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fintroduction
feteorologists have given much attention to
sessment of the quality of weather forecasts and a
hide variety of procedures have been used to this
4hd, corresponding with the various purposes for
ich assessment is required and the variety of
Jirmats in which forecasts are issued. Some recent
ork includes that of Murphy in Murphy and
Williamson (eds) (1976) on probabilistic forecasts,
oodcock (1976, 1980) on yes/no forecasts and of
lezian (1981) and Colls, Mason and Daw (1981)
4 routine weather forecasts, among many.
' This variety of practices creates difficulties when
{lis desired to compare forecasts issued in different
{ormats. For example, to compare probabilistic with
-Jes/no forecasts it is necessary to reduce the
. frobabilistic forecasts to yes/no form, usually by
Jelection of a ‘cut-off’ probability which maximises
me of the many yes/no scores (e.g. Bryan and
<~ Pnger 1967, Mason 1979). This is unsatisfactory
Jecause all scores for yes/no forecasts confound
Hccuracy with decision criterion, so that variations
“Jn a score may not be related to variations in the
kill of the methods used to produce the forecasts
Mason 1982). Also, reducing probabilities to zeros
fnd ones loses much information, and the resulting
“Jet of yes/no forecasts will be sub-optimal for most
S€TS.
Methods for the assessment of purely
Jrobabilistic forecasts are well developed. Murphy’s
41973) three-component partition of the probability
Jrore appears to be the method of choice at present,
froviding three separate measures for variability in
he data, resolution, and reliability respectively.
Resolution here refers to the ability shown by the
{lrecaster (or forecasting method) to discriminate
Petween situations that will be followed by the
{iredictand and those that will not.
Reliability is the correspondence between forecast
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A general paradigm for assessment of ability to discriminate between two alternatives is
described in the context of weather forecast verification. The paradigm is based on the
relative operating characteristic (ROC), a graph of the variation of hit rate with false
alarm rate as decision criterion changes. A model for the ROC based on the
mathematical theory of signal detection is shown to provide a good fit to verification
data from weather forecasts for a wide variety of predictands. A basis is thus provided
for the use of some indices of forecast quality derived from the mcdel. These indices are
relatively independent of calibration (i.e. the correspondence between estimated
probability and relative frequency) and can be evaluated for forecasts expressed in
yes/no form, as ratings of risk (e.g. low, moderate, high) or explicitly as probabilities,
facilitating direct comparison of these different types of forecast.

probabilities and observed relative frequencies.
High reliability is quite compatible with low
resolution, for example in a forecast set consisting
only of predictions of the climatological probability
on every occasion, and high resolution can be
achieved with low reliability. The term calibration
will sometimes be used as a synonym for reliability
in this note.

Yates (1982) has recently described another
method of partitioning the probability score.

The Brier score, and in fact all currently available
scoring rules for probabilistic forecasts, can only be
evaluated when the forecasts are expressed as
numerical probabilities. Forecasts given as risk-
ratings (for example low, moderate or high risk for
some event) cannot be assessed using these scores
unless numerical probabilities are assigned to the
ratings.

Comparisons with verbal forecasts that include
‘chance of . > statements as well as yes/no
predictions are further complicated by the lack of
quantitative definition of the probability range
corresponding to ‘chance of’. There is clearly a need
for a measure of forecast quality that can be
evaluated for all these types of forecast.

A situation with some formal similarities to that -

of forecast assessment has been studied in the
psychological theory of signal detection. The
process of forecasting a discrete meteorological
event is in some respects analogous to that of
detection of a signal against a background of noise.
In both cases the task is essentially to assign a
conditional probability to some defined event on the
basis of data which is insufficient to provide
certainty. The outcome of a series of trials may be
represented in both cases by formally identical
verification arrays.

From the point of view of weather forecast
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verification, signal detection theory (SDT) contains
two features that may be useful. One is a very
general paradigm for the assessment of the quality
of predictions. This paradigm is exemplified by the
relative (or receiver) operating characteristic
(ROC), a graphical display of the relation between
hit and false alarm rates as decision criterion varies.
It has been applied successfully to the evaluation of
performance in fields as diverse as clinical diagnosis
(Swets and Pickett 1982), vigilance (Broadbent and
Gregory 1963), information retrieval (Swets 1979),
and the study of conditioned responses in pigeons
(McCarthy and Davison 1980), among others.

The second interesting feature of SDT is a model
which describes the relative operating characteristic
in terms of the parameters of hypothetical
probability distributions, and which forms the basis
for several indices of performance.

The purpose of this paper is, firstly, to show that
the ROC paradigm can be applied to the assessment
of forecast quality and that it provides an
informative way of presenting this kind of data.
Secondly, it will be shown that the SDT model fits
weather forecast data quite closely, and hence that
the use of SDT-based indices to describe forecast
quality is valid. These indices can be evaluated,
subject to some weak constraints, for any set of
forecasts for a dichotomous predictand, whether
given as numerical probabilities, risk ratings, yes/no
forecasts, or verbally as in routine public weather
forecasts.

The structure of the paper is, firstly, an outline of

the method for assessment of performance based on
the ROC, and of the signal detection theory model

for the ROC. Then, ROCs are presented for a
variety of predictands together with model-based
ROCs for each case. Some discussion and
conclusions follow.

The weather forecast as a statistical
decision: a model based on signal
detection theory

In this section the weather forecaster is considered
as a decision-maker whose task is to decide whether
to forecast occurrence or non-occurrence of some
meteorological event. For the purpose of this paper
there are supposed to be only these two possibilities.
Extension to predictands that may have more than
two values is possible, by considering the final
decision as the result of a sequence of yes/no
decisions, so the simplicity of this situation does not
make it too restrictive.

The data on which the forecaster bases his
decision is the usual multivariate vector of values for
weather-related variables that all forecasters are
presented with during the day’s work (although
most would not think of it in precisely this way). It is
hypothesised that the implications of this data for
prediction of some particular event (rain,
thunderstorm, tornado, etc.) can be summarised as

a single number, perhaps, but not necessarify
probability. E
The decision whether or not to predict the eveny,
based on a comparison of this number With:
‘decision criterion’ which is predetermined. s
analogy is drawn with statistical hypothesis testing

in which a value of a test variable (z, t, y2, ete) s |

compared with 95 or 99 per cent values of thesy
variables, in order to decide whether to aceept g
reject the hypothesis.

This section of the paper falls into three patts
Firstly the notion of a decision criteriop i
elaborated then the use of a variable decisigy
criterion to generate the ROC for a set g
probabilistic forecasts is described. Thirdly, the
‘normal—normal’ model from signal detectiop
theory is introduced as a descriptive model for the
ROC, and some indices of forecasting performangs
based on this model are given. Signal detectiop
theory has an extensive literature, and the
presentation in this paper refers only to those pary
that are directly relevant to weather forecast
assessment. A useful entry to the field is® Swets'
review (1973). Detailed presentations can be foung

in texts by Green and Swets (1974), Egan (1975) or

Swets and Pickett (1982).

The decision criterion
The minimum components of a decision-making
situation are:

(i) two decision alternatives, for example
between forecasts of occurrence or non-
occurrence of the event, or assertion that
noise is present alone or there is a signal as
well as noise;

(ii) two possible events, for example rain or no
rain, temperature above or below zero, signal
present or absent;

(iii) information available to the decision-maker
about these events; and

(iv) a decision criterion, some specific value X, of
a decision variable X.

X is a scalar whose value depends on the available
data, and may be given as the conditional
probability of the event given current data, or in
terms of the likelihood ratio:

Pr{current observations event occurs},
Pr{current observations event .does not occur}

or in terms of any monotonic function of likelihood
ratio, for example the log likelihood ratio or log
odds. X can also be thought of as analogous to a
discriminant function, or quite generally just as a
function of the data that provides information about

‘the event of interest.

The decision is then supposed to be made on the
basis of the critical value x _of the decision variable.
For x = x_ one decision is required and for x < Xy
the other. Extension to the case of probabilistic
forecasts is done by a partition of the range of values
of X using a set of critical values {x}, i = | to M-l
where M is the number of discrete values permitted
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Relative operating characteristic generated by a
set of 341 estimates of the probability of rain in an
area around Canberra.
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Fig. 3 Relative operating characteristics generated by
Gaussian distributions with equal variance for d' =
0.5, 1.0, 2.0 and 3.0. Broken lines are isopleths of

the likelihood ratio 8 = fl(x)/fo(x).
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for probabilities. 1f {p}, i = 1 to M, is the set
permitted probabilities then the particular value p,
is used when x is in the half-open interval[x,_, Xy).
Choice of the cut-off values {x,} is clearly of some
importance in practice, but is not directly relevant to
this note; some discussion of this aspect can be
found in Green and Swets (1974).

Returning for the present to the case of just two
decision alternatives, performance in a series of N
cases can be represented as a 2 X 2 array, the
verification matrix at Table 1.

There are obviously two different ways to be right
and also two ways to be wrong. Correct forecasts

Fig. 2 Probability distributions for the decision variable
X preceding occurrence of the predictand, f, (x),
and preceding non-occurrence, fo (x). x_ is the
decision criterion. The diagonally hatched area is
equal to the probability of a hit, and vertical
hatching indicates the probability of a false alarm.
The separation of the means, d', is the fundamental
signal detection index of discrimination.

Xc X

Fig. 4 Relative operating characteristics for the Gaussian
equal variance case with d' = 0.5, 1.0, 2.0 and 3.0,
on double-probability axes.
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may be ‘hits’, identified by d in Table 1, or ‘correct
negatives’, a in Table 1. Wrong forecasts may be
‘false alarms’, ¢, or ‘misses’, b.
It is convenient to describe the quality of the
forecasts represented in Table 1 in terms of two
parameters. These are hit rate and false alarm rate,

defined as follows:
hit rate, h = Pr{event predicted | event occurs} =

d/(b+d) l
false alarm rate, f = Pr{event predicted | event does
not oceur} = ¢/(atc). ... 2

Hit rate defined in this way is equal to the quantity
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ROC for estimates of the probability of more than
2.5 mm of rain at Canberra Airport during the 12
hours 9.00 pm to 9.00 am local time. N = 335.
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Fig. 10 ROC for individual forecaster D in Canberra, a
sub-set of the data that produced Fig. 5. N = 83.
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Table 1. Verification matrix for a series of N.yes
possible combination of forecast and event.
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Fig. 11 ROC for estimates of the probability of rain near

Great Falls, Mont., USA from data published by
Murphy and Winkler (1974). N = 2646. I
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/no forecasts. a, b, ¢ and d are the total frequencies of each
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Fig. 12 ROC for estimates of the probability of rain near
Seattle, Wash., USA, from data published by
Murphy and Winkler (1977). N = 948,
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Fig. 14 ROC for individual forecaster A at Chicago. A
sub-set of the data in Fig. 12. N = 2916.

.99~

HIT RATE
o
I ¥

w
T

1 L1 1 1 ] L
.01 .05 .1 3 5 7 .9 .95

9/ .05
FALSE ALARM RATE

‘prefigurance on Yes forecasts’ suggested by Olson
(1965), and Olson’s *prefigurance on No forecasts’ is
equal to 1—false alarm rate.

The relative operating characteristic

Given a set of probabilistic forecasts, a sequence of
verification matrices of the form of Table 1, and
hence a sequence of hit rate, false alarm rate pairs,
can be generated by stepping a decision probability
p, through the range of values used in the forecasts.
The graph of hit rate against false alarm rate as
decision criterion varies is called the relative (or
receiver) operating characteristic (ROC). Reasons

Fig. 13 ROC for US National Weather Services ¢

19}
—

Stimm“.
of the probability of rain at Chicago, Illinojs from:
data published by Murphy and Winkier (1977)[ N
= 17 154.
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Fig. 15 ROC for individual forecaster B at Chicago. A
sub-set of the data in Fig, 12. N = 2820.
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for this terminology can be found in Swets’ 1973
review,

Table 2 shows an example of this procedure for a
set of probability forecasts of rain over Canberra
city or suburbs. Hit rates and false alarm rates are

shown in rows (f) and (g), and Fig. 1 is the ROC for
this set of forecasts.

The ROC shows how hit rate may be ‘traded-off
against false alarm rate by varying the decision
probability. Perfect performance is represented on
ROC axes by the upper left-hand corner, f = , h =
1, and perfectly wrong forecasts by the opposite

point, f = 1, h = 4. A ROC lying along the major
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Fig. 17 ROC for 9F ‘fixed width credible interval’
temperature probabilities, from data published by
Murphy and Winkler (1974). N = 122.

m 16 ROC for 5F ‘fixed width credible interval’
i temperature probabilities from data published by

US National Weather Services estimatq, Niurohy and Winkler (1974, N = 122
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Fig. 19 ROC for estimates of the probability that one or

minimum temperature will be less than or equal to more tornadoes will occur in the severe weather

28°F near Albuquerque, New Mexico, from data areas delineated by the US National Severe
published by Murphy (1977). N = 1443. Storms Forecast Centre, Kansas City, Missouri.
Data published by Murphy and Winkler 1977(b).
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forecast sets with some positive skill over chance in
this sense will have ROCs in the upper left triangle,
and better forecasts have ROCs nearer to the upper
left corner.

The economic value of the forecasts in the
cost/loss meteorological decision model (Thompson
and Brier 1955) is in large measure determined by
hit and false alarm rates (Mason 1980). Hence an
appropriate choice of p, is economically important.
Table 2 shows that if the decision criterion
corresponds to a probability of say, 0.3 then the hit
rate is 0.8 and the false alarm rate 0.42. It may be

this case) is high relative to the protectable loss if ‘

rain occurs unforecast. Table 2 and Fig. 5 show that
the false alarm rate can be reduced, but only at the
expense of a reduction in the hit rate. If the false
alarm rate has to be less than say, 5 per cent, then
the forecasts shown above would achieve this level
with a decision probability of about 0.77, and the
corresponding hit rate would be 0.25. The ROC can
be used in this way to determine any two of the three
variables p,, hit rate, and false alarm rate given one.
Note that the numerical values of probability, row
(a) in Table 2, are not used in the calculation of hit




298

Fig. 20 ROC for estimates of the probability that there
will be ten or more tornadoes anywhere in the USA
on a given day. Data published by Murphy and

Winkler 1977(b). N = 92,

99[‘

951

N
T

HIT RATE
o
T

05F 0
o 05 | 3

5 7 .9 .95

FALSE ALARM RATE

Table 2. Calculation of hit rate and false alarm rate for a set of probabilistic

(a) 0 1 2 3
(b) I 14 13 16
© 4 75 37 30
(d) 140 139 125 112
(&) 201 197 122 85
) 1.0 99 89 .80
(&) 1.0 98 61 42

(a) Estimated probability, p,

4
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Fig. 21 ROC for lightning risk forecasts
Capital Territory, N = 813,
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forecasts for rain in Canberrg,

5 .6 7 .8 .9 1.0
21 18 18 16 11 l
12 16 11 3 3 0
85 64 46 28 12 1
45 33 17 6 3 0
.61 46 33 .20 09 01
22 .16 .09 .03 .015 0

(b) Number of occurrences following estimated probability given.

(¢) Number of non-occurr

ences following estimated probability given.

(d) Accumulated occurrences following probability > p.
{¢) Accumulated non-occurrences following probability > p.

(f) Hit rate.
(g) False alarm rate.

and false alarm rates; their sole use is to locate the
decision criterion. Hence analyses involving only hit
and false alarm rates will be relatively unaffected by
the calibration of the probabilities, except insofar as
their rank order is important,

An index of performance that suggests itself from
the fact that ROCs nearer to the 0,1 corner
represent superior performance, is the area beneath
the ROC. It can be calculated by joining the points
with straight lines and summing areas of the
resulting trapezoids. This index is referred to as
P(A) by Green and Swets (1974). The range of P(A)
is from 0.5 for random forecasting to 1.0 for perfect
forecasts. It is non-parametric in that it does not
depend on the assumptions about underlying
probability distributions to be introduced in the next
part of this section, However it does depend to some
extent on the number of points on the ROC, that is
on the number of discrete values allowed to the
forecasters for their probability estimates, and gives

no indication at all of the shape of the ROC. The
parametric indices suggested below are for these
reasons more satisfactory.

The normal—normal model for the ROC

It is assumed that the observation variable X has a
specific and known probability distribution on
occasions preceding occurrence of the event,
denoted f, (x), and a different distribution fx)
preceding non-occurrence. Figure 2 represents these
distributions. Their parameters, specifically the
difference between their mean values, and their
variances, characterise the quality of the
information about the event. If the distributions are
identical then the observational data X provides no
information. If they are very far apart then an
observation of a value of X determines occurrence
or mon-occurrence of the event with high
probability. (In signal detection theory f(x) is the
distribution of X when noise alone js present and
f,(x) when the signal is present in addition to noise.)

for the A“stfﬂlﬁ“h
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ROCs for fog risk forecasts for Canberra Airport.

.22
4 © Issued 9.00 am (local time), N = 332; (] Issued
3.00 pm. N = 356; & Issued 9.00 pm, N = 336.
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It is usually convenient to assume that fand f, are
poth Gaussian, and sometimes the further
assumption is made that they are of equal variance.
Normality of the distributions is ‘a highly robust,
empirical result, which is now substantiated in
dozens of diverse applications® (Swets and Pickett
1982).

Exact equality of variances is in general not the
case. They do not, however, usually differ greatly;
Swets and Pickett (1982) state that almost all
empirical ROCs imply ratios of the variance of f; to
that of f, between 0.5 and 1.5, and this also seems to
apply to weather forecast ROCs.

In Fig. 2, the decision criterion 18 represented by
the point x,, so that observation of a value for X
greater than x requires a forecast of occurrence of
the predictan(i and less than x, mon-occurrence.
The model hence provides the following expressions
for the probability of hits and false alarms.

Pr{hit} = Pr{event forecast | event occurs}

oo

=f"f‘1 (x0) dx ... 3
0

Prifalse alarm} = Pr{event forecast | event does

not occur}

e}

=ff0(xc)dx ... 4
0

represented by the diagonally and vertically hatched
areas respectively in Fig. 2. Note that a false alarm
is similar to a type I error in statistical hypothesis
testing, and the probability of a hit to the power of a
statistical test, or, one minus the probability of a
type II error.

If the decision criterion x_ is allowed to vary
through its range then Eqns 3 and 4 show that hit
and false alarm probabilities vary together (in the
sense that both increase as x, decreases and decrease
as x_ increases) and hence trace out a ROC. The
precise form of the ROC is determined by the nature
and parameters of f, and f,. Since a Gaussian
distribution is completely specified by its mean and
variance, only one parameter is required to describe
the model in the equal variance case. This is the
separation of the mean values, denoted d’ when
given in units of the common standard deviation. In
Fig. 3 the solid curves show ROCs generated by
Gaussian distributions with equal variance for
several different values of d’. The broken lines are
isopleths of decision criterion, here given as the
likelihood ratio

g = &)

fy (%)

Isopleths of @ show how the probabilities of a hit
and false alarm co-vary if the decision criterion is
kept constant while d’ changes. It proves to be more
convenient to plot ROCs on double-probability
axes; since the distributions are Gaussian these
ROCs are straight lines, and Fig. 4 shows the ROCs
of Fig. 2 plotted on such axes.

8 is related to p, through Bayes’ formula, in the
‘odds’ form

P, Py
= ] .. 6
1—p,

l—pc

where p, is prior probability.

If the variance of f, and f; are not equal then two
parameters are required to specify the model. These
are the separation of the means, conventionally
denoted by Am in the unequal variance case, and the
ratio of the standard deviations, denoted by s =
0,/ o1 where o, is the standard deviation of f,and o,
that of .

The effect of unequal variances on the ROC is
shown in Fig. 5 on both linear and double
probability axes (based on Fig. 3-3 in Green and
Swets 1974). Note that changes in s affect the slope
of the ROC in the latter case, but changes in Am do
not.

Plotting on double probability axes is facilitated
by transforming hit and false alarm rates to the
corresponding value of the standard normal deviate.
Double probability axes are equivalent to axes with
a scale linear in the normal deviate. Figure 6 shows
the data of Fig. 1 plotted in this way. Formally, h is
transformed to a value z, using the relation

o]

h=ffl(zc)dzc 7
Zy
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where z = (x, — X,)/a,, X, being the mean of f, (x).
A similar expression relates fo, the false alarm rate,
and z,.

This procedure has an advantage over the use of
axes linear in probability, in that the intercept of the
line of best fit on the Z, axis is an estimate (with sign
reversed) of the model parameter Am, and the slope,
dz,/dz, is an estimate of s.

Indices of performance based on the SDT model

Several indices of performance can be evaluated
from the fitted normal~normal ROC. Swets and
Pickett (1982) recommend A,, the proportion of the
ROC unit square that lies beneath the fitted ROC
(on linear probability scales). Similarly to P(A), it
ranges from 0.5 for a ROC along the major
diagonal, indicating performance at a chance level,
to 1.0 for perfect performance. A, is superior to
P(A) because it is much less affected by the number
or scatter of the data points that define the ROC.
There are also some indices similar to d' which
are essentially measures, subject to various scale
changes, of the distance between the means of the f
and f, distributions. Swets and Pickett prefer z (A),
the normal deviate value that corresponds to the
area measure Az when Az is taken as a probability.
Multiplying z(A) by V2 gives the value of an index
called d_ which has some advantages from a
statistical point of view (Simpson and Fitter 1973).

Single-number indices inevitably lose some of the
information in the ROC, since a straight line
requires two numbers for its definition. Particular
values of A or d, can result from linear ROCs of
different slopes and intercepts. The two parameter
measure D(Am, s) fixes the entire ROC, so that it
can be reconstructed and the variation in h and f
assessed for various criteria. If Am = I.5and s =
0.9 then this measure is writien D(Am, s) = (1.5,
0.9). The range of Am is effectively from 0 to 4 or 5;
$ is almost always between 0.5 and 1.5.

Values for these indices can be estimated directly
from the graph, or using a computer program
developed by Dorfman and Alf (1969), listed in
Swets and Pickett (1982).

Validation of the normal —normal
model for probabilistic forecasts

This section of the paper presents data to show that
the SDT model using normal distributions can be
used to describe subjectively formulated
probabilistic forecasts. For this it is sufficient to
demonstrate that ROCs calculated from such
forecasts are lincar on Gaussian double-probability
axes. (The model has implications for the
calibration of probabilistic forecasts but this aspect
will not be pursued in detail. Only the linearity or
otherwise of empirical ROCs is of concern.)

A number of sets of subjective probability
forecasts are presented as ROCs on double
probability axes, and the straight line of best fit to

the points is shown. The straight line is the RU@
which would be predicted using the normal—pgp.

values. for Am and s. These values can be eSlimﬁled'
from the empirical ROC, but are not of djreé'("
concern in this paper. The line was fitted usip,
conventional least-squares methods on valueg 0f:'§
corresponding to hit and false alarm rates,
Correlation coefficients and significant levels
were calculated but are not given. Tested againgy the
null hypothesis of no linear correlation all ¢
correlation coefficients are significant wel] beyord
the 0.01 level. '
Perusal of the Figures indicates that thy
conclusion is trivial, A straight line obviously fits the
data well in all cases. The only kind of hypothegj
worth testing linearity against is that there js 4
curved line that would fit better, equivalent (g the
hypothesis that the underlying distributions haye

some systematic deviation from normality, or thyy

other distributions would be more appropriate, Thig
possibility may be worth further investigation,
Green and Swets ( 1974) suggested that exponerntia|
distributions have some theoretical advantages, anq
the psychological literature contains discussions of
other distributions, summarised largely in Egan's
book (1975). The Figures to follow make the case
for normal distributions in the meteorological
context and other possibilities will not be pursued,

Predictands are rainfall as point and area
probabilities, temperature as fixed width credible
interval probabilities, and frost, tornadoes, fog and
lightning. The letter two were forecast in four risk
categories (negligible, slight, moderate and high)
and thus provide only three points on the RQC,
Fitting three points with a two-parameter model is
admittedly a procedure of questionable validity;
nevertheless, it is evident (Figs 20 and 22) that, at
the least, they do not conflict with the model, and in
view of the good fit shown for predictands for which
more categories are available, provide some further
support.

Most of the forecast sets shown here are
aggregates, produced by a number of different
individuals. It has been suggested by Craig (1977)
that the smoothly curved shape of the ROC on
linear axes is an artifact of this aggregation, and
that a ‘threshold’ decision model might be more
appropriate for individuals considered separately,
leading to a ROC composed of linear segments (on
linear axes). For this reason four sets of forecasts
from individual forecasters are included; they also
support the normal—normal model (Figs
9,10,14,15).

Figures 6, 7 and 8 are ROCs for precipitation
probabilities done in the Canberra RFC. In Fig. 6
the predictand was occurrence of measurable
precipitation at any one of 25 official daily rain
gauges in the vicinity of Canberra City during the
24-hour period 9.00 am to 9.00 am local time. The
estimates were done at about 5.00 pm on the
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jous day. The task is essentially to estimate
ability that an event will occur somewhere over
area. In Figs 7 and 8, the predictand was
rrence of precipitation in the gauge at Canberra
ort during the 12-hour period 9.00 am to
m.
i Igig. 7 the amount was a trace or more, and in
. 8 more than 2.5 mm. A strong linear relation
“ecn hit rate and false alarm rate is evident.
gures 9 and 10 are ROCs for individual
casters in Canberra, and are both subsets of the
¥ plotted in Fig. 5. Sample sizes are rather small
J and 83 respectively) but linearity is still a
sonable hypothesis.
Jiigures 11 and 12 show ROCs for some
{pabilistic forecasts of precipitation produced at
. Great Falls and Seattle WSOs during an
Jeriment conducted by Murphy and Winkler
4). The experiment was intended to assess the
natic deviation from normality, or t :cc't _of.guidancc (}?EATMOS) forecasts upon
utions would be more appropriate. Thl;clpxtgtlon _probablhty forecasts. The forecasts
®hwn in this paper are those produced before
Swets (1974) suggested that exponemfﬁ)‘ ymining the guidance. Both sets clearly fit the
s have some theoretical advantages, 4] n}lal—normal model well. )
ogical literature contains discussions offt B4r¢S 16, 14 and § ang ROCs for US RIFTHl T
butions, summarised largely in Egax{* cather Service precipitation prqbaplllty forecasts
. The Figures to follow make the ¢ ~:;gued to Fhe public in Chicago, Illn}ms. The data set
distributions in the meteorologicaf® published by Murphy and kaler'(1977(a)).
other possibilities will not be pursuedfcs¢ ¢ large sets of forecasts, 17 514 in the case
“IFig. 12, and the closeness of fit to a straight line

ds are rainfall as point and are;

, temperature as fixed width cr edibiédhe"ce to the normal—normal model is obviously

»abilities, and frost, tornadoes, fog anaﬁcellent. Figures 14 and 15 are ROCs for two

he letter two were forecast in four risEiVidual forecasters, and are subsets of the data in

negligible, slight, moderat it 12-
ovide only thgree pointzri)r? fhned 1{1(1‘;%) Figures 16 and 17 are ROCs for ‘fixed width

points with a two-parameter model kdible inte.rval’ temperature forecasts. The data
1 procedure of qugstionable validit}lisfl was published by Murphy and ka.ler (1974).
it is evident (Figs 20 and 22) that, at|® forecasters were asked to estimate the
y do not conflict with the model, and i obability that the observed temperature (either
ood fit shown for predictands for which aximum or minimum.) would lie within an interyal
ries are available, provide some further] ! (Fig-16) or 9F (Fig. 17) centred on the median
“Itheir subjective probability distribution. Sample
es are not large (122 forecasts each) and there is
bre scatter about the straight line than in the case
rainfall probabilities.
Figure 18 shows the ROC for a set of estimates of
¢ probability of a minimum temperature less than
equal to 28F, formulated by NWS forecasters at
buquerque, New Mexico, and published by
urphy (1977).
Figures 19 and 20 are ROCs for two sets of
obabilities related to the occurrence of tornadoes
the USA. They were produced by forecasters at
e National Severe Storms Forecast Centre in
ansas City, Missouri and were published by
urphy and Winkler (1977(b)). Figurc 18 was
nerated by estimatés of the probability that one or
ore tornadoes would occur in the severe weather
eas delineated in the outlook on the day in
lestion, and Fig. 20 by probabilities for the
tcurrence of ten or more tornadoes anywhere in the
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For this reason four sets of forecasts
ual forecasters are included; they also
¢ normal—normal model (Figs,

7 and 8 are ROCs for precipitation,
done in the Canberra RFC. In Fig. 6,
nd was occurrence of measurable
at any one of 25 official daily rain,
> vicinity of Canberra City during the
)d 9.00 am to 9.00 am local time. The
re done at about 5.00 pm on the

USA on that day. Sample sizes were relatively small
(92 in each case) and there is some scatter evident in
Fig. 20. These were not particularly good forecasts,
either from the point of view of reliability or
resolution. Murphy and Winkler state that ‘the
forecasters were not experienced in making such
forecasts, and they did not receive any feedback
concerning their performance during the period of
the experiment, > They still fit the
normal—normal model well.

Figure 21 shows the ROC for some lightning risk
forecasts done for the Australian Capital Territory
during bushfire seasons from 1973/74 to 1980/81.
The forecasts are not issued as numerical
probabilities but in four categories of risk; nil,
slight, moderate and high. This procedure gives only
three points on the ROC. It can be seen, however,
that the points lie close enough to the line of best fit
to make a linear relationship very plausible.

Finally, Fig. 22 shows ROCs for three sets of fog
risk forecasts for Canberra Airport. The points
identified by circles correspond to forecasts issued at
9.00 am local time for the following morning,
squares to forecasts issued at 3.00 pm and
hexagons, 9.00 pm. A linear relationship between
different degrees of risk is evident at all three times.
It is interesting also to note that Am increases as the
lead time decreases, showing that the forecasters
were more successful in discriminating between
occurrence and non-occurrence of fog as more
relevant data became available, as one would hope.

Discussion

Figures 6 to 22 provide substantial support for the
proposition that the signal detection theory model
with normal distributions is an excellent descriptive
model for ROCs derived from weather forecasts. A
linear relationship between hit and false alarm rates
as decision criterion varies (on double-probability
axes), is, at the very least, an acceptable hypothesis
for all the forecast sets presented here.

It follows that the signal detection theory model
with Gaussian probability distributions is a valid
descriptive model for weather forecasts, at least of
the type considered here (subjective probability
forecasts). Indices derived from the SDT model can
therefore be used to describe weather forecasts, and
hence to make comparisons between different
forecast sets.

Perhaps the greatest advantage of SDT indices is
that comparisons can be made between yes/no and
probabilistic forecasts without the need for some
more or less arbitrary method of reducing the
probabilities to a categorical form. Bryan and Enger
(1967) identified strategies for converting sets of
probabilistic forecasts to yes/no forecasts so as to
maximise certain skill scores in the long run and
Miller and Best (1979), Bermowitz and Best (1979)
and Mason (1980) have looked at this problem.
Reducing probabilities to zeros and ones is
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somewhat unsatisfactory as a means of comparing
yes/no and probabilistic forecasts, as much
information is lost when probabilistic forecasts are
treated in this way and the resulting set of yes/no
forecasts is optimal for only a small sub-set of users.
This comparison between probabilistic and yes/no
forecasts can be made by plotting the empirical
ROC for the probabilistic forecasts and also the
point representing the hit and false alarm rates
achieved by the yes/no forecasts; the relationship is
immediately clear. At a lower level of detail d’ can
be calculated for the yes/no forecasts, and either d’
or D(Am, s) for the probabilities, giving a good
indication of relative accuracy. ROCs can also be
plotted for forecasts given as risk ratings (e.g. low,
moderate, high) as in Figs.21 and 22, and for public
weather forecasts that include ‘chance of . °
statements. The ROC provides a framework for the
display of any type of forecast for a dichotomous
predictand. Its use in this form is not dependent on
the SDT model, and forecast sets generated by
definitely non-normal distributions can be
compared in this way (Mason 1980).

Another advantage of the SDT approach is that
accuracy can be assessed independently of
calibration. The indices d’, Am, d, A, (and some
other related indices derived from the ROC; see
Swets 1979) are measures of the inherent ability of
the forecasting system to discriminate between
situations that will be followed by occurrence of a
predictand, and those that will be followed by non-
occurrence. The SDT indices are relatively
independent of the calibration of the probabilities,
that is the relation between estimated probability
and relative frequency. In fact the ROC can be
determined without information about the
numerical values of estimated probability. Hence we
have a measure of accuracy for weather forecasts
which is not confounded by individual variations in
calibration of subjective probabilities.

Finally, signal detection theory is not a
substantive model for the psychological processes
taking place in the formulation of a forecast. It is
asserted simply that it provides a very good
descriptive model for weather forecast verification,
with the advantages noted above. It appears that
forecasters behave as if they are making statistical
decisions on the basis of data in which the weight of
evidence for the predictand varies from day to day,
and this variation in weight of evidence is well
represented by the normal-normal model of signal
detection theory.

Conclusions

The relative operating characteristic, a graph of hit
rate against false alarm rate as decision criterion
varies, can be used to display and compare forecast
sets for dichotomous predictands presented in any
form, whether as numerical probabilities, risk
ratings, yes/no, or verbally as in public weather

R

I

forecasts. It represents a very general paradigm fy
assessment of forecast quality. '
ROCs for subjective probability forecasts
linear when plotted on double probability TXeg
supporting the normal—normal signal detectigy
theory model. Hence indices based on the Spyp
model, may be used to describe subjectively
formulated weather forecasts, and

dpy

Ei_y.
have th

advantage of being relatively independent of the ¢
locations of the forecasters’ decision criterions, Jy |

the case of probability forecasts this provides indicgy
of accuracy that are effectively independent 0{
calibration.
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