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ABSTRACT

Several skill scores are defined, based on the mean-square-error measure of accuracy and alternative clima-
tological standards of reference. Decompositions of these skill scores are formulated, each of which is shown to
possess terms involving 1) the coefficient of correlation between the forecasts and observations, 2) a measure
of the nonsystematic (i.., conditional ) bias in the forecasts, and 3) a measure of the systematic (i.e., unconditional )
bias in the forecasts. Dependmg on the choice of standard of reference, a particular decomposition may also
contain terms relating to the degree of association between the reference forecasts and the observations.
These decompositions yield analytical relationships between the respective skill scores and the correlation coef-
ficient, document fundamental deficiencies in the correlation coefficient as a measure of performance, and
provide additional insight into basic characteristics of forecasting performance. Samples of operational precip-
itation probability and minimum temperature forecasts are used to investigate the typical magnitudes of the
terms in the decompositions. Some implications of the results for the practice of forecast verification are discussed.

1. Introduction

Skill scores are generally defined as measures of the
relative accuracy of forecasts produced by two fore-
casting systems, one of which is a “reference system™
(e.g., see Murphy and Daan 1985). Positive skill (i.e.,
a favorable difference in accuracy) is usually considered
to represent a minimal level of acceptable performance
for a set of forecasts. To the extent that the difficulty
inherent in forecasting situations is reflected in the level
of accuracy of the reference forecasts, skill scores also
take difficulty into account. As a result, they can be
used (with appropriate caveats) to compare forecasting
performance across different locations or time periods.
Thus, it is not surprising that skill scores are widely
used in evaluating the performance of operational and
experimental forecasts (e.g., see Dagostaro et al. 1988;
Murphy and Daan 1985).

In the context of forecast verification, correlatlon
coeflicients are measures of the degree of linear asso-
ciation between the forecasts of interest and the relevant
observations. It has been recognized for many years
(e.g., see Brier and Allen 1951) that correlation coef-
ficients suffer from certain deficiencies as verification
measures. Nevertheless, they are employed from time
to time in forecast verification programs and several
different correlation coefficients are currently used in
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conjunction with model verification studies (e.g., see
Arpe et al. 1985; Miyakoda et al. 1972; Sanders 1987).

Despite the rather widespread use of both skill scores
and correlation coefficients, the relationships between
these two common types of verification measures have
evidently not been explored. In addition, little if any
attention has been devoted to the problem of obtaining
a quantitative appreciation of the deficiencies in the
correlation coefficient as a measure of forecasting per-
formance. The primary purpose of this paper is to de-
scribe decompositions of a family of climatological skill
scores that yield insight into (i) the relationships be-
tween these measures and the (product moment) cor-
relation coefficient and (ii) the deficiencies in the latter
as a performance measure.

In section 2, we define the terms “accuracy” and
“skill” and identify the basic measures of these attri-
butes-——namely, the mean-square-error measure of ac-
curacy and the mean-square-error skill score—em-
ployed in this paper. This section also describes alter-
native climatological standards of reference and defines
a mean-square-error skill score based on each of the
reference procedures. Decompositions of the skill scores
are formulated in section 3, and these decomposi-
tions—and the skill score/correlation coefficient re-
lationships—are discussed and interpreted in section
4. Operational precipitation probability and minimum
temperature forecasts are used to investigate the typical
magnitudes of the terms in these decompositions in
section 5, Section 6 consists of a brief summary and
some discussion of the implications of these results for
the practice of forecast verification.
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2. Mean-square-error skill scores
a. Basic measures of accuracy and skill

Accuracy is usually defined as the average degree of
correspondence between individual forecasts and ob-
servations (e.g., se¢ Murphy and Daan 1985). Thus,
the mean absolute error represents a prototypical mea-
sure of accuracy. Skill, on the other hand, is generally
defined as the accuracy of the forecasts of interest rel-
ative to the accuracy of forecasts produced by some
reference procedure—or standard of reference—such
as climatology or persistence. To measure skill, we
might compute the improvement in the mean absolute
error of the forecasts over the mean absolute error of
climatological forecasts {this improvement is usually
compared with the total possible improvement—see
(2) below].

The basic measure of accuracy employed in this pa-
per is the mean square error (MSE). Consider a sample
of n (matched) forecasts and observations, in which f;

and x; denote the ith forecast and ith observation, re- -

spectively. Then, MSE(f, x) can be expressed as fol-
lows:

MSE(/, ) = = 3 (f; = x))" (1)
i=1

Note that MSE(f, x) = 0, with equality only for perfect
forecasts (f; = x; for all i),

With regard to skill, it is reasonable—and tradi-
tional—practice to define a generic skill score S in terms
of generic measure of accuracy A in the following man-
ner:

S =(4r— A4,)/(4, — 4)), 2)
where A;, 4, and A4, denote the accuracy of the fore-
casts of interest, the accuracy of perfect forecasts, and
the accuracy of the reference forecasts, respectively (see
Murphy and Daan 1985). Note that S represents the
improvement in accuracy of the forecasts over the ref-
erence forecasts relative to the total possible improve-
ment in accuracy.

In view of the definition of the generic skill score in
(2), a skill score SS based on the mean-square-error
measure of accuracy can be expressed as follows:

S8/, r, x) =1 — [MSE(f, x)/ MSE(r, x)], (3)

since MSE(p, x) = 0. Note that SS in (3) is a function
of the forecasts of interest (f'), the reference forecasts
(r), and the observations (x). The skill score SS is pos-
itive (negative) when the accuracy of the forecasts is
greater (less) than the accuracy of the reference fore-
casts. Moreover, SS = 1 when MSE(f, x) = 0 (perfect
forecasts) and SS = 0 when MSE(f, x) = MSE(r, x).
It can be translated into a measure of percentage im-
provement in accuracy simply by multiplying the right-
hand side (rhs) of (3) by 100.
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b. Climatological standards of reference

As noted previously, climatology is taken to be the
standard of reference in this paper. Thus, the reference
forecasts are assumed to be based solely on a relevant
set of observations of the variable or event of interest.
Several alternative definitions of these climatological
reference forecasts are possible, depending on the par-
ticular set of observations employed and the way in
which the observations are used to create the forecasts.
First, the climatological forecasts could be based on
observations from some historical period or they could
(at least, hypothetically) be based on the sample of
observations from the experimental period. We will
refer to reference forecasts derived from historical and
experimental periods as external climatological fore-
casts and internal climatological forecasts, respectively
(in the sense that the respective climatologies are ex-
ternal and internal to the matched sample of 7 forecasts
and observations). External climatology is generally
called long-term or historicai climatology, whereas in-
ternal climatology is usually referred to as short-term
or sample climatology. For a discussion of the relative -
merits of using internal and external climatologies as
standards of reference in formulating skill scores, see
Murphy (1974).

Second, the reference forecasts could consist of a
single constant forecast applicable to all forecasting oc-
casions (and based on the entire sample of observa-
tions) or they could consist of different forecasts for
different occasions (based on appropriate subsamples
of the observations). In this regard, for example, it
might be argued that the use of a single climatological
reference forecast would be inappropriate when the
forecasts of interest are to be evaluated over time pe-
riods in excess of a month or season. We will refer to
such forecasts as single-valued and multiple-valued cli-
matological forecasts.

These considerations lead to the identification of four
types of climatological reference forecasts: 1) single-
valued internal reference forecasts; 2 ) multiple-valued
internal reference forecasts; 3) single-valued external
reference forecasts; and 4) multiple-valued external
reference forecasts. For convenience, we will sometimes
refer to situations involving the use of these various
reference forecasts as.cases I, I1, II1, and IV, respectively.

¢. Mean-square-error skill scores based on climatology

To define skill scores based on the climatological
standards of reference described in section 2b, it is nec-
essary to introduce some additional notation. In the
case of internal climatology, let x¥* denote the sample
climatology relevant to the ith matched pair of forecasts
and observations and let X, where X = (1/n) 2=, X,
denote the mean sample climatology. (An asterisk has
been included to distinguish between the ith obser-
vation in the sample and the corresponding internal



DECEMBER 1988 ALLAN H.

climatological standard of reference. The latter is pre-
sumably based on a subsample of the n observations
in the sample. As a result, it is reasonable to assume
that X* = X.) Then X represents the single-valued in-
ternal climatological standard of reference (Case I) and
the x¥ (i = 1, - « +, n) represent the multiple-valued
internal climatological standard of reference (Case II).

With regard to external climatology, let u; de-
note the long-term climatology relevant to the ith
pair of forecasts and observations and let i, where i
= (1/n) Zi=1.. ui, denote the mean long-term clima-
tology. Then u represents the single-valued external
climatological standard of reference (Case III) and the
w;(i=1, « + + n)represent the multiple-valued external
climatological standard of reference (Case IV). It
should be noted that the u; associated with various sub-
samples of forecasts may be identical. For example, in
evaluating the skill of day-to-day forecasts produced
over a one-year period, it might be appropriate to use
long-term monthly climatological values as the standard
of reference.

Now we can define skill scores based on the four
possible types of climatological reference forecasts. In
the case of single-valued internal climatology (Case I),
SS(f, r, x) becomes SS(f, X, x), where

SS(f, X, x) =1 — [MSE(/, x)/MSE(X, x)]. 4

For multiple-valued internal climatology (Case 11),
SS(f, r, x) becomes SS(f, x*, x), where

SS(f, x*, x) = 1 — [MSE(/f, x)/MSE(x*, x)]. (5),

In the case of single-valued external climatology (Case
III), SS(f, r, x) becomes SS(f, &, x), where

SS(f, #, x) = 1 — [MSE(/, x)/MSE(g, x)].  (6)

For multiple-valued external climatology (Case 1V),
SS(f, r, x) becomes SS(f, u, x), where

SS(f, u, x) = 1 — [MSE(f, x)/MSE(y, x)].  (7)

3. Decompositions of skill scores

a. Decomposition of mean-square-error measure of
accuracy

To facilitate the decomposition of the various skill
scores, we first decompose MSE(f, x). The decom-
position of MSE of interest here can be derived by
adding and subtracting the mean forecast fi=/n)
X Zi1n fi] and the mean observation X [=(1/n)
X Zi=1» x;] within the parentheses on the rhs of (1).
Initially, we obtain

MSE(f, x)
-~ SI-N - =D+ - ®
i=1

Completing the squaring process within the brackets
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on the rhs of (8) and averaging over the sample of n
forecasts and observations yields

MSE(f, x) = (f — X)* + 57 + 52 — 255,  (9)

where s? = (1/n)Zi-1, (fi —f)? is the sample variance
of the forecasts, 5,2 = (1/n) Zi=1n (x; — X)? is the
sample variance of the observations, and sy = (1/n)
X Zi=in (fi = f)(x; — X) is the sample covariance of
the forecasts and observations. [ The decomposition of
MSE in (9) is similar to a decomposition of the mean
probability score described by Yates (1982).] More-
over, since Sy, = Sy8x7sx, MSE(f, x) in (9) can also be
expressed as '

MSE(f, x) = (f — %)% + 5# + 5, — 2578xT7x, (10)

where ryy is the sample (product moment) coefficient
of correlation between the forecasts and observations.
The decomposition in (10) is the basic expression for
MSE(/f, x) employed in this paper.

b. Decompositions of mean-square-error skill scores

Decompositions of the four skill scores can now
be obtained by substituting the decomposition of
MSE(f, x)in (10)—and the appropriate expression for
MSE(r, x)—into the respective skill score formula. In
the case of single-valued internal climatology (Case I,
for which r = X), it is evident that MSE(X, x) = s,°
[see (10)}. Thus, from (4) and (10), it follows that

SS(f, %, x)

= 2(s// 81— (875:)° — (= X)/s:]% (1)
or
SS(f, %, x)

=rh = (1= (/)P = [(F = X)/s:)% (12)

Note that SS(f, X, x) in (12) is expressed as the “sum”
of three nonnegative terms. For convenience, we will
refer to the terms on the rhs of (12) as IA, IB, and IC,
respectively.

In the case of multiple-valued internal climatology
(Case II, for which r = x¥), MSE(x*, x) = 5,2 + §%
— 25.+ 8, [see (10) and note that x* = X], where
52 is the variance of the x¥* and 7., is the coefficient
of correlation between the x¥ and the observations.
Thus, from (5) and (10),

SS(f, x*, x) = {rFx — [rsx — (s7/5)]
- [(f_ )-C-)/lez - r)?.c‘x + [rx'x - (Sx'/sx)]z}/
{1 - ri‘x + [ryex — (sx“/sx)]z}- (13)
The decomposition of SS(f, x*, x) in (13) contains
the terms IA, IB, and IC, as well as two terms (in both
numerator and denominator) relating to the degree of

correspondence between the internal climatological
values (i.e., the x¥) and the observations. For conve-
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nience, we will denote these latter terms by IIA and
IIB, respectively.

With regard to single-valued external climatology
(Case III, for which r = i), MSE(@, x) = 52 + (&
— x)? [see (10)] and, from (6) and (10),

SS(f, i, x) = {r}x - [rfx - (-s‘f/&\')]2
= [/ =B/ + [m — %)/ s:02}/
{1+ [(z = x)/s)}. (14

In addition to the terms IA, IB, and IC, the decom-
position of SS(f, i, x)in (14) contains a term (in both
numerator and denominator) related to the degree of
correspondence between the mean external and inter-
nal climatologies. This term will be denoted by IIIA.

Finally, in the case of multiple-valued external cli-
matology (Case IV, for which r = u;), MSE(p, x)
=52+ 5,2+ (i — X)* — 25,5,7, [see (10)], where s,°
is the variance of the y; and r,, is the coefficient of
correlation between the u; and the observations. Thus,
from (7) and (10),

SS(f, uyx) = {rkx — [rex'— (57/5)1?
~[(F = X)) = rix + [Frux — (84 50)]°
+ (2= X)/s]} {1 = rix + [rix = (s,/5)]
+ [(& ~ %)/}, (15)

In addition to the terms IA, IB, and IC, the decom-
position of SS(f, u, x) in (15) contains three terms (in
both numerator and denominator) relating to the de-
gree of association between the external climatological
values (i.e., the ;) and the observations. We will denote
these three terms by IVA, IVB, and IVC, respectively.

4. Discussion and interpretation

As indicated in section 3b, the decompositions of
all four skill scores contain the terms IA, IB, and IC.
In fact, the decomposition of SS(f, X, x) (Case I) con-
sists solely of these three terms [see (12)]. The decom-
positions of the other skill scores include additional
terms relating to the degree of association between the
reference forecasts and the observations. We focus ini-
tially on the three common terms and then discuss the
other terms that arise in Cases II, III, and IV.

In developing interpretations for the three common
terms, it is useful to recall that all of the non-time-
dependent information relevant to verification is con-
tained in the joint distribution of forecasts and obser-
vations (Murphy and Winkler 1987). In this regard,
the three terms of interest here are defined in terms of
summary measures of the (empirical) joint and mar-
ginal distributions of forecasts and observations [i.e.,
in terms of means, variances, and a covariance or cor-
relation—see (12)]. Furthermore, this joint distribu-
tion can be described in terms of a linear regression
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model in which the observations are regressed on the
forecasts. :

With this model in mind, the term IA—the square
of the sample correlation coefficient—obviously re
resents an overall, nondimensional measure of the
strength of the linear relationship between the forecasts
and observations. This measure ranges from zero, cor-
responding to no linear relationship, to one, corre-
sponding to a perfect linear relationship. In general,
skill increases as the strength of this linear relationship
increases.

The term IB represents the square of the difference
between the sample correlation coefficient and the ratio
of the standard deviation of the forecasts to the standard
deviation of the observations. In this regard, it should
be noted that the slope of the regression line, which
describes the relationship between the expected values
of the observations (given the forecasts) and the fore-
casts, can be expressed as (sx/s/)rs. It can then be
seen that the term of interest here vanishes (only) when
the slope of the regression line is equal to one, an ob-
viously desirable characteristic of such a line in the
context of forecast verification. When the slope of the
line is not equal to one, it implies that the conditional
expected values of the observations are not equal to
the corresponding forecasts and, as a result, that the
latter are biased. Thus, this term represents a nondi-
mensional measure of the conditional bias in the fore-
casts. In view of the fact that the term is nonnegative
and is preceded by a minus sign, linear relationships
between forecasts and observations characterized by
slopes that differ from unity will tend to decrease skill.

Finally, the term IC is the square of the difference
between the mean forecast and the mean observation,
divided by the variance of the observations. It is im-
mediately evident that this term is a nondimensional
measure of the unconditional (i.e., overall) bias in the
forecasts and that it vanishes only for unbiased forecasts
(f = X). Moreover, the term IC is related to the constant
(intercept) term in the linear regression model. How-
ever, it should be noted that the intercept in the regres-
sion model is identically equal to zero only when the
forecasts are unconditionally and conditionally un-
biased. In view of the fact that this term is nonnegative
and is preceded by a minus sign, the skill of the forecasts
tends to decrease as the unconditional bias increases
(and vice versa).

Thus, it is evident that the decomposition of the
skill scores into expressions containing the terms IA,
IB, and IC yields analytical relationships between the
respective skill scores and the square of the correlation
coefficient (i.e., r%). The relationship is simplest
in the case of single-valued internal climatology (Case
I), because only the three common terms are involved.
In this case, the overall skill of the forecasts can be seen
to consist of three parts: (i) the strength of the linear
relationship between the forecasts and observations, as
reflected by the square of the correlation coefficient;
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(ii) the conditional bias in the forecasts, as reflected
by the extent to which the (square of the) slope of the
regression line differs from unity; and (iii) the uncon-
ditional bias in the forecasts, as reflected by the square
‘ of a nondimensional measure of the difference between
the mean forecast and the mean observation. These
statements apply, as well, to the common terms in the
decompositions of the other skill scores, but in these
cases additional terms involving the degree of associ-
ation between the reference forecasts and the obser-
vations also influence forecast skill. .

Before discussing the other terms that arise in Cases
I1, 111, and IV, the implications of this skill score /cor-
relation coeflicient relationship for the correlation coef-
ficient as a measure of forecasting performance are
briefly considered. For convenience, we once again re-
fer to the terms IA, IB, and IC in (12). First, it should
be noted that this relationship suggests that the square
of the correlation coefficient (i.e., Term IA) is itself a
kind of skill score. [In the context of the linear regres-
sion model, the square of the correlation coefficient
represents the fraction of the variance of the observa-
tions “explained” (or accounted for) by the forecasts].
Second, the existence of the other terms in the decom-
position of SS(f, X, x) (i.e., Terms IB and IC) indicates
that, as a skill score, the (square of the) correlation
coefficient suffers from two fundamental deficiencies—
it ignores both the conditional and unconditional biases
in the forecasts. Thus, it is reasonable to consider the
square of the correlation coefficient as a measure of
potential skill (i.e., the level of skill attainable when
any conditional and unconditional biases are elimi-
nated ), whereas the skill score SS(f, X, x) is a measure
of actual skill in the case of single-valued internal cli-
matology.

When standards of reference other than single-valued
internal climatology are employed, other terms also
appear in the decompositions. In the following discus-
sion, we provide interpretations of these additional
terms. It should first be noted that these terms bear a
strong “‘pairwise” resemblance to the three common
terms, except that the former relate to the association
between the reference forecasts and the observations.
In fact, these additional terms can also generally be
interpreted in terms of a linear regression model—in
this context, a model in which the observations are
regressed on the reference forecasts. The presence or
absence of particular (additional) terms depends on
the nature of the standard of reference.

For example, in the case of multiple-valued internal
climatology (Case II, for which r = x¥*), the reference
forecasts are not constant. The accuracy of such ref-
erence forecasts depends on the variance of the forecasts
and the covariance (or correlation ) between the fore-
casts and observations, in addition to the variance of
the observations. No term involving the difference be-
tween the mean reference forecast and mean obser-
vation appears in this (accuracy) expression, because
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it has been assumed that X* = X (see section 2c). As
a result, the decomposition of SS(f, x*, x) [see (13)]
involves two additional terms (IIA and IIB) that appear
in both numerator and denominator. These terms
vanish only when 27+, = 5,+/ 5. Moreover, under the
assumption that 27« > 5. /S, (a reasonable assump-
tion in this context), it can be shown that SS(f, x*,
x) < SS(f, X, x). That is, the use of multiple-valued
internal climatology as a standard of reference instead
of single-valued internal climatology will, in general,
be associated with a decrease in skill.

In the case of single-valued external climatology
(Case 111, for which r = p), the reference forecasts are
constant (i.e., s, = 0) and the regression model fails
(infinite slope). The accuracy of such forecasts depends
only on the squared difference between the mean ex-
ternal and internal climatologies, in addition to the
variance of the observations. As a result, the decom-
position of SS(f, u, x) [see (14)] involves only a single
additional nondimensional term—a term that appears
in both numerator and denominator—involving the
difference between u and X. Note that this term van-
ishes only when the two climatological means are equal
(i.e., u = X). Moreover, it is immediately evident that
SS(f, u, x) = SS(f, X, x), with equality only when u
= X. In effect, use of external climatology ‘‘rewards”
the forecasting system (in terms of a higher skill score)
for any difference between X and u, whereas use of
internal climatology assumes that this information (i.e.,
X) is already available to the forecasting system.

Finally, in the case of multiple-valued external cli-
matology (Case IV, for which r = y;), the accuracy of
the reference forecasts (which are not constant) de-
pends on the variance of the forecasts, the covariance
(or correlation ) between the forecasts and observations,
and the difference between the mean forecast and mean
observation (in addition to the variance of the obser-
vations). As a result, the decomposition of SS(f, g, x)
[see (15)] involves three additional terms (IVA, IVB,
and IVC) that appear in both numerator and denom-
inator. These terms vanish only when 2r,, = s,/s. and
g = X. Moreover, under the assumption that 2r,,. > s,/
sx (once again, a reasonable assumption in this con-
text), it can be shown that SS(f, u, x) < SS(f, &, x)
for unbiased forecasts. That is, the use of multiple-
valued external climatology as a standard of reference
instead of single-valued external climatology will also
generally be associated with a decrease in skiil.

5. Some numerical results

To investigate the typical magnitudes of the terms
in the four skill-score decompositions, we examine
samples of operational National Weather Service
(NWS) forecasts for Portland, Oregon, formulated
during the warm season { April-September ) for the pe-
riod 1980-85. The forecasts of interest are the so-called
“‘objective” probability of precipitation (PoP) and
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minimum ternperature ( Tyyn) forecasts produced by
the numerical-statistical forecasting system (Glahn
1985). The PoP forecasts considered here relate to the
0000 UTC cycle time.

Table 1 contains the numerical results for Case [-—
that is, SS(f, X, x) and the terms in its decomposition—
for various lead times for both the PoP and T fore-
casts. Here we can examine the magnitudes of the three
terms that are common to all four decompositions and
compare SS(f, X, x) with the square of the correlation
coefficient (77, —Term IA). Table 2 presents the nu-
merical values of all four skill scores—SS(f, X, x) (Case
I), SS(f, x*, x)(Case II), SS(f, iz, x) (Case III), and
SS(f, u, x) (Case IV)—as well as the value of r%,.
These results make it possible to compare all of the
skill scores with r}x , as well as to examine the relative
magnitudes of the various skill scores. The numerical
values of the terms (other than the three common
terms) associated with the decompositions in Cases II,
III, and 1V are presented in Table 3. In computing all
of these quantities, six-month (i.e., warm season) av-
erages were used in the cases of single-valued clima-
tology (Cases I and III) and monthly averages were
used in the cases of multiple-valued climatology (Cases
IIand IV).

In Case I [S(f, X, x)—single-valued internal cli-
matology], the results in Table 1 indicate that the terms
relating to the conditional and unconditional biases
(Terms IB and IC) in the PoP forecasts are quite small.
Thus, SS(f, X, x) is only slightly smaller than r7,
(Term IA) (at most about 0.010, or 1% when multi-
plied by 100). On the other hand, very much larger
unconditional biases (Term IC) exist in the case of the
Twmin forecasts, and the conditional biases (Term IB)
for these forecasts are also larger for the 48-hour and
60-hour lead times. As a consequence, SS(f, X, x) is
roughly 10-13% smaller than r%, for the Tyn fore-
casts. These results appear to be typical of the magni-
tudes of the respective quantities for such forecasts at

TABLE 1. Numerical values of SS(f, X, x) (Case I)—and the terms
in its decomposition—for the objective PoP and Ty forecasts for
Portland, Oregon, in the warm season for the period 1980-85.

Lead Sample
time size Skill score TermIA.  Term IB Term IC
(h) n o SS(f % x) rk s ~ (/8P 1= sl
PoP forecasts
12-24 870 0.347 0.354 0.005 0.002
24-36 868 0.247 0.258 0.002 0.010
36-48 850 0.276 0.281 0.004 0.001
Twmin forecasts
24 804 0.672 0.801 0.001 0.128
36 783 0.659 0.768 0.003 0.107
48 785 0.596 0.716 0.013 0.107
60 775 0.573 0.682 0.018 0.091
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TABLE 2. Numerical values of the four skill scores and the square
of the correlation coefficient for the objective PoP and Ty forecasts
for Portland, Oregon, in the warm season for the period 1980-85.

Lead
time  Casel Case 11 Case Il CaselV Temzx 1A
(h)  SS(f X, x) SS(f,x* x) SS(f, i, x) SS(f, u, x) Tix

PoP forecasts

0.314

12-24  0.347 0.310 0.347 0.354
24-36  0.247 0.209 0.247 0.231 0.258
36-48 0.276 0.239 0.276 0.242 0.281
T~ forecasts
24 0.672 0.295 0.739 0.552 0.801
36 0.659 0.260 0.725 0.520 0.768
48 0.596 0.146 0.676 0.451 0.716
60 0.573 0.080 0.653 0.398 0.682

other NWS offices (results omitted to conserve space).
In general, the conditional bias term for these forecasts
is less than 0.05 and the unconditional bias term ranges
from 0.00 to 0.15. It is evident that use of the square
of the correlation coeflicient as a measure of skill may
substantially overestimate actual forecasting perfor-
mance in some situations.

Compearison of the numerical values of the four skill
scores with the value of % (see Table 2) reveals
that the latter always exceeds the former. Of course,
these ordinal relationships are strongly “influenced”
by the ordinal relationships among the skill scores
themselves (see section 4). In this regard, recall that
SS(f, u, x) = SS(f, X, x) and that, in general, SS(f,
x* x) <S8S(f, X, x) and SS(f, u, x) < SS8(f, &, x).

TABLE 3. Numerical values of the terms in decompositions of
SS(f; x*, x) (Case II), SS(f, i, x) (Case III), and SS(f, u, x) (Case
IV) for the objective PoP and Ty forecasts for Portland, Oregon,
in the warm season for the period 1980-85.

SS(f; x*, x) SS(f, #, %)
Lead SS(f, &, x)
time Term Term Term Term Term Term
(h) 1A 18] A IVA 1VB 1vC
PoP forecasts
12-24 0.054 0.000 0.001 0.049 0.000 0.001
24-36 0.047 0.000 0.000 0.026 0.005 0.000
36-48 0.048 0.000 0.000 0.045 0.000 0.000
Twin forecasts
24 0.535 0.000 0.254 0.530 0.007 0.254
36 0.540 0.000 0.239 0.534 0.006 0.239
48 0.527 0.000 0.248 0.520 0.008 0.248
60 0.536 0.000 0.231 0.530 0.008 0.231
Key:

Term IIA = ri., Term IVA = r},
Term 1B = [Fryex — (Sxo/s)F  Term IVB = [r,, — (S/50)F
Term HIA = [(& — X)/s5,)° Term IVC = [(& — X)/s:)?
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The results in Table 2 are consistent with these rela-
tionships. In brief, it can be seen that the differences
between the skill scores and r}x in Cases I and III (sin-
gle-valued climatology ) are about 1% or less in the case
of the PoP forecasts and roughly 3-13% in the case of
the Twin forecasts (the unconditional biases are con-
siderably larger for the Ty forecasts than for the PoP
forecasts). The differences between the skill scores and
r#, in Cases II and IV (multiple-valued climatology)
.are much larger. In these cases, the climatological stan-
dards of reference are based on monthly (as opposed
to six-monthly) averages. These standards obviously
produce more accurate reference forecasts, with the
result that the forecasts of interest appear less skillful.
Not surprisingly, this effect is strongest in Case II in
which the reference forecasts are based on the sample
of observations from the experimental period. In any
case, it is evident that, depending on the choice of the
standard of reference, the use of the square of the cor-
relation coefficient as a measure of skill overestimates
actual skill by amounts that range from a few percent
to as much as 50% or more.

The numerical values of the non-common terms
arising in Cases II, III, and IV are reported in Table 3.
They are included here to “explain” the differences
among the skill scores in Table 2. It can be seen that
the differences between the mean external and internal
climatologies (i.e., u and X—see Terms IIIA and IVC)
are negligible for the PoP forecasts, but are certainly
not insignificant for the Ty forecasts. The terms that
relate to the conditional biases in the reference forecasts
(i.e., Terms IIB and IVB) are zero in the case of internal
climatology and quite small in the case of external cli-
matology, for both types of forecasts. Finally, the terms
representing the square of the coefficient of correlation
between the reference forecasts and the observations
(i.e., Terms IIA and IVA) are modest (0.025-0.055)
for the PoP forecasts and large (0.520-0.540) for the
Twn forecasts. The differences in these values account
for the fact that the difference between the respective
skill scores and r#, is rather modest for the PoP fore-
casts but quite large for the Ty~ forecasts (see Table
2). It is interesting to note that, as expected, r2.,
(Term IIA) > r2, (Term IVA) for all combinations
of variable and lead time. However, the difference be-
tween these quantities is less than 0.01 for all but one
combination (PoP forecasts for the 24-36 hour lead
time).

6. Conclusion

In this paper we have formulated skill scores based
on the familiar mean-square-error measure of accuracy
and four alternative climatological standards of refer-
ence. The latter relate to whether the observations on
which the reference forecasts are based are taken from
the experimental period or from an historical period
(internal versus external climatology) and whether
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these observations are used to produce a single constant
forecast valid on all occasions in the experimental pe-
riod or multiple forecasts each of which is valid on all
occasions in a subperiod of the experimental period
(single-valued versus multiple-valued climatology).
Decompositions of these skill scores were derived, and
they were shown to yield analytical relationships be-
tween the respective skill scores and the coefficient of
correlation between the forecasts and observations.

Specifically, the decompositions contain three com-
mon terms as well as other terms relating to the asso-
ciation between the reference forecasts and the obser-
vations. Interpretations of these terms were obtained
by appealing to a linear regression model in which the
observations are regressed on the forecasts. The com-
mon terms involve summary measures of the joint and
marginal distributions of forecasts and observations
and possess the following interpretations: (i) the square
of the coefficient of correlation between the forecasts
and observations; (ii) a measure of the nonsystematic
(i.e., conditional ) bias in the forecasts; and (iii) a mea-
sure of the systematic (i.e., unconditional ) bias in the
forecasts. All three terms are nonnegative and their
signs are such that the skill score is generally less than
or equal to the square of the correlation coefficient. As
a result, it is reasonable to view the square of the cor-
relation coefficient as a measure of potential skill (i.e.,
the level of skill attainable when the biases are elimi-
nated) and the skill score as a measure of actual skill.

Samples of operational NWS precipitation proba-
bility and minimum temperature forecasts for Port-
land, Oregon, were used to investigate the typical mag-
nitudes of the terms in these decompositions. Both bias
terms were found to be quite small in the case of the
precipitation probability forecasts but somewhat larger
in the case of the minimum temperature forecasts. As
a result, the difference between potential skill and actual
skill, when the standard of reference is single-valued
internal climatology, is very small (less than 1%) in
the case of the precipitation probability forecasts and
modest (3-13%) in the case of the minimum temper-
ature forecasts. Use of multiple-valued climatology
(whether internal or external) substantially increases
this difference between potential and actual skill. It is
evident from these numerical results that the square
of the correlation coefficient, as a measure of potential
skill, may substantially overestimate actual skill in
some situations. In this regard it would be of some
interest to investigate the magnitudes of the bias
terms—and the differences between potential and ac-
tual skill—for forecasts of other variables for which
forecasting methodology is less well-developed or fore-
casting experience is more limited.

Before discussing the implications of these results
for the practice of forecast verification, it may be ap-
propriate to point out that the skill scores described in
this paper are general skill scores in the sense that they
are applicable to all types of forecasts. That is, these
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scores can be used as measures of skill whether the
forecasts are expressed in categorical or probabilistic
format. In this regard, SS(f, X, x) is identical to the
so-called sample skill score based on the Brier score
(Brier 1950), a measure frequently used to determine
the skill of probabilistic forecasts (e.g., see Murphy
1985). As the results in Table 1 demonstrate, this mea-
sure can also be used to assess the skill of categorical
temperature forecasts.

What are the implications of the results presented
in this paper for current practices in forecast verifica-
tion? First and foremost, it is evident that great care
should be exercised in using the correlation coefficient
to evaluate the performance of forecasts. Since the de-
compositions presented here demonstrate that this
measure ignores two important types of biases in fore-
casts, use of the correlation coeflicient (or its square)
may lead to substantial overestimation of forecasting
performance. In this regard, it is more appropriate to
interpret the square of the correlation coefficient as a
measure of potential skill than as a measure of actual
skill. Second, if the correlation coefficient is of interest
in a verification study, then the other terms in the de-
composition of the relevant skill score—as well as the
skill score itself—also should be computed. These other
terms will provide quantitative information regarding
the difference between potential and actual skill, as well
as additional insight into basic characteristics of fore-
casting performance. This insight may prove useful in
subsequent efforts to enhance the skill of the forecasts.
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