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ABSTRACT

A new decomposition of the Brier score is described. This decomposition is based on conditional distributions
of forecast probabilities given observed events, and, as a result, it differs in a fundamental way from most
previous partitions of quadratic verification measures. The new decomposition consists of 1) a term involving
the variances of the conditional distributions and 2) a term related to the mean errors in the forecasts, which
involves the squared differences between the means of the conditional distributions and the respective mean
observations (the latter are necessarily either zero or one). Decreases in these variances and/or mean errors
generally lead to improvements in the Brier score. The decomposition may be useful in verification studies,
since it appears to provide additional insight into the quality of probabilistic forecasts.

1. Introduction

The Brier score (Brier, 1950) is simply the mean-
square error of probabilistic forecasts, and, as such, it
is a measure of the accuracy of the forecasts. This mea-
sure possesses several desirable properties, and it is
widely used—Dboth in its original form and in the form
of a skill score—to evaluate the results of probability

“forecasting programs (see Murphy and Daan, 1985).
One such property relates to the fact that it is possible
to partition or decompose the Brier score into measures
of other attributes of the forecasts (and/or observa-
tions). For example, decompositions developed by
Sanders (1963) and Murphy (1973) yield measures of
reliability and resolution, two important attributes of
probabilistic forecasts. Thus, these partitions provide
valuable information regarding the quality of such
forecasts beyond that embodied in the overall Brier
score itself.

Partitions of the Brier score formulated to date have
generally involved the conditional distributions of the
observations (i.e., observed events) given the forecasts.
For example, the measure of reliability in the partitions
formulated by Sanders (1963) and Murphy (1973) is
the weighted average of the squared differences between
the conditional means of the observations (i.e., con-
ditional observed relative frequencies) given the fore-
cast probabilities and the probabilities themselves,
where the weights are the relative frequencies with
which the probability values are used. It is also possible
to approach the verification problem by considering
the conditional distributions of the forecast probabil-
ities given the observed events, together with the sample
relative frequencies of these events, and the primary
purpose of this note is to describe a decomposition of
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the Brier score based on this alternative approach to
forecast verification.

The new decomposition of the Brier score is for-
mulated in section 2. In section 3 we provide inter-
pretations for the terms in this decomposition and
briefly discuss the relationships between these terms
and other measures of forecast quality. Section 4 con-
sists of a short summary and some concluding remarks.

2. Formﬁlation of new decomposition

Consider a two-event—say, precipitation/no pre-
cipitation—situation involving a sample of n forecasts
and the corresponding observations. Let r; denote the
probability of precipitation on the ith occasion and let
d; denote the observation of precipitation on the ith
occasion, where d; = 1 if precipitation occurs and d;
=0 otherwise (i = 1, ..., n). In this situation, the
average Brier score (BS) (Brier, 1950) can be expressed
as follows:

BS=/m) S(ri—df.

=1

(D

(The 2 in this expression arises because the scores as-
sociated with the occurrence and nonoccurrence of the
events are equal.)

The sample of » forecasts (and observations) can be
divided into two subsamples based on the occurrence
and nonoccurrence of precipitation. Specifically, let 7,
denote the number of occasions on which d; = 1 and
let ny denote the number of occasions on which d;
=0 (n, + no = n). Moreover, let r,; denote the forecast
probability of precipitation on the jth of the »n, occa-
sions (j = 1, « -« , n) and let rox denote the forecast
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probability of precipitation on the kth of the 7, occa-

sions(k=1, + + + , ny). Then BS in (1) can be rewritten
as follows:
ny no 2
BS=(2/n)[Z (r; — 1)*+ 2 (rox— 0], (2
J=1 k=1
or )
n ny m
BS=Q/m(Zrnf+ Zral=22n;+n), 3)
j=1 k=1 Jj=1
or, since

ny
A=/n) 2 ryj,
=1

j=

ny no
BS=2/n) (X rif+ 2 rol —2mi +ny).
=1 k=1

C)

Adding and subtracting (2/n)(n,7,? + nei>) on the
n

right-hand side (RHS) of (4) [7o = (1/n0) 2 7o), this
k=1

equation becomes

ny no
BS=02/nl(X r1j2 - nlflz) +(Z r0k2 - no’_'bz)]
j=1 k=1

+(2/n)(mr2 = 2m 7 + ny + neRed),  (5)
or, since
Var(r;) E(l/nl)('”zl r?—mn?)
and "~
Var(ro)=( l/no)(anDl roi” = Mofo?),
BS = (2/n)[n;, Var(r) + no Var(rp)]
+Q2/n)m(7 — 1) + no(fo—0)°].  (6)

Finally, let d; = n;/n and dy = no/n (d, + dp = 1).
Then BS in (6) can be rewritten as follows:

BS =2[d, Var(r,)+ dy Var(ro)]

+2[d\(7 — 1)’ + do(—0)*].  (7)
The expression for BS in (7) represents the basic
form of the new decomposition of the Brier score.
However, it will be convenient for some purposes to
have a symbolic (and simpler) expression for this de-
composition. Thus, if we let Var(r) = d, Var(r) + dy
Var(rp) and E*(r) = di(7, — 1)* + dy(7p — 0)?, then
BS =2 Var(r) + 2E*(r). (8)
It should be noted that the decomposition in (8) rep-
resents a special case of a general and well-known result,
according to which the mean-square error is the sum
of the variance of the errors and the square of the mean
error.
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3. Interpretation and discussion

In interpreting the terms on the RHS of (7), it should
be recognized that the subsamples of forecasts and ob-
servations on which the decomposition is based con-
stitute two conditional distributions: (i) the distribution
of forecast probabilities given the occurrence of pre-
cipitation and (ii) the distribution of forecast proba-
bilities given the occurrence of no precipitation. From
this perspective, it is evident that the two terms in the
new decomposition represent simple functions of
summary measures of these distributions. Specifically,
the first term on the RHS of (7) is twice the weighted
average of the variances of the two distributions, where
the weights are the corresponding sample relative fre-
quencies of precipitation and no precipitation, respec-
tively. This term ranges from zero when r,; = 7, for all
Jj and ro = 7o for all k to one-half when ry; = 1 on n,/
2 occasions, 71; = 0 on n, /2 occasions, ror = 1 on ng/
2 occasions and ror = 0 on ny/2 occasions. Thus, a
decrease in the variance of the forecasts in either sub-
sample will lead to a decrease in the Brier score (recall
that smaller Brier scores are better).

The second term on the RHS of (7) is twice the
weighted average of the squared differences between
the average subsample forecast probability and the
corresponding average subsample observation (in this
decomposition, the latter is necessarily either one or
zero). Once again, the weights are the sample relative
frequencies of the two events. This mean-error term
ranges from zero when ry; = 1 for all j and ro, = O for
all k to two when r;; = O for all j and roe = 1 for
all k. As expected, a decrease in the mean error asso-
ciated with either subsample will lead to a decrease in
the Brier score.

As an example of the use of this decomposition, we
consider matched samples of objective and subjective
precipitation probability forecasts formulated for ap-
proximately 17 locations in the Western Region of the
National Weather Service during the 1984-85 cool
season (October-March). These forecasts are valid for
the period 1224 hours after the 0000 GMT cycle time.
Each sample consists of 2959 forecasts, and the overall
sample relative frequency of measurable precipitation
(d,) is 0.187. The average objective forecast probabil-
ities for periods with and without measurable precip-
itation are 0.446 (=r;) and 0.107 (=), respectively.
Corresponding values for the subjective forecasts are
0.532 and 0.103. With regard to the terms in the de-
composition of BS, E%(r) = 0.067 and Var(s) = 0.030
for the objective forecasts and £%(r) = 0.050 and Var(r) -
= 0.031 for the subjective forecasts. Thus, the subjective
forecasts exhibit a smaller mean error and a slightly
larger variance than the objective forecasts. This result
is consistent with the tendency for the extreme prob-
abilities (say, 0%, 80%, 90%, 100%) to be used more
frequently by the forecasters than by the objective fore-
casting system (e.g., see Murphy, 1985). The overall
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Brier scores for the objective and subjective forecasts
are 0.194 and 0.162, respectively, indicating that the
accuracy of the latter is greater than that of the former
for these sampiles.

Although the expression for the decomposition in
(7) possesses an attractive and symmetric form, it
should be noted that this decomposition can also be
expressed as follows:

BS=(2/n) % r?+2dy(1 —27) )]

i=1

[see (4)]. The first term on the RHS of (9) is simply
twice the mean square of all the forecast probabilities
(i.e., the r;), and the second term represents a measure
of mean error involving the subsample of forecasts for
which d; = 1. The first term is always nonnegative and
attains a minimum value when r; = 7 for all

ifr=(1/n) '§1 r]

On the other hand, the second term is negative (desir-
able) when 7; > % and positive (undesirable) when
r <.

In formulating the new decomposition of the Brier
score, we have taken a different approach than that
employed in developing previous decompositions of
this quadratic verification measure. Thus, it is not sur-
prising that the terms in the new partition possess quite
different interpretations than the terms in most earlier
decompositions. However, the new decomposition is
similar in some respects to the so-called covariance
decomposition of the Brier score recently described by
Yates and Curley (1985). The latter involves five terms,
one of which corresponds to the variance term in the
partition described here; the other four terms arise from
a further decomposition of the mean-error term in this
new partition.

It is also of interest to note that some similarities
exist between this approach and the signal detection
theory (SDT) approach to forecast verification de-
scribed by Mason (1982). Specifically, Mason defines
two measures of forecast quality of special significance
in the SDT approach, and these measures involve the
same basic quantities—the means and variances of the
distributions of forecasts in the two subsamples—as
the decomposition described here. On the basis of a
preliminary study, however, no simple relationships
appear to exist between the SDT measures and the
terms in the new decomposition.

4. Conclusion

A new decomposition of the Brier Score has been
described in this paper. Unlike most previous parti-
tions, this decomposition is based on dividing the sam-
ple of forecasts and observations into subsamples on
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the basis of the occurrence of the respective events.
Here, each subsample constitutes a conditional distri-
bution of forecast probabilities given that a particular
event has occurred. The two terms in the decomposi-
tion represent weighted averages of summary measures
of these distributions. Specifically, one term involves
the variances of the conditional distributions, with
smaller variances generally leading to better Brier
scores. The other term relates to the conditional means
of the forecast probabilities and represents a measure
of the mean error in the forecasts, with smaller errors
yielding better Brier scores.

We also briefly discussed the relationships between
the terms in this decomposition and measures of fore-
cast quality based on other decompositions of the Brier
score or on alternative approaches to forecast verifi-
cation. These relationships warrant more detailed in-
vestigation. Although the terms in the new decompo-
sition appear to provide additional insight into the
quality of probabilistic forecasts, it will be necessary to
gain some experience with this partition before it is
possible to judge its ultimate usefulness in the context
of forecast verification.

The decomposition of the Brier score presented here
was formulated within the context of a two-event sit-
uation. However, it is relatively straightforward to ex-
tend this decomposition to cover multiple-event (two-
or-more-event) situations. Moreover, an analogous de-
composition can be developed for other probabilistic
quadratic verification measures such as the ranked
probability score (Epstein, 1969; Murphy, 1971).
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