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ABSTRACT

Scalar and vector partitions of the probability score (PS) in N-state (IN>2) situations are described and
compared. In N-state, as well as in two-state (V=2), situations these partitions provide similar, but not
equivalent (i.e., linearly related), measures of the reliability and resolution of probability forecasts. Spe-
cifically, the vector partition, when compared to the scalar partition, decreases the reliability and increases
the resolution of the forecasts. A sample collection of forecasts is used to illustrate the differences between

these partitions in /V-state situations.

Several questions related to the use of scalar and vector partitions of the PS in N-state situations are dis-
cussed, including the relative merits of these partitions and the effect upon sample size when forecasts are
considered to be vectors rather than scalars. The discussions indicate that the vector partition appears to
be more appropriate, in general, than the scalar partition, and that when the forecasts in a collection of
forecasts are considered to be vectors rather than scalars the sample size of the collection may be sub-

stantially reduced.

1. Introduction

Scalar and vector partitions of the probability score
(PS) (Brier, 1950) in the two-state (V=2) situation
have recently been described and compared (Murphy,
1972b; hereafter we refer to this paper as Part I). In
Part I we demonstrated that these partitions, which are
based upon expressions for the PS in which probability
forecasts are considered to be scalars and vectors,
respectively, provide similar, but not equivalent (i.e.,
linearly related), measures of the reliability and resolu-
tion of the forecasts in the two-state situation, Specifi-
cally, we indicated that the vector partition, when
compared to the scalar partition, decreases the relia-
bility and increases the resolution of the forecasts.? In
addition, we have also recently obtained similar results
for the ranked probability score (RPS) (Epstein, 1969),
in which the scalar and vector partitions are based upon
scalar and vector cumulative forecasts, respectively (see
Murphy, 1972¢).

The purposes of this paper are to describe and com-
pare the scalar and vector partitions of the PS in
N-state (V> 2) situations and to discuss several ques-
tions related to the use of these partitions in such
situations. In particular, we extend the results obtained
in Part 1 which relate to the relationship between the
scalar and vector partitions to N-state situations and

! The National Center for Atmospheric Research is sponsored
by the National Science Foundation.

% In reality, the scalar and vector partitions are concerned with
the reliability and resolution of individual probabilities and sets of
probabilities, or forecasts, respectively (see Section 2).

consider, in some detail, several questions related to the
use of these partitions in N-state situations, including
the relative merits of these partitions and the effect upon
sample size when forecasts are considered to be vectors
rather than scalars.?

In Section 2 we briefly describe the differences be-
tween scalar and vector forecasts and observations and
introduce notation to identify these quantities. The
scalar and vector partitions of the PS in N-state
situations are presented in Section 3. In Section 4 we
compare the scalar and vector partitions and demon-
strate that these partitions are not equivalent, i.e.,
linearly related. A sample collection of forecasts is used
to illustrate the differences between these partitions in
N-state situations in Section 5. Several questions related
to the use of these partitions in N-state situations are
discussed in Section 6, including the relative merits of
these partitions and the effect upon sample size when
forecasts are considered to be vectors rather than
scalars. Section 7 consists of a brief summary and
conclusion,

2. Scalar and vector forecasts and observations

We assume that the forecasts and observations relate
to situations in which the range of the variable of con-
cern has been divided into a set of N mutually exclusive
and collectively exhaustive states {sy,...,55}.

We are concerned with collections of forecasts and
the relevant observations. When the forecasts and

8 The results described in this paper are applicable in two-state
(N =2) as well as in N-state (V>2) situations.
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F16. 1. Two occasions on which the probabilities assigned to a
three-state (N =3) variable are 0.3, 0.6, 0.1 and 0.0, 0.3, 0.7 re-

spectively, depicted within the appropriate framework when fore-
casts are considered to be (a) scalars and (b) vectors (the proba-
bilities which correspond to the observed states are underlined).
The dashed lines represent the distances between the forecasts
and the relevant observations in the respective frameworks. The
PS for each forecast equals the square of this distance.

observations are considered to be scalars, we denote
the mth forecast in a collection of M scalar forecasts
by the scalar 7, (0<7,< 1) and the relevant observation
by the scalar d.., where d.. equals one if the state of
concern occurs and zero otherwise (m=1,...,M). When
the forecasts and observations are considered to be
vectors, we denote the &th forecast in this collection
of K (=M/N) vector forecasts by the row vector

I‘];Z(flk,. . ,TNL‘), (7':1'];20, Z 7'nk=1; n:l’ ey AV))

and the relevant observation by the row vector
di= (ds,. . .,dws), where d..; equals one if state s, occurs
on the kth occasion and zero otherwise (n=1,...,N;
k=1,...,K).

The differences between scalar and vector forecasts
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in N-state (V>2) situations can be indicated by con-
sidering the probabilities assigned to a three-state
(N'=3) variable on two occasions. Suppose that these
probabilities are 0.3, 0.6, 0.1 on the first occasion and
0.0, 0.3, 0.7 on the second occasion, and that state so
occurs on the first occasion and state s3 occurs on the
second occasion. If we consider forecasts to be scalars,
then we have six forecasts (M =6): r1=0.3, 7,=0.6,
r3=0.1,7,=0.0,7;=0.3, 74=0.7. The appropriate frame-
work within which to depict scalar forecasts is the unit
line segment (see Part I, p. 274). These forecasts are
depicted within this framework in Fig. la. If we con-
sider forecasts to be vectors, then we have fwo forecasts
(K=2): 1=(0.3,0.6,0.1) and r.=(0.0,0.3,0.7). The
appropriate framework within which to depict vector
forecasts is a regular (N —1)-dimensional simplex,
which is an equilateral triangle in the three-state
situation (see Pontryagin, 1952, pp. 10-12; see also
Part I, p. 274, and Murphy, 1972a). These forecasts are
depicted in this framework in Tig. 1b.4

The partitions of the PS are based upon the assump-
tion that the probabilities which constitute the fore-
casts can assume only a finite set of values (see Part I,
pp. 274-275). Specifically, we assume that the collec-
tion of forecasts of concern consists of M scalar or
K (=M/N) vector forecasts and that the probabilities
can assume only .S distinct values. Then, we can identify
S distinct scalar forecasts 7 (s=1,...,5) and, as a
result, S distinct subcollections of the collection of M
scalar forecasts, where subcollection s consists of the
M forecasts for which

(m=1,..., M3 Ms=M;s=1,...,5).

T =¥*

On the other hand, we can identify T distinct vector
forecasts r* (t=1,...,T), where

T=3.

s=1

s /N+s—4
( >w—wn, (1)

s—1

in which (;) =2yl (xz—y)!] for 0<y<y, <;> =1 for

x=—1and y=0, and ; =0 otherwise. Thus, we can

identify T distinct subcollections of the collection of K
vector forecasts, where subcollection ¢ consists of the
K* forecasts for which

n=r  (k=1,..., K4 K'=K;t=1,...,T),
¢

4In a regular simplex the natural coordinate system is a “con-
tent” coordinate system, in which the perpendicular distances be-
tween the point (in the simplex) which represents a vector forecast
and the “faces” of the simplex are equal to the components of the
forecast. Thus, in the three-state situation, in which a content co-
ordinate system becomes an “area’ coordinate system, the dis-
tances between the point which represents a vector forecast and the
sides of the equilateral triangle are the three components of the
forecast (see Springer, 1964, pp. 119-122). The solid lines in Fig.
1b represent the components of the respective forecasts.
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in which r*=(ry,...,7%).> For these subcollections we
denote the relevant scalar observations by da
(m=1,...,M*) and the relevant vector observations

by df (k=1,...,K?), where df =(dis,. . .,d&).

3. Scalar and vector partitions : Formulation

The formulation of the scalar and vector partitions
of the PS for a collection of M scalar or K (=M/2)
vector forecasts, respectively, in the two-state (N=2)
situation has been described in Part I (pp. 275-276).
Since these partitions are formulated in the same
manner in N-state (V>2) situations, we simply re-
produce the expressions for these partitions in this
paper.

The scalar partition of the PS is PS(r,d), where

PS(rd)y=01/M) ig: Ms(r1—ds)?

s=1

FO/M) E Wd1-0), O

in which

M

de=1/M*) X dg.

m=1
The terms on the right hand-side (RHS) of (2) are the
measures of reliability and resolution, respectively,
when the forecasts are considered to be scalars (see
Part I, Footnote 10). The range of PS(r,d), in (2), is
the closed interval [0,2/N].

The vector partition of the PS is PS(r,d), where

PS(rd)=(1/K) é K(rt—d")(rt—d?)’

/) E KEw-3Y, ()
in which

d—(/K) ¥ d,

k=1

u is a row vector whose IV elements are all equal to one,
ie,u=(1,...,1), and a prime denotes a column vector.
The terms on the RHS of (3) are the measures of
reliability and resolution, respectively, when the fore-
casts are considered to be vectors (see Part I, Footnote
10). The range of PS(r,d), in (3), is the closed interval
[0,2].

4. Scalar and vector partitions: Comparison

Hereafter, for comparative purposes, we denote the
vector partition of the PS by PS*(r,d), where PS*(r,d)

5 Eq. (1) is valid only if the set of .S distinct scalar forecasts ¢
(s=1,...,S) includes the values zero and one and if the difference
between adjacent probability values is constant. For example, if
this difference is 0.1 in a three-state (V =3) situation, then S=11
and 7°=0.0(0.1)1.0 and, as a result, 7=66 and r*=(1.0,0.0,0.0),
(0.9,0.1,0.0),. . ., (0.0,0.0,1.0).
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=(1/N)PS(r,d). The range of PS*(r,d) is the closed
interval [0,2/N].

The scalar partition of the PS, PS(r,d), in (2), can
be expressed as

PS(r,d)=
S S S
(/ML L M(r)>~2 2 Mersdat- 5:“1 M(de)?]

S
FOOLE M=% W@ @

We denote the two sets of terms on the RHS of (4)
by S1 and S2, respectively, and the terms which
constitute these sets by S11, S12, and S13 and 521
and S22, respectively. Thus,

PS(r,d)=S14-S2, 5)
where
S1=511+4-5124+513, (6)
and
S$2=5214522. (N

Note that S13=—S522. Thus, PS(r,d), in (5), can be
expressed as

PS(r,d) =S11+512+S521. (8)

The vector partition of the PS, PS*(r,d) [see Eq. (3)],
can be expressed as

PS*(r,d)=(1/NK)

T r _ T .
XL X Kirt(r) =2 L K''(df)'+ 3 Kd(d")’]
t=1 =1 t=1

T T _
+(/NK)[ T Kdw' =3 Kdi(dy'],

t=1
or

PSH(rd)=(1/NK)L Z Kt Z (r.)?

t=1

-2 2 Kt Z mdﬁz Kt Z @)%

=1 n=1 n=1

T N , T N
+1/NK)L tZl K le Z Z( DI N C)
We denote the two sets of terms on the RHS of (9)
by V1 and V2, respectively, and the terms which
constitute these sets by V11, V12, and V13 and V21
and V22, respectively. Thus,

PS*(r,d)=V14+V2, (10)
where
Vi=V114V124+V13, (11)
and
V2=V21+4V22. (12)

Note that V13=—V22. Thus, PS*(r,d), in (10), can
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TasLE 1. A sample collection of forecasts and the relevant ob-
servations for a three-state (W=3) variable when the forecasts
and observations are considered to be (a) scalars and (b) vectors.

a. Scalar forecasts and observations

Forecast/
observation
number Forecast Observation
m s dy
1 0.1 0
2 0.3 0
3 0.6 1
4 0.1 0
5 0.7 1
6 0.2 0
7 0.3 0
8 0.5 1
9 0.2 0
10 0.5 0
11 04 1
12 0.1 0
13 0.7 1
14 0.3 0
15 0.0 0
16 0.6 0
17 0.1 0
18 0.3 1
19 0.5 1
20 04 0
21 0.1 0
22 0.1 0
23 0.8 1
24 0.1 0
25 0.1 0
26 0.6 0
27 0.3 1
28 0.1 0
29 0.7 0
30 0.2 1

b. Vector forecasts and observations

Forecast/
observation
number Forecast Observation
) ¢ d:
1 (0.1,0.3,0.6) (0,0,1)
2 (0.1,0.7,0.2) (0,1,0)
3 (0.3,0.5,0.2) 0,1,0)
4 (0.5,0.4,0.1) 0,1,0)
5 (0.7,0.3,0.0) {1,0,0)
6 (0.6,0.1,0.3) (0,0,1)
7 (0.5,0.4,0.1) (1,0,0)
8 (0.1,0.8,0.1) (0,1,0)
9 (0.1,0.6,0.3) (0,0,1)
10 (0.1,0.7,0.2) 0, 0, ,1)

be expressed as

PS*(r,d)=V11+V12+V21. (13)

We compare the expressions for the scalar partition
PS(r,d), in (4), and the vector partition PS*(r,d), in
(9), term by term in the Appendix. We show that

ED METEOROLOGY VoLume 11

S11=V11, $12=V12, and S21=V21, Thus, from (8)
and (13),
PS(r,d)=PS*(r,d). (14)

We also show that the difference between S13 and V13,
e, V13—S513, is

V13—S13=(1/M)[ zi, (1/M9) % (K*te)2

N! 8 1 NI 5
X Z Z (dn _dn' )2+Z (I/Ms
n=1 n'=n+l s=1
-1 7 Nho N s
XY ¥ KWK Y Y @n—dw)?], (15)
t=1 t'=t1 n=1 n’'=

where 7% denotes the number of distinct forecasts r* in

the collection of vector forecasts of concern for which
re=7r°for some n ({=1,...,7%); N** denotes the number
of states in r* for which 7,=r* (n=1,,..,Nt*); K** de-
notes the number of forecasts r; in the subcollection of
K vector forecasts for which r,=r! (k=1,...,K%%), in
which 7, =7* for some #; di’* denotes an arbitrary obser-
vation in the relevant subcollection of K%* vector ob-

servations, where di*=(dfs,...,dxr) (k=1,...,K"%);
and :
K! 8
N =(1/K) Z d
Note, from (15), that
V13—S1320. (16)

Further, note that equality holds, in (16), only if either
Nte=1or dy*=dy;’ for all n, ', ¢, and s in D1, the first
term on the RHS of (15), and 1f d’ S=dL* for all n, #/,
¢, t', and s in D2, the second term on the RHS of (15).
Finally, note, from (6) and (11), that

V1—-S1=V13-51320,

and from (7) and (12),
V13=—V22, that

V2—S2=—(V13—513)<0. (18)

Thus, as in the two-state (V=2) situation, the values
of the reliability and resolution terms for scalar fore-
casts are, in general, less and greater, respectively, than
the values of the reliability and resolution terms for
vector forecasts in N-state (IV>2) situations. That is,
if a collection of forecasts is considered to consist of
scalar forecasts, then the collection will appear, in
general, to have more reliability and less resolution
than if the collection is considered to consist of vector
forecasts.

17)
since S13=-—3522 and

5. Scalar and vector partitions : A sample collection
of forecasts

In order to illustrate the differences between the
scalar and vector partitions of the PS in N-state (V> 2)
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Taste 2. The scalar partition of the PS for the sample collection of
forecasts presented in Table 1a.

Number Observed

Subcollection of fore- relative Subcollection Subcollection
number Forecast casts frequency reliability resolution
s s Ms ds Ma(re—d»2  Msds(1 —d%)
1 0.0 1 0.00 0.00 0.00
2 0.1 9 0.00 0.09 0.00
3 0.2 3 0.33 0.05(3) 0.66(7)
4 0.3 5 0.40 0.05 1.20
5 0.4 2 0.50 0.02 0.50
6 0.5 3 0.67 0.08(3) 0.66(7)
7 0.6 3 0.33 0.21(3) 0.66(7)
8 0.7 3 0.67 0.00(3) 0.66(7)
9 0.8 1 1.00 0.04 0.00
Total 30 0.55(3) 4.36(7)
Average 0.018(4) 0.145(6)

situations, we consider a sample collection of probability
forecasts for a three-state (V=3) variable. The fore-
casts and the relevant observations are presented in
Tables 1a and 1b, in which we identify these quantities
as scalars and vectors, respectively. We depict the fore-
casts as scalars and vectors within the appropriate
frameworks in Figs. 2a and 2b, respectively.

The scalar partition for these forecasts is presented
in Table 2. Note that the values of the terms S1
(reliability) and S2 (resolution) are 0.018(4) and
0.145(6), respectively, and that their sum, i.e., PS(r,d),
equals 0.164. The vector partition for these forecasts is
presented in Table 3. Note that the values of the terms
V1 (reliability) and V2 (resolution) are 0.097(3) and
0.066(7), respectively, and that their sum, i.e., PS*(r,d),
also equals 0.164. Thus, as indicated in (17) and (18),
V1(0.0973) > S1(0.0184) and V2 (0.0667) < .52 (0.1456).
The difference between the terms S1 and V1, or
equivalently S2 and V2, can be computed directly by
means of (15), since V1—-S1=52—V2=V713-513
[see (17) and (18)7]. The computation of this difference,
i.e., V13—S513, for the sample collection of forecasts is
presented in Table 4. Note that V13—S513=0.078(9)
(cf. Tables 2 and 3).
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Fi16. 2. The forecasts presented in Table 1 depicted within the
appropriate framework when forecasts are considered to be (a)
scalars and (b) vectors. The dashed lines represent the distances
between the forecasts and the relevant observations in the re-

- spective frameworks. The PS for each forecast equals the square

of this distance.

TaBLE 3. The vector partition of the PS for the sample collection of forecasts presented in Table 1b.

Subcollection Number of Observed relative Subcollection Subcollection
number Forecast forecasts frequency reliability resolution
¢ rt K¢ de Kt (rt—dty (et —dty’ Kidt(u—dt)’
1 (0.1,0.3,0.6) 1 (0.0,0.0,1.0) 0.26 0.00
2 (0.1,0.6,0.3) 1 (0.0,0.0,1.0) 0.86 0.00
3 (0.1,0.7,0.2) 2 (0.0,0.5,0.5) 0.28 1.00
4 (0.1,0.8,0.1) 1 (0.0,1.0,0.0) 0.06 0.00
5 (0.3,0.5,0.2) 1 (0.0,1.0,0.0) 0.38 0.00
6 (0.5,0.40.1) 2 (0.5,0.5,0.0) 0.04 1.00
7 (0.6,0.1,0.3) 1 (0.0,0.0,1.0) 0.86 0.00
8 (0.7,0.3,0.0) 1 (1.0,0.0,0.0) 0.18 0.00
Total 10 2.92 2.00
Average* 0.097(3) 0.066(7)

* This average is computed on the basis of NX =230 forecasts [see Eq. (9)].

8 For example, for s=6, D1(6)=0.00 (since N¥%*=1 for t=1 and 2) and D2(6)= (3) (1) (2) (1.0—0.5)2=0.16 (7).
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TasLE 4. The difference between the terms $13 and V13 in the scalar and vector partitions of the PS, respectively,
for the forecasts presented in Table 1 [see Eq. (15)].

>
£y

s ” Mo Te Kvs Nte dn D1(s) D2(s)
1 0.0 1 1 5 1 0.0 0.00 0.00
12, 1,11, 0.0,0.0,0.0,0.0,
2 0.1 4 6 121 2101 010,0.0,0.0 0.00 0.00
3 0.2 3 2 2 11 0.5,0.0 0.00 0.16(7)
X 1, 111, 0.0,1.0.0.0,

4 0.3 5 5 5 1 600 0.00 1.20

5 0.4 2 1 i 0.5 0.00 0.00

6 05 3 2 12 1, 1.00.5 0.00 0.16(7)

7 0.6 3 3 1,11 1,1 1.0,0/0,0.0 0.00 0.66(7)

8 0.7 3 2 ) 1 0.5,1.0 0.00 0.16(7)

9 0.8 1 1 { i 10 0.00 0.00
Total 30 0.00 2.36(7)
Average 0.00 0.078(9)

Note that for this sample collection of forecasts the
resolution term is eight times as large as the reliability
term according to the scalar partition, while the resolu-
tion term is only two-thirds as large as the reliability
term according to the vector partition.? Thus, while the
differences between the terms in these partitions can be
expected, in general, to decrease as the number of fore-
casts in a collection increases, substantial differences
may occur, at least for small collections.

6. The use of scalar and vector partitions:
Discussion

A number of questions arise in connection with the
use of the scalar and vector partitions of the PS in
N-state (V>>2) situations. For example:

1) Which partitions have been used by meteorolo-
gists in previous forecast evaluation studies?

2) How sensitive are the results of these studies to
the particular partition used?

3) Which partition should an evaluator use in such
studies?

4) What are the effects upon sample size when fore-
casts are considered to be vectors rather than scalars?

Several of these questions have been discussed in some
detail for the two-state (V=2) situation in Part I
(pp. 278-280).

With regard to the first question, we are aware of
only one study, that by Sanders (1958, 1963), in which
partitions of the PS have been applied to forecasts for
N-state (W>2) variables. In his study, which involved
forecasts for many different variables, some of which
were two-state variables and some of which were V-
state variables, Sanders applied a special scalar, or
vector, partition® to the two-state forecasts and a scalar
partition to the N-state forecasts.

7In N-state (N>2) as well as in two-state (V=2) situations
the scalar and vector partitions are concerned with the reliability
and resolution of individual probabilities and sets of probabilities,
or forecasts, respectively (see Footnote 2). .

& The special scalar partition, which is based upon the consider-
ation of the probabilities assigned to only one of the two states, is

equivalent to the vector partition in the two-state situation (see
Part I, pp. 278-279).

With regard to the second question, we have not,
as yet, applied the scalar and vector partitions to any
large collection of forecasts for N-state (V> 2) variables

Decision Situation

Utility matrix U

States Expected utilities
$1 S2 Sk u
a 1 0 % ur=ri+ &
. e 3 % % = (rn+@r+G
Actions 2 ‘i g :i 2 (31) 1+(62) 2+(31)73
@ 3 3 3 uy=(Hri+Gr+G)rs
N us= @t Gt Grs
Probability
vector r ¥1 72 73

Expected-Utility Decision Rule
am if reRn(m=1234)
Ro={(r,ro,r3) |72 0,2 #0= 1,14 >ty

for all ' =m;mm’'=1,234;n=123}

F1c. 3a. A four-action, three-state decision situation.

Simplex Representation
0,01}

= (n,ty,13)
= (d,,dy,dy)

a1~

1,0,0)

(5/7,2/7.0)

{0,1,0}

Frc. 3b. The decision situation in Fig. 3a depicted within the
framework of a regular (V — 1)-dimensional simplex, an cquilateral
triangle in a three-state (N=23) situation.
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in order to determine the differences between the respec-
tive measures of reliability and resolution. However, as
indicated in Section 5, these differences can be sub-
stantial, at least for small collections of forecasts,

With regard to the relative merits of these partitions,
we indicated in Part I (pp. 279-280) that the vector
partition appears to be more appropriate, in general,
than the scalar partition in the two-state (N =2) situa-
tion from both a scientific and an economic point of
view. We believe that these arguments are equally valid
in N-state (N>2) situations. From a scientific point of
view, evaluators are, or should be, primarily concerned
with the reliability and resolution of forecasts rather
than probabilities (see Footnote 7). In addition, the
vector partition is, and the scalar partition is not,
formulated in such a way that a one-to-one corre-
spondence exists between the probabilities and the
states for each subcollection of forecasts (see Part T,
p- 279).

From an economic point of view, evaluators are, or
should be, concerned with the reliability and resolution
of forecasts in the vicinity of a decision maker’s in-
difference hvperplanes (the sets of points, or forecasts,
for which the decision maker is indifferent between two
actions; see Murphy, 1972a). Since the regular (V—1)-
dimensional simplex represents the proper framework
within which to depict these hyperplanes (see Section 2;
see also Murphy, 1972a), only the vector partition can
provide the evaluator, or the decision maker, with the
appropriate information. IFor example, consider the
four-action, three-state decision situation described in
Fig. 3a. This decision situation is depicted within the
proper framework, an equilateral triangle in a three-
state (N =3) situation, in Fig. 3b, in which the decision
maker’s indifference hyperplanes are line segments.
Note, for example, that the decision maker is indifferent
between actions a¢; and @» when the probabilities
assigned to the states si, 59, and s3 are 0.5, 0.2, and 0.3,
respectively [we denote this set of probabilities by the
point r= (r1,rs,73) in Fig. 3b7]. Thus, the reliability and
resolution of the forecasts may be of particular concern
when these, or similar, probabilities are assigned to the
states. However, note that the evaluator, and the
decision maker, will be concerned with the reliability
and resolution of the set of probabilities, i.e., of the
distinct vector forecast rf=(0.5,0.2,0.3), rather than
with the reliability and resolution of the individual
probabilities, i.e., of the distinct scalar forecasts
r#=0.2, »*=0.3, and r*=0.5.

With regard to the fourth question, consider a situa-
tion in which we have a collection of K vector forecasts
for a three-state (W=3) variable and suppose that
K=100 and r*=0.0(0.1)1.0. Then, M (=NK)=300
and S and T, the number of distinct scalar and vector
forecasts, equal 11 and 66 [see Eq. (1)], respectively.
Thus, in the scalar framework we have 300 forecasts

in 11 subcollections, while in the vector framework we "

have 100 forecasts in 66 subcollections. Therefore, for
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/NN N NN

(1,0,0) (0,4,0)

F16. 4. A “procedure” for combining vector forecasts in a three-
state (IV=23) situation when the set of § (=11) distinct scalar fore-
casts is 7=0.0(0.1)1.0. For a complete description of this pro-
cedure, refer to the text.

small collections of forecasts the number of vector
forecasts may not be sufficient to obtain reasonable
estimates of the reliability and resolution of certain
forecasts.

k One possible solution to this problem would be to
combine those subcollections which correspond to
“adjacent” forecasts with the subcollection which
corresponds to the forecast of concern. Consider a three-
state (V=3) situation in which »#=0.0(0.1)1.0. Within
the appropriate framework in this situation, an equi-
lateral triangle, the first “tier” of six adjacent forecasts
form a hexagon, in general, at the center of which is the
forecast of concern. We depict this “procedure” in
Fig. 4 for a subset of the set of 66 distinct vector fore-
casts; specifically, for the subset of 21 distinct vector
forecasts obtained when 7#=0.0(0.2)1.0 [see Eq. (1)].
Note that the estimates of reliability and resolution for
each forecast will be based upon 1) the six adjacent
forecasts which form a hexagon for the interior points
[(0.6,0.2,0.2), (0.4,0.4,0.2), etc.], 2) the four adjacent
forecasts which form a trapezoid for the boundary points
(excluding the wvertices) [(0.8,0.2,0.0), (0.6,0.4,0.0),
etc.], and 3) the two adjacent forecasts which, together
with a vertex, form a triangle for the vertices
[(1.0,0.0,0.0), (0.0,1.0,0.0), and (0.0,0.0,1.0)].% This, or
a similar, procedure would presumably provide reason-
able estimates of these attributes for most, if not all,
vector forecasts.?

9 The estimates of reliability and resolution for the other 45
distinct vector forecasts, 30 of which are interior points and 15 of
which are boundary points, would be based upon similar combina-
tions of forecasts.

10 This particular procedure may not provide reasonable esti-
mates of reliability and resolution for certain forecasts; for ex-
ample, for the boundary points and the vertices. In such a situa-
tion the second tier of six adjacent forecasts, which together with

the first tier of forecasts form a star, in general, can also be com-
bined with the forecast of concern.
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Of course, many different procedures for combining
forecasts can be formulated. For example, if an evalu-
ator is concerned with the reliability and resolution of
forecasts within the context of a particular decision
situation, then the subcollections of vector forecasts
should be combined in such a way that the estimates of
these attributes for each forecast take account of the
location of the decision maker’s indifference hyperplanes.

7. Conclusion

In this paper we have described and compared scalar
and vector partitions of the PS in N-state (V>2)
situations (see Footnote 3). These partitions, which are
based upon expressions for the £S in which probability
forecasts are considered to be scalars and vectors,

respectively, provide similar, but not equivalent (i.e.,

linearly related), measures of the reliability and resolu-
tion of the forecasts. Specifically, the vector partition,
when compared to the scalar partition, decreases the
reliability and increases the resolution of the forecasts.
A sample collection of forecasts has been used to
illustrate the differences between these partitions.

We have briefly considered several questions related
to the use of these partitions in N-state situations,
Specifically, we have indicated that the vector partition
is, in general, more appropriate than the scalar partition
from both a scientific and an economic point of view and
that the use of the vector, rather than the scalar,
partition, in general, reduces the sample size of a
collection of forecasts, In this regard, we have described
a procedure for combining forecasts which should
provide reasonable estimates of reliability and resolu-
tion for most, if not all, vector forecasts.

APPENDIX

Comparison of Terms in Scalar and
Vector Partitions

We compare the scalar and vector partitions of the
PS, PS(r,d), in (4), and PS*(r,d), in (9), respectively,
term by term in this Appendix. Since S13=—522 and
V13=—V22, we compare only §11 and V11, S12 and
V12, 813 and V13, and 521 and V21. Note that, since
M=NK, the coefficients of the respective terms are
equal, and, as a result, need not be considered.

a. Sl and V11

Note that
8
Si1=3 Ms(r9)?,
8=1
or

M
Sll = Z 7’m2-

m=1

APPLIED METEOROLOGY

Further, note that

T N '
Vil=3 Kt Y (r,)%
t=1 n=1
or

K N
Vil=% Y ru.

k=1 n=1
Then, since
M 4 K N
PIRAEDIDY 7711»;
m==1 k=1 n=1
S11=711.

b. S12 and V12

Note that
S -
S12=3 Msrids,
s=1
or, since
M
do=(1/M*) ¥ do,
m=1
M
S12= Z ey dm,
=1 m=1
or
M
S12=3" ¥umdn
m=1
Further, note that
N oy
V12= Z Kty rud,,
t=1 n=1
or, since
_t K¢y
nz(l/Kt) Z dnky
b=1
¢ K!
V12 Z Z Yn Z (l,tk,
t=1n=1 k=1
or
K N
2= Z Z rwlcd’nk-
Then, since
M K N
Zrdet:Z Z rnkdnk,
m==1 k=1 n=1

S12=V12.
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c. SI3 and V13

Note that
S -
S13=3" M*(d*)?, (A1)
§=1
and that
7 N o,
Vi3=Y K'Y (d.)% (A2)

t=1 n=1

Let T denote the number of distinct forecasts r? in
the collection of vector forecasts of concern for which
=7° for some n (t=1,...,7%); let Nt* denote the
number of states in r¢ for which 7,=r* (n=1,...,N%%);
let K*¢ denote the number of forecasts r; in the sub-
collection of K* vector forecasts for which ry=rt
(k=1,...,K%), in which 7.=r for some #; and let
#° denote an arbitrary observation in the relevant
subcollection of K wvector observations, where

=(diy,... . dyn) (k=1,...,K"*). Note that
-
Ms= Z :Vt,sKt.s,
t=1
and that

1,8 Kby
dn =Q/K") 3 du.
k=1
Then, 513, in (Al), can be expressed as

S 7
S13=3 (5 NteKoe)

s=1 t=1

7% N!lKla

X(T X T d/ Z NosKbo) T,

t=] n=1 k=)
or

e Nll K!l

S13= Z L1/( Z Nk L 2 ( Z dui)?

t=] n=1

ps Nty Nt K&®

+22 2 X (Zdnk)(zd’lc)

t=1 =a=[ a'=at+l k=1

pe_y e ybhe Nt Kte K. o

+22 2 X Zl(Zdn:.)(Zdnk)]

t=1 t'=(41 n=1 n=
or

Nt

S13= Z L1/( Z NeeKe) L Z (Kte)? Z @)

T N'*-1 Nt
Z vy Y (@@
t==1 n=1 n’=ntl
-1 T Nt
+2 2. KUK Z T @] (A3)
t=1 t'=t+1 n=1 n=1
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Further, V13, in (A2), can be expressed as
S T‘ Nl s K‘ q
V3=%. ¥ K% % [( T da)/KST,
s=1 t=1 n=1 k=1
or
S ll Nl 3 K‘ 3
Vi3= Z Z (1/Kt s) Z ( Z dnk))
s=1 t=1
or
I l Nl s K! [
V13= Z [1/(HK“)]Z ( H Kt 3 ( Z dan)?,
8=1 = i ;tl n=1
or
S 7 Nbe
=Y TR T (@) (A4)
s=] {=1 n==l

The difference between S13, in (A3), and V13, in
(Ad), i.e., V13513, i1s then

S Ts i
V13-513=F [1/( X NoK) (T NoK*)
s=1 t=1 =1

11! N‘l N!G
XLE Koo T @Y1-5 (ke X @
Ne-1 N e s
-9 Z (Kt Z=1 _Z+1 (da )dw)
-1 NNt
-2 Z _Z+ KtsKte Z Zl (d )(d ),

or

V13-—Sl3=§ [1/( TZ Ntegte)]

X{ Z Kt s[(Nt s_l)Kt LAs Z NY.sKt. :I

=1
A 11
Nll Nll_l Ntl
XZ @)— ZZ(K”)2 Z_ I=Z+1(d )
T°—1 T° Nt Nte
-2 Z Y KwKOe Y ¥ (@) M,
t=1 t/=t+1} n=1 n=1

or

V13—S13= § (1/M°)

s=1

Nt a1 Nt 3 1,8 s
Z Z (dn —dw)?

n==\ n=nttl

X[ L (K*):

el P N gt
+Y T KWK Y S @ —d ).
t=1 t'=t+1 n=1 n’'=1
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d. S21 and V21
Note that

S
S21=3" M,
s=1
or, since
M*

ds=(01/M*) Y dm,

m=1

8 M°®

SA=Y3 dn,

8=1 m=1

or
M

521=" du,

m=1
or
S21=M/N.
Further, note that
T N
V21=3 Kt Y dn,

t=1 n=1

or, since

_t Ky
du=(1/K*) 32 du,
k=1

K
Z nk,

<
l\)

Tf[\’]s

u["]z

or
K N
V2i=3 3 du,
k=1 n=1
or
V21=K,
or, since M =NK,
V21=M/N.
Thus,
S21="721.
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