible
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combinations of actions and events are then defined
as follows: C/L fora=1and w =1 or w = 0, one for
a=0and w=1, and zero fora = 0and w = 0. To
avoid trivial cases we assume that C < L. Thus, 0
<C/L < 1.

Three types of weather forecasts are considered here:
imperfect forecasts, climatological forecasts, and perfect
forecasts. Imperfect forecasts are assumed to consist of
categorical forecasts of the events, where f= 1 is a
categorical forecast of adverse weather and /= 0 is a
categorical forecast of no adverse weather. These fore-
casts can be characterized in terms of two sets of prob-
abilities: (i) four conditional probabilities and (ii) two
marginal or predictive probabilities. The conditional
probabilities specify the likelihood of occurrence of the
events given the forecasts; thus, p;, = Pr(w = 1|f= 1),
Poi = Pr(w = 0| f'= 1), pyo = Pr(w = 1| f'= 0), and pyo

"= Pr(w = 0| f= 0), where p;; + po; = 1 and p;o + pgo

= 1." The predictive probabilities specify the relative
frequency of use of the respective forecasts; thus,
= Pr(f' = 1) and my = Pr(f = 0), where m; + 7y = 1.
For the purposes of this paper, it is convenient to as-
sume that p;; = p,o (or, equivalently, that py; < pgo).
This assumption implies that adverse weather (w = 1)
is more likely to follow a forecast of adverse weather
(/= 1) than to follow a forecast of no adverse weather
(f = 0). No loss of generality occurs by making this
assumption.

Climatological and perfect forecasts represent lim-
iting cases of the imperfect forecasts. Specifically, cli-
matological forecasts correspond to the limiting case
of imperfect forecasts in which p;; = p,o = p; and py,
= poo = pPo, Where p; = Pr(w = 1) and py, = Pr(w = 0)
are the climatological probabilities of adverse weather
and no adverse weather, respectively (p; + po = 1). In
this case, the probability of adverse weather (no adverse
weather) given the forecast does not depend on the
forecast and is equal to the climatological probability
of adverse weather (no adverse weather). Perfect fore-
casts correspond to the limiting case of imperfect fore-
casts in which pi1 = poo = 1, po1 = p1o = 0, 7 = py,
and 7y = po. In this case, adverse weather (no adverse
weather) always follows a forecast of adverse weather
(no adverse weather), and the frequencies of use of the
two possible forecasts are necessarily equal to the re-
spective climatological probabilities.

The decision maker is assumed to choose the action
that minimizes expected expense, where expected ex-
pense is the probability-weighted average of the relevant
expenses (costs and/or losses). In the case of climato-
logical forecasts, for example, the expected expense as-
sociated with action a = 1 (protect) is e; = py(C/L)
+ po(C/L) = C/L and the expected expense associated
with action a = 0 (do not protect) is ¢; = pi(1) + po(0)
= p,. Thus, the decision criterion implies that the de-
cision maker will take action ¢ = 1 if p; > C/L and
action @ = 0 if p, < C/L (hence the name “cost-loss
ratio situation™).
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"Under the assumption that the decision maker
adopts the relevant information as the sole basis for
choosing the optimal action, expected expense expres-
sions can be readily derived for the three types of fore-
casts. These expressions, which are denoted by EF, EC, -
and EP for imperfect, climatological, and perfect fore-
casts, respectively, are reproduced in appendix A. As
indicated in appendix A, the expected expense asso-
ciated with perfect forecasts is less than or equal to the
expected expense associated with imperfect forecasts
and the latter is less than or equal to the expected ex-
pense associated with climatological forecasts.

3. Quality and value: Definitions and measures

a. Forecast quality and a measure of accuracy

In order to réalize the objectives of this paper, the
(minimum) number of parameters needed to describe
the quality of the imperfect forecasts must be specified.
As indicated in section 2, these forecasts consist of four
conditional probabilities—p;, poi1, P10, and pgo—and
two predictive probabilities—m,; and m,, for a total of
six parameters. However, since p;; + poi = 1, p1o + Poo,
= 1, and m; + m = 1, at most three of these six pa-
rameters are required to characterize the imperfect
forecasts. Moreover, the climatological probabilities—
p1 and po (py + po = 1)—are assumed to be known.
The relationships among the conditional, predictive,
and climatological probabilities, described in appendix
B, can then be used to achieve a further reduction in
the number of “independent” parameters. As a result,
only two parameters must be specified to describe,
completely and unambiguously, the quality of the im-
perfect forecasts. Thus, p;; and =, or p1; and pjo, rep-
resent basic determinants of forecast quality in this
context (assuming that p,, the climatological proba-
bility of adverse weather, is also known).

A natural measure of the overall accuracy of prob-
abilistic forecasting systems that produce two-event
forecasts is the Brier score. As noted in section 1, the
Brier score is the mean square error of such forecasts
and possesses several desirable properties (see Murphy
and Daan, 1985). Here we use the expected half Brier
score (BS) as the measure of accuracy; this measure is
defined and briefly described in appendix C. In partic-
ular, appendix C shows that BS can be expressed in
terms of the parameters p;; and m, the basic deter--
minants of forecast quality employed in this paper.

Values of BS are plotted as a function of p,; and 7,
in Fig. 1a for the case in which p; = 0.3 and C/L = 0.2
(hereafter referred to as example 1). The ranges of pos-
sible values of p;; and 7, are determined by the con-
ditions associated with this case, and these conditions
will be described in section 3b. Perfect forecasts arer-
epresented by the point p;; = | and =, = 0.3 (BS
= (), whereas climatological forecasts are represented
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Fi1G. 1. Isopleths of (a) BS and (b) VF, both as functions of p;, and =,, for example 1.

by the point p;; = 0.3 and 7, = 1 (BS = 0.21). The
isopleths of BS in Fig. 1a reveal that different combi-
nations of values of the basic determinants of forecast
quality—p; and 7,—can produce the same Brier score.
Since these distinct pairs of values of p,; and m, rep-
resent, by definition, different levels of quality, it is
evident that BS is not a unique measure of the quality
of the imperfect forecasts. It is important to make a
clear distinction between forecast quality, as charac-
terized by the basic parameters of the forecasting system
(i.e., p1; and m;), and forecast accuracy, as measured
by the Brier score.

b. Forecast value and measures of value

The value of the imperfect forecasts depends on the
expected expense associated with the use of these fore-
casts and the expected expense associated with the use
of the information consulted by the decision maker in
the absence of these forecasts (Winkler and Murphy,
1985). Since it is reasonable to assume that climato-
logical forecasts would always be available to the de-
cision maker, the value of imperfect forecasts can be
defined as the difference in expected expenses between
the situation involving climatological forecasts arid the
situation involving imperfect forecasts. If VF denotes
the expected value of imperfect forecasts, then

VF=EC—FEF. (1)

Analogously, if VP denotes the expected value of per-
fect forecasts, then

VP = EC — EP. )

Expressions for VF and VP in terms of p,, 7y, p;, and
C/L are presented in appendix D. As noted in this

appendix, the expected value of imperfect forecasts is
nonnegative and is less than or equal to the expected
value of perfect forecasts.

To facilitate this discussion and the investigation of
the relationship between measures of accuracy and
value in section 4, it will be convenient to distinguish
among several different situations, depending on the
values of particular parameters. First, recall that it has
been assumed, without loss of generality, that 0 < py
< p; < p11 < 1. Four cases can be identified, depending
on the values of the conditional and climatological
probabilities relative to the numerical value of the cost—
loss ratio, and these cases are described in Table 1. In
addition, this table contains expressions for VF and
VP in each case. Note that VF and VP are both equal
to zero in cases I and I'V. Imperfect and perfect forecasts
are of no value in these cases because all of the prob-
abilities, conditional and climatological, lead to the
same optimal action [@ = 1 (protect) in case I and a
= () (do not protect) in case I'V]. Forecasts are of positive
economic value only if they can lead to different actions
than those that the decision maker would have taken
in the absence of the forecasts (Winkler and Murphy,

TABLE 1. Expected value expressions for imperfect forecasts (VF)
and perfect forecasts (VP) for various cases defined in terms of con-
ditions on the conditional probabilities (p;; and p,o), climatological
probability (p,), and cost-loss ratio (C/L).

Case: Conditions VF VP

LO<C/L<pospspnsl 0 0

I 0<po<C/L<p <pu<l wl(C/L)—po]l (1 ~p}C/L)
ML OspospsC/L<spy<1 wmpy—(C/L)] pill —(C/L)]
IV:0O<spospspusC/Lg1 0 0
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1985). Obviously, we are primarily concerned here with
situations associated with cases II and 111, in which VF
and VP are generally greater than zero.

Values of VF are plotted and isoplethed as a function
of p;; and =, in Fig. 1b for example 1 (p; = 0.3 and
C/L = 0.2), a specific instance of case II in which p,o
< C/L (=0.2). The ranges of values of p;; and =, are
determined by the conditions associated with this case.
Specifically, this region is bounded above by the curve

.mpn = pr = 0.3 and below by the curve VF = 0, where
VF = mo[(C/L) — pio] = m[p1y —(C/L)] — p1 + C/L
= m(p1; — 0.2) — 0.1 in this case (see Table 1). Both

sets of isopleths are asymptotic to the vertical line p;;

= p, = 0.3 on the left and to the horizontal line ,
= (p1 — P1o)/ (P11 — P1o) = 0.125 below. Perfect forecasts
are represented by the point p;; = 1 and «, = 0.3 (VF
= VP = (.14), whereas climatological forecasts are
represented by the point p;; = 0.3 and 7, = 1 (VF
= (). As indicated in Fig. 1b, different pairs of values
of p;; and m, can yield the same value of VF.

4. Relationships between measures of accuracy and
value

To illustrate the relationship between the measure
of accuracy and the measure of value, we have over-
layed the isopleths of BS (solid curves) and VF (dashed
curves) for example 1 in Fig. 2. These two sets of iso-
pleths exhibit similar behavior: BS decreases and VF
increases as py; increases and m, decreases or remains
constant over the ranges of permissible values. How-
ever, the slopes of the isopleths of BS are steeper than
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FIG. 2. Overlay of isopleths of BS (solid curves) and
VF (dashed curves) for example 1.
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the slopes of the isopleths of VF. Since several isopleths
of VF generally intersect each isopleth of BS, a range
of values of VF is associated with each value of BS.
Analogously, several isopleths of BS usually intersect
each isopleth of VF, and thus.a range of values of the
former is associated with each value of the latter. The
existence of such ranges of values indicates that the
relationship between BS and VF cannot be described
by a single-valued function.

Before examining the accuracy/value relationship
directly, we briefly consider another example—namely,
case (0 < pyo<p; <C/L<p,<1),withp, =0.15
and C/L = 0.20 (hereafter referred to as example 2).
Isopleths of BS and VF, as a function of p;; and =,
are both depicted in Fig. 3 (BS, solid curves; VF, dashed
curves). The region of permissible values of p;, and =,
in example 2 is bounded above by the curve mp;,
= p, = 0.15, below by the horizontal line =, = 0, and

_ on the left by the vertical line p;, = C/L = 0.20. Asin

example 1, the slopes of the isopleths of BS are steeper
than the slopes of the isopleths of VF, with the inter-
section of these isopleths implying that VF is not a
single-valued function of BS (or vice versa). In example
2, perfect forecasts are represented by the point py,
=1and 7; = 0.15 (BS = 0 and VF = VP =0.12),
whereas climatological forecasts are represented by the
point p;; = 0.20 and =, = 0 (BS = 0.1275 and VF
=0). .
The relationship between BS and VF in example 1
is described by the “envelope” depicted in Fig. 4. This
diagram was produced by computing both BS and VF
for all possible values of p;; and 7, (on a two-dimen-
sional grid with a step size equal to 0.005 in each di-
mension) that satisfy the conditions for this case (see
Table 1). (The “points” that constitute the stippling
used to define the envelope in Fig. 4 and the other
accuracy/value envelopes presented in this paper do
not correspond to the grid points associated with the
computational procedure.) The multivalued nature of
the accuracy/value relationship is vividly illustrated by
this envelope. Note that the envelope is quite wide for
intermediate values of BS for which isopleths of BS
intersect many isopleths of VF, whereas it is rather
narrow for very small and very large values of BS for
which isopleths of BS intersect only a few isopleths of
VF (see Fig. 2). Specifically, when BS = 0.15, VF ranges
from 0.00 to approximately 0.08, more than one-half
of the total range of VF (recall that VP = 0.14 in this
example). Moreover, the range of values of VF exceeds
0.03 for all values of BS between 0.050 and 0.019, with
narrower ranges of VF only for smaller and larger val-
ues of BS. Clearly, knowledge of BS alone generally
provides only a rough estimate of VF (and vice versa).
Figure 5 depicts the accuracy/value envelope for ex-
ample 2. This envelope was obtained in the same man-
ner as the envelope presented in Fig. 4. Although the
range of values of VF for specific values of BS is gen-
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erally narrower in example 2 than in example 1, this
range (of VF) still exceeds 0.02 for a wide range of
values of BS. Once again, knowledge of BS provides
an imprecise estimate of VF.

In computing the pairs of values of BS and VF used
to describe the accuracy/value envelopes in examples
1 and 2, we have considered all possible values of p,
and =, subject only to the conditions imposed on these
(and other) parameters by the case in question (see
Table 1). However, it might be of interest to investigate
the effect on the accuracy/value envelopes of imposing
restrictions on the values of one or more parameters.
In this regard, Katz and Murphy (1987) assumed that
wy = py in their study of the quality/value relationship
in the cost-loss ratio situation. This assumption implies
that, when the forecasts are interpreted as categorical
forecasts, the relative frequency of use of the forecast
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of adverse weather (f = 1) is equal to the relative fre-
quency of occurrence of adverse weather (w = 1). Al-
ternatively, if the forecasts are interpreted as primitive
probabilistic forecasts (see Murphy, 1986), then this
assumption implies that forecasts specifying a relatively
high probability of adverse weather are issued on the
same number of occasions as that on which adverse
weather actually occurs (recall that p;; = pjo). (Ob-
viously, this assumption does not necessarily imply that
f=1when w= 1 or that p;, is used only when w = 1.)
Although such an assumption is not unreasonable, it
appears quite restrictive in a general study of quality/
value relationships. A less restrictive assumption might
involve limiting the range of values of 7, with respect
to p1. In example 1 (p; = 0.3), =, ranges from 0.125
when p;; = 1 to one when p;; = 0.3 (see Fig. 2). Thus,
the ratio of = to p, ranges from 0.427 to 3.333 in this
example. Suppose that we restrict this ratio, r, to the
interval from 0.667 to 1.333, in which case 0.2 < 7,
< 0.4. How will the accuracy/value relationship in this
example be affected by restricting the values of 7, in
this manner?

o
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FG. 6. Accﬁracy/value envelope for example 1,
with 0.2 < 7, <0.4.
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The accuracy/value envelope under this modified
set of conditions is depicted in Fig. 6. Note that the
range of values of VF for a specific value of BS (and
vice versa) is generally narrower under these modified
conditions than under the original conditions. The re-
duction in the width of the range of values of VF is
especially noticeable for larger values of BS. An anal-
ogous reduction in the range of values of VF occurs in
example 2 when the values of r (and thus =,) are re-
stricted in a similar manner (this diagram is omitted
to conserve space). Thus, if it is known that the ratio
of = to p, falls in a restricted range of values, this
knowledge generally will reduce the range of values of
VF for a specific value of BS (and vice versa). Similar
results would be obtained if restrictions were placed

on the values of p;,. Nevertheless, the accuracy/value -

relationship would still be characterized by an envelope
of values of BS and VF, unless 7, (or p;;) is limited to
a specific numerical value.

In this regard, it may be of interest to compare the
accuracy/value relationships in the cases considered
here with the quality/value relationship obtained by
Katz and Murphy (1987). As noted previously, the lat-
ter assumed that 7; = p,. They also assumed that the
parameters p; and C/L are specified, as we have done
in this paper. Katz and Murphy (1987) then showed
that VF is a single-valued linearly increasing function
of py; in situations such as those represented by ex-
amples 1 and 2. If we assume that 7; = p, in the context
of example 1 or example 2, what will be the nature of
the resulting accuracy/value relationship? In effect, we
would be taking a ““slice” along the horizontal line =,
= p, through the isopleths of BS and VF in diagrams
such as Fig. 2 or Fig. 3. Note that BS decreases (i.e.,
accuracy increases) and VF increases from left to right
along this line.

Figure 7 depicts the accuracy/value relationships,
where accuracy is measured by BS and value is mea-
sured by VF, for example 1 (solid curve) and example

0.14
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012 ~ -~-- Example 2
010 -
VF 0.08_—
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000 L L L

1
0.00 005 010 015

BS

020 0.25

FIG. 7. Accuracy/value curves for example 1 (solid curve) and
example 2 (dashed curve), both with =, = p,.
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2 (dashed curve), when 7; = p,. These relationships
are characterized by single-valued nonlinear functions,
with VF increasing as BS decreases. (For these single-
valued functions, the points for which VF = 0 do not
represent climatological forecasts since such forecasts
generally do not correspond to the case in which 7,
= p:.) The relationships are nonlinear because BS is
the measure of accuracy employed here and BS is a
nonlinear function of p,; [see (C2)]. Katz and Murphy
(1987) used py, itself as the measure of quality and, as
previously noted (see also appendix D), VF is a linear
function of this parameter (assuming that =, p,, and
C/L are specified). Figure 7 illustrates that complete
knowledge of one of the basic parameters that char-
acterize forecast quality reduces the accuracy/value
envelope to a single-valued functional relationship be- .
tween BS and VF. Only in such cases is BS a compléte
measure of forecast quality. Moreover, the cost-loss
ratio must be specified in these cases (as is assumed
here) before BS is also a suitable surrogate for forecast
value. .

5. Discussion and conclusion

In this paper we have (i) described the quality and
value of forecasts for a simple forecasting system within
the context of a prototype decision-making problem;
(ii) defined measures of accuracy and value for imper-
fect forecasts in this context; and (iii) investigated ac-
curacy/value relationships for these forecasts. It has
been demonstrated that, for the imperfect forecasts
considered here, two parameters (probabilities) must
be specified to describe the quality of the forecasts
completely and unambiguously. Thus, in general, a
one-dimensional measure of accuracy such as the Brier
score cannot uniquely characterize forecast quality; dif-
ferent pairs of values of the parameters (i.e., different
levels of quality) will lead to the same numerical value
of the Brier score. Since the value of the forecasts de-
pends on their quality (i.e., the basic parameters), it
should not be surprising that the relationship between
accuracy, as measured by the Brier score, and value,
as measured by the expected economic value, is found
to be a multivalued function. Specifically, this accu-
racy/value relationship is characterized by an envelope
of values, with a relatively wide range of forecast value
associated with each level of forecast dccuracy (and
vice versa). Some knowledge of the ranges of possible
values of the basic parameters that characterize forecast
quality can reduce the width of this envelope. Nev-
ertheless, forecast accuracy when measured solely by
a scalar (i.e., one-dimensional) summary measure such
as the Brier score generally provides only a rough es-
timate of forecast value. Moreover, the existence of
these accuracy/value envelopes implies that value can
actually decrease as accuracy increases (i.e., as the Brier
score decreases).
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Very simple forecasting systems and decision-mak-
ing problems are considered in this paper. However,
the issues of primary concern here—the distinction be-
tween forecast quality and forecast accuracy and the
multivalued nature of the relationship between accu-
racy and value——also arise in situations involving more
complex forecasting systems and/or decision-making
problems. For example, many more than two param-
eters would be required, in general, to characterize the
quality of a probabilistic forecasting system, and no
single measure of accuracy such as the Brier score could
uniquely describe forecast quality in this context.

 Moreover, the value of such forecasts would also de-
pend on the specification of a large number of these
parameters (i.e., conditional and predictive probabili-
ties), as well as on the specification of the cost-loss
ratio or other payoff structure. '

At this point, it should be noted that most previous
studies of quality/value relationships (e.g., Brown et
al., 1986; Katz et al., 1982; Murphy et al., 1985), in-
cluding an investigation involving the cost-loss ratio
situation (Katz and Murphy, 1987), have obtained sin-
gle-valued relationships between forecast quality and
forecast value. These studies yielded single-valued
quality/value relationships because of simplifying as-
sumptions, according to which both quality and value
depended on only a single parameter such as the vari-
ance of the forecasts. For example, Katz and Murphy
(1987) assumed that 7, = p;, in which case forecast
quality and forecast value are completely described by
P11 (or pro). In general, however, the quality and value
of forecasts both depend on two or more parameters.
In this regard, Chen et al. (1987) recently demonstrated
the existence of accuracy/value envelopes in the gen-
eralized cost-loss ratio situation.

What are the implications of the results presented
here for verification procedures and practices? First,
these results reveal an important deficiency in one-di-
mensional verification measures in situations in which
quality is necessarily multidimensional in character.
For example, when quality is inherently two-dimen-
sional, as in the cases considered here, a one-dimen-
sional measure of accuracy such as the Brier score can-
not uniquely determine forecast quality. In this sense,
then, it is not necessarily true that smaller Brier scores
are indicative of forecasts of higher quality. These and
other related deficiencies in traditional verification
measures have been noted in a recent paper by Murphy
and Winkler (1987), in which they described a general
framework for forecast verification. This framework is
based on the joint distribution of forecasts and obser-
vations and on factorizations of this distribution into
conditional and marginal distributions. From the per-
spective provided by this framework, and from the re-
sults presented in this paper, it is evident that infor-
mation regarding basic parameters of forecasting sys-
tems is needed to describe forecast quality completely.
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Second, we have demonstrated the existence of ac-
curacy/value envelopes in the cost-loss ratio situation.
In effect, the measure of accuracy (the Brier score in
this case) is an interval measure of value. Since this
interval is generally quite wide, the Brier score provides
only a rough estimate of forecast value. Moreover, the
existence of accuracy/value envelopes implies that in-
creases in accuracy (i.e., decreases in the Brier score)
may even lead to decreases in value. This reversal in
the usual accuracy/value relationship (in which value
increases or remains constant as accuracy increases) is
possible because a range of economic payoffs, as mea-
sured by VF, exists for a given numerical value of ac-
curacy, as measured by BS. (This possibility arises be-
cause the Brier score is necessarily an incomplete imea-
sure of multidimensional quality.) When this result is
considered in conjunction with the fact that quality/
value relationships are inherently nonlinear (e.g., see
Katz and Murphy, 1987), it is clear that forecast ac-
curacy is not an appropriate surrogate for forecast value.

The existence of accuracy/value envelopes also has
important implications for the information that the
meteorological community should provide to actual
and potential users of the forecasts. Clearly, users need
more than overall measures of accuracy (such as the
Brier score) to judge both the scientific quality of the
forecasts and their operational utility. The inadequacy
of such measures from the perspective of users of the
forecasts has also been noted by Murphy and Winkler
(1987).
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APPENDIX A

Expected Expenses for Imperfect, Climatological,
and Perfect Forecasts

In this appendix we present expressions for the ex-
pected expenses associated with the use of imperfect,
climatological, and perfect forecasts, under the as-
sumption that the decision maker chooses the action
(a = 1 or a = 0) that minimizes expected expense. If
EF denotes the expected expense (per unit loss) asso-
ciated with imperfect forecasts, then EF = min(C/L,
p11) when f= 1 and EF = min(C/L, p,o) when f= 0.
The overall expected expense is the weighted average
of these (conditional) expected expenses, where the
weights are the probabilities of the respective forecasts.
Thus,

EF =7 min(C/L, p11) + mo min(C/L, p1o). (Al)
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Recall that climatological forecasts represent the
special case of imperfect forecasts in which p;, = py,
= p,. If EC denotes the expected expense associated

" with climatological forecasts, then

EC= min(C/L, p;) (A2)

(recall that ; + 7o = 1). Analogously, perfect forecasts
represent the special case of imperfect forecasts in
which p;; = 1, pjo = 0, m; = p, and 7y = p,. Thus, if
EP denotes the expected expense associated with perfect
forecasts, then

EP = p(C/L). (A3)

Since climatological forecasts and perfect forecasts
represent lower and upper bounds, respectively, on the
quality of imperfect forecasts, it follows that EP < EF
< EC. Thus, EC and EP represent upper and lower
bounds, respectively, on EF.

APPENDIX B

Relationships among Conditional, Predictive,
and Climatological Probabilities

Consideration of the definitions of the conditional,
predictive, and climatological probabilities and the ba-
sic laws of probability indicates that certain relation-
ships exist among these three types of probabilities.
Specifically,

(B1)
Do= ';rJPOI + ToDoo- (B2)

[Since addition of (B1) and (B2) yields an identity, (B2)
is redundant with respect to (B1), and vice versa.] In
other words, the climatological probabilities (p; or p,)
are the weighted averages of the conditional probabil-
ities (p; and pyo or po; and pyo), where the weights are
the predictive probabilities (7, and 7). When (B1) and
(B2) are considered in conjunction with the assumption
that py; = por (P10 < Poo) (see section 2), it follows that
O<po<pi<pu<10<py <py<pop<1l).

D1 =Dyt woP1o

APPENDIX C

Measure of Forecast Accuracy

In the context of this papér, the expected half Brier
“score (BS) can be written as follows:

BS = m[pu(pii— 1>+ (1 = py)pii’]

+molPio(Pro— 1)* + (1 — pio)pio?]:  (C1)

It has been assumed in (C1) that p;, represents both
the conditional probability of adverse weather given a
forecast of adverse weather and the relative frequency
with which the event w = 1 occurs when the forecast
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is f = 1 (analogous statements hold for py;, pio, and
Doo)- This assumption is equivalent to assuming that
the forecasts are primitive (i.e., two-value) probabilistic
forecasts and that they are completely reliable. (A
probability forecast p is completely reliable when the
event of concern occurs on a fraction p of the occasions
on which the forecast p is assigned to this event.) As
defined in (C1), BS ranges from zero for perfect fore-
casts (p;y = poo = 1 and po; = pyo = 0) to py(1 — py)
for climatological forecasts (p,; = pio = Py and po; = Poo
= pp). Thus, smaller values of BS are indicative of more
accurate forecasts.

We have carefully distinguished in this paper be-
tween the quality of the imperfect forecasts, as char-
acterized by basic parameters of the forecasting system,
and the accuracy of these forecasts, as measured by the
Brier score. To clarify this distinction, we nete here
that BS in (C1) can be rewritten as follows:

BS=p,(1-p)~ [m/(1=7)}(p1y—p1)%,  (C2)
since pyo = (p1 — m1P11)/mo [see (B1)] and m) = | — mo.
In (C2), we have expressed BS in terms of two basic
determinants of forecast quality, p;, and = (recall that
the climatological probability, p,, is assumed to be
known).

APPENDIX D

Measures of Forecast Value

If it is assumed that climatological forecasts would
always be available to the decision maker, then the
expected value of imperfect (perfect) forecasts can be
defined as the difference in expected expenses between
the situation involving climatological forecasts and the
situation involving imperfect (perfect) forecasts. Thus,
if VF denotes the value of imperfect forecasts (per unit
loss), then VF = EC — EF, or from (A1) and (A2),

VF = min(C/L, p;) — m; min(C/L, p,,)

—mo min(C/L,pyp). (D1)
Analogously, if VP denotes the value of perfect fore-
casts, then VP = EC — EP, or from (A2) and (A3),

VP = min(C/L, py) — p(C/L). (D2)

In view of the fact that EP < EF < EC (see appendix
A), it follows that VF < VP. That is, the value of im-
perfect forecasts is nonnegative and is less than or equal
to the value of perfect forecasts.
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