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An international project tests new spatial forecast verification methods to find out how they 

handle different types of forecast error and what they tell us about forecast performance.

V	 erification of a forecast field presents many  
	 challenges, especially at higher resolutions.  
	 When assessing forecast performance at a 

single point, straightforward summary statistics [e.g., 
root-mean-square error (RMSE)] are meaningful 
because they give an intuitive notion of how well the 
forecasts matched the observations at that point. It 
is also straightforward to identify hits, misses, false 
alarms, and correct negatives, all of which give rise to 
numerous useful summary statistics [e.g., the prob-
ability of detection (POD) and the Gilbert skill score 
(GSS)] and diagnostics (e.g., the relative operating 
characteristic) of forecast performance (for more on 
traditional verification, see, e.g., Wilks 1995; Jolliffe 
and Stephenson 2003). However, when interest is in 
spatially coherent structures, these notions are not 

as simple to determine. Further, several new types of 
errors become relevant, which bring about a new set 
of verification questions. Are there spatial displace-
ment errors? Does the scale-dependent variance of 
the forecast field match the spatial structure that was 
observed? Did the forecast under- or overpredict the 
spatial extent of a storm system? Are there orienta-
tion errors for specific structures in the field? At what 
scales do the forecasts have skill?

Numerous methods have been proposed in recent 
years to address these issues, and some are already 
used regularly at meteorological centers around 
the world. Because the methods are relatively new, 
however, it is not always clear which approaches are 
best suited for answering particular questions about 
forecast performance. Which ones should be used 
for specific purposes, and which provide analogous 
information? How can uncertainty information be 
determined about the results? Do methods have 
any unintuitive characteristics about which a user 
should know? Such questions provided the impetus 
for the Spatial Forecast Verification Methods Inter-
Comparison project (ICP; details at www.ral.ucar.
edu/projects/icp). Although not every approach is 
currently under study in the ICP, a reasonably rep-
resentative subset is included, in most cases by the 
researchers who originally proposed them.

Test Cases. Several test cases have been provided 
in order to make head-to-head comparisons of how 
each method addresses forecast performance. So far, 
three sets of cases focused on quantitative precipita-
tion forecasts (QPFs) are being used, with plans to 
incorporate more varied cases in the future. The cases 
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under study now include 24-h forecasts of 1-h pre-
cipitation from three configurations of the Weather 
Research and Forecasting (WRF) model, known per-
turbations of one of these cases, and simple geometric 
cases with prescribed spatial displacement and/or 
spatial extent errors (Fig. 1 shows some example test 
cases). The geometric cases (Fig. 1a) are simple ellip-
tically shaped precipitation patterns with common 
forecast errors and provide useful information about 
the output of each method. Perturbed “real” cases 
(Fig. 1b) illustrate the capabilities of each method with 
more complex precipitation scenes and similar errors 
to the geometric cases. For nine real WRF cases, a 
subjective evaluation was carried out to compare the 

human ranking to the spatial verification methods, 
though subjective evaluations can be varied, and even 
misleading. More detailed information about the test 
cases and the subjective evaluations can be found in 
Ahijevych et al. (2009). 

The Methods. Most of the techniques pro-
posed can be classified into one of the following four 
categories: a) scale separation (or decomposition), 
b) neighborhood (or fuzzy), c) features based (or 
objects based), and d) field deformation. The first 
two could be further generalized as filter methods 
where the scale-separation methods take advantage 
of bandpass filters to separate forecast performance 

at different physical scales, 
and t he neighborhood 
methods utilize smooth-
ing filters. An advantage 
of both approaches is the 
general ability to describe 
the “scale” at which the 
forecast attains a particular 
level of skill. Similarly, the 
features-based and field-
deformation approaches 
could be grouped together 
as spatia l displacement 
methods, although both 
can give more information 
about forecast skill than 
just spatial displacement. 

Figure 2 shows a sche-
matic of the general catego-
ries. For the filter methods, 
the summary statistics are 
applied at different scales; 
in the case of the neighbor-
hood methods (Fig. 2a), 
these statistics are calcu-
lated for a range of neigh-
borhood sizes, whereas for 
scale separation (Fig. 2b) 
they are calculated for dif-
ferent spectral bands that 
isolate phenomena of a 
particular size. To illus-
trate the scale-separation 
approach, Fig. 2b shows the 
binary difference between 
a forecast and observation, 
and constituent wavelet 
components. The displace-
ment methods attempt to 

Fig. 1. Select examples of the artificial cases used to test the various verifica-
tion methods. (a) Three geometric cases and (b) one of the perturbed cases 
are shown. The full set of test cases is described in Ahijevych et al. (2009).
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displace the forecast field 
spatially to better match the 
observations. Information 
about the amount of dis-
placement that is necessary 
can be gleaned along with 
various other diagnostics 
and summary statistics. 
The primary difference 
between the methods is 
that the features-based ap-
proaches (Fig. 2c) identify 
individual features (or ob-
jects) within a field and 
analyze these structures 
separately, whereas the 
field-deformation methods 
(Fig. 2d) apply to the entire 
field as a whole. The fol-
lowing subsections provide 
brief descriptions of the 
methods by type. A more 
complete literature review 
and qualitative compari-
son of the methods can be 
found in Gilleland et al. 
(2009).

Neighborhood approaches. 
Neighborhood approaches 
differ from one another 
primarily by the type of 
smoothing filter applied. 
The filter is applied to the 
forecast field, and in most 
cases also the observed field 
(some neighborhood methods verify forecasts against 
point observations), and the summary statistics (e.g., 
traditional verification statistics) are applied to the 
filtered fields. Further, most filters preserve the peak 
values, which are important for capturing forecasting 
capabilities for extreme events such as severe winds 
or large hail. Information about the scales at which a 
forecast attains a desired level of skill can be obtained 
by iteratively increasing the neighborhood size to 
which the filter is applied. In this sense, the term 
“scale” differs from that used in conjunction with 
the scale-separation methods in that here one scale is 
not independent from another; as the scale increases, 
the overall field becomes less sharply defined, usu-
ally resulting in better skill. Ebert (2008) provides a 
thorough review of the neighborhood approaches, 
and the reader is directed there for more information 

and references. Mittermaier and Roberts (2010) apply 
the fractions skill score (FSS) of Roberts and Lean 
(2008) to the ICP test cases, and find it to be a good 
measure of spatial accuracy in addition to being able 
to identify which scales have useful skill.

Scale-separation approaches. Scale-separation tech-
niques are not new to forecast verification (Briggs 
and Levine 1997; Tustison et al. 2001). Typically, each 
field is decomposed using some type of bandpass 
filter (Fourier, wavelets, etc.), and the two fields are 
compared using traditional verification techniques 
at each spectral scale. Note that the term “scale” 
used here can be linked to physical features, such as 
large-scale frontal systems or smaller-scale convective 
showers. The techniques attempt to assess the scale-
dependent error, determine the scales where a forecast 

Fig. 2. A schematic showing the characteristics of the various types of spatial 
verification methods (reproduced from Gilleland et al. 2009). Filtering 
methods apply a smoothing filter at increasingly coarser scales. (a) neigh-
borhood techniques apply smoothing filters as illustrated by the image with 
an upscaled (fuzzier) counterpart, whereas (b) scale-separation methods 
employ a bandpass filter to address performance at independent scales. The 
displacement methods address location errors (among others). (c) features-
based methods address individual structures within a field as depicted by the 
individually numbered “blobs,” whereas (d) field-deformation approaches 
are generally applied to the entire field as a whole unit.
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has a desired level of skill, and investigate a forecast’s 
ability to reproduce the observed variability-scale 
structure of the observed field. The methods of Harris 
et al. (2001) and Casati et al. (2004) are examples of 
scale-separation techniques.

Lack et al. (2010) utilize Fourier decomposition 
before applying a version of the features-based tech-
nique introduced in Micheas et al. (2007). To the best 
of our knowledge, it is the first method introduced that 
directly diagnoses the spatial displacement errors (and 
other errors) for isolated or specific physical scales. 
Indeed, the method is a features-based method that 
uses a Fourier decomposition to identify objects. Such 
a combination across types of methods is very natural, 
and it is likely that more crossovers will be proposed.

Features-based approaches. These methods generally 
attempt to identify particular structures (i.e., fea-
tures) in each field, find the best matches of features 
across fields, and make comparisons between these 
matched features based on different attributes (spatial 
displacement, orientation, size, etc.). Examples of 
these types of approaches can be found in Ebert and 
McBride (2000), Davis et al. (2006, 2009), Micheas 
et al. (2007), Baldwin and Lakshmivarahan (2003), 
Ebert and Gallus (2009), and Lack et al. (2010).

Some features-based techniques do not fit as nicely 
into the above paradigm. The composite method of 
Nachamkin (2004, 2009), for example, investigates 
the distributions of forecasted events relative to ob-
served events, and vice versa. Marzban and Sangathe 
(2006, 2008) utilize hierarchical cluster analysis that 
identifies objects at each scale (in this case, scale 
refers to the number of clusters at each iteration of 
the hierarchy), and various traditional verification 
statistics can be applied by defining hits, misses, 
and false alarms by the proximity of the clusters 
between the two fields. Finally, Wernli et al. (2008, 
2009) take a different approach altogether by defining 
features within a small region (e.g., a river basin), 
and focusing on three summary statistics pertaining 
to structure, amplitude, and location (SAL) without 
matching features across fields. The technique is 
most appropriately applied when the precipitation 
within the domain is of a single type, and provides 
useful information that can complement results from 
traditional verification approaches.

Field-deformation approaches. Field-deformation 
methods were introduced for meteorological veri-
fication by Hoffman et al. (1995) and Alexander 
et al. (1999). These approaches attempt to spatially 
manipulate the forecast field to better match the 

observed field in an optimal way. In each case, the 
resulting product is a vector field describing these 
optimal movements. Methods differ primarily by 
how they deform the forecast field, and how they 
summarize the resulting vector field describing the 
deformations. For many of these methods, a finite 
set of points must first be identified, which can go 
to the extreme of identifying specific features in the 
two fields, rendering the technique to be very similar 
to that of a features-based approach. Gilleland et al. 
(2010) simply use a relatively sparse regular grid of 
points, and found this approach to be adequate for as-
sessing forecast performance. Optical flow techniques 
(e.g., Keil and Craig 2007, 2009) do not require the 
identification of control points at all, utilizing a hier-
archical stepping algorithm that makes movements 
at progressively finer scales. Venugopal et al. (2005) 
introduce a summary measure called the forecast 
quality index (FQI), which differs considerably from 
those described above, but we classify it as a field-
deformation approach because it measures the spatial 
displacement for the entire field. 

Comparison of types of methods. 
Each type of method excels at providing particular 
information about forecast performance. Some meth-
ods may give detailed accounts of some types of error, 
while other methods may merely be sensitive to those 
errors. In other cases, certain types of information 
are not accounted for or explicitly given by some 
methods. Gilleland et al. (2009) considered a large 
variety of questions concerning characteristics of the 
methods; here a representative from each category is 
demonstrated on an example case.

Each verification method has a different look and 
feel. To illustrate this with a concrete example, one 
representative method from each of the four broad 
verification categories is applied to the same forecast 
(Fig. 3). The example comes from one of the nine real 
test cases described in Ahijevych et al. (2009). At the 
top of the figure, the 1-h accumulated precipitation 
fields are shown for the 24-h WRF National Centers 
for Environmental Prediction (NCEP) forecast and 
stage II observation. The GSS (equivalent to the 
equitable threat score) and frequency bias (ratio of 
forecast area to observed area) are calculated for a 
precipitation threshold of 5 mm. To illustrate the 
neighborhood approach (Ebert 2009), the precipita-
tion fields are filtered with a 132 km × 132 km moving 
average window (top left) and a new GSS and bias 
are calculated. The GSS increases from 0.06 to 0.17, 
and the bias improves from 1.87 to 1.14. This relation 
between skill score and neighborhood size is typical 
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for high-resolution precipitation forecasts; as one 
averages out the small-scale variability associated 
with grid-scale precipitation, the skill scores improve. 
The models may not pinpoint the exact location of 
each storm cell, but they can correctly place the over-
all envelope of precipitation. The neighborhood ap-
proach filters out the high-frequency variability and 
can allow a high-resolution model to be compared 
to a low-resolution model without being penalized 
for small errors. 

The scale-separation approach is similar to the 
neighborhood approach, but it uses a Fourier or 
wavelet transform to decompose the precipitation 
fields. The 512- and 64-km Haar wavelet components 
of the binary difference field are shown in Fig 3c. As 
in Casati (2010), the forecast and observation fields 
are first converted to binary (0/1) fields, and then the 
difference field is decomposed. A greater proportion 
of the difference field is associated with the 64-km 
component (23%) than with the 512-km component 
(3%), suggesting the model forecast has more error 
at 64-km scales than at 512 km. Additional statistics 
are available for the remaining wavelet components, 
but they are not shown. 

In Fig. 3d, the object-based method isolates the 
main features and then matches the resultant objects. 
In this example from the method for object-based 
diagnostic evaluation (MODE; Davis et al. 2009), 
the red forecast object is matched with the red ob-
ject in the observed field. Object attributes such as 
centroid displacement, orientation angle difference, 
and median intensity are summarized below the two 
fields. Objects that are not matched are dark blue. In 
the forecast field, these unmatched objects can be 
considered false alarms, and in the observed field, 
they can be considered misses. In this case, there are 
numerous false alarms in the southeastern United 
States and one miss in Texas. 

The final category of verification method illus-
trated in Fig. 3 is field deformation. In Fig. 3e, an 
optical flow technique is applied to the forecast field 
to make it look more like the observed field (adapted 
from Keil and Craig 2009). In the full displacement 
and amplitude score (DAS) calculation described in 
Keil and Craig (2009), the observation is also warped 
to look like the forecast (not shown). Some of the 
statistics that come out of the DAS method1 are mean 
displacement error (104.4 km) and root-mean-square 
amplitude error of the morphed fields (6.79 mm). The 
field-deformation methods diagnose similar forecast 
errors to the object-based methods, but they treat the 
field as a whole instead of separate objects. 

Table 1 summarizes the methods by category for 
several issues relevant to forecast quality. It should be 
noted that while the table gives yes or no answers for 
categories of methods, the answer may not apply to a 
particular method in the category. For example, while 
the displacement methods are not generally set up for 
informing about scales where a forecast has skill, it is 
certainly feasible to apply any of the methods to par-
ticular scales (an upscaled field, a detailed field from 
a wavelet decomposition, etc.). The method by which 
MODE, a features-based displacement method, cre-
ates objects involves a convolution of the field using a 
user-defined radius. The amount of convolution can 
be considered as a scale (similar to upscaling) so that 
skill at different scales can be obtained.

All of the methods supply information about in-
tensity errors, but it should be noted that they do so 
in very different ways. A deformation approach, for 
example, typically computes traditional verification 
scores that pertain to intensity for pre- and postde-
formed fields. Neighborhood methods also typically 
provide traditional verification scores, but on filtered 
fields of different scales. In this way, information is 
obtained about the scales where a forecast has skill.

Table 1. Summary of the types of information that the general categories of methods can provide. 
Entries should be interpreted as being a general characteristic of the method type, and it should be 
understood that there are exceptions among individual methods; see the text for more information.

Category
Scales  

with skill
Location 

errors
Intensity 

errors
Structure 

errors
Occurrence  

(hits, misses, and false alarms)

Neighborhood Yes No Yes No Yes

Scale separation Yes No Yes No Yes

Features based No Yes Yes Yes Yes

Deformation No Yes Yes No No

1	In Keil and Craig (2009), the displacement error is then normalized by the maximum search distance (Dmax = 360 km) and 
the amplitude error is normalized by the characteristic intensity (I0 = 6.23 mm).
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Fig. 3. (a) Each of the four verification categories illustrated in Fig. 2 is applied to the same test case. (b) 
Illustrated is a neighborhood approach, in which the forecast and observation fields are upscaled with a 
132 km × 132 km averaging filter. (c) The scale-separation approach is illustrated by showing two compo-
nents of the wavelet decomposition. (d) The object-based method matches the red forecast and observed 
object. (e) The field-deformation example uses optical flow (Keil and Craig 2009) to morph the forecast to 
the observation.
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Contingency table information (i.e., hits, misses, 
false alarms, and correct negatives) and binary scores 
are naturally summarized by neighborhood and 
scale-separation methods. Features-based methods 
provide a new way of determining such errors, 
where matched objects can be thought of as hits and 
unmatched objects as misses or false alarms.

Discussion and Future Directions 
of the ICP. The ICP was started to help reduce the 
learning curve for potential users and to better under-
stand what types of information each method gives, 
as well as the pros and cons of the methods. Initial 
attention for the ICP has been given to QPF test cases, 
as well as very simple geometric cases. Actual forecast 
cases are complemented by realistic cases with known 
errors. Future work will apply the new verification 
methods to different types of fields to assess how the 
methods measure errors in forecasts for other types 
of variables, such as wind and clouds.

All of the new techniques provide useful informa-
tion about forecast performance when faced with a 
complete grid of forecasts with an accompanying 
verification field on the same grid. In particular, bias 
is handled by all of the methods. Errors of different 
types may also vary depending on the scale of inter-
est. Neighborhood and scale-separation methods 
are especially well suited for addressing this issue, 
though there are potentially ways for other types of 
methods to also account for this behavior. Several of 
the methods can directly diagnose spatial displace-
ment errors, and many others are sensitive to such 
errors. In particular, the methods grouped together 
as features based and field deformation are designed 
for this purpose, though they can also address other 
verification questions in the spatial setting that can-
not be addressed by traditional verification methods. 
For example, the features-based methods can inform 
about how well a forecast is able to capture various 
attributes of specific structures within a field (e.g., 
orientation of large storm systems), which may have 
physical interpretations. 

There is much overlap in the information provided 
by the different techniques. In part, the general cat-
egories described in Gilleland et al. (2009) are useful 
for organizing the numerous methods, but they also 
give an indication of which method or combinations 
of methods might be useful for providing a complete 
picture of forecast performance for a particular ap-
plication. For example, in planning flight routes, the 
exact spatial placement of a forecast may be of less 
interest than the average intensity and spatial extent 
of a large storm system. In such a case, a displacement 

method might be useful in discerning how well a fore-
cast performs in spite of such errors. Filter approaches 
might also be used for this purpose. For example, a 
scale-separation method might be utilized to discern 
whether a forecast accurately captures the behavior of 
large-scale weather phenomena. In general, if interest 
rests on knowing the scale at which a forecast achieves 
a desired level of skill, then a neighborhood method 
will be well suited. If it is desired to know how well 
a forecast captures specific physical scales, then a 
scale-separation or features-based method is recom-
mended. Finally, when the interest is in knowing 
the total amount of spatial displacement error, with 
amplitude error adjusted for displacement error, then 
the field-deformation methods are ideal.

Many of the newly proposed techniques are gain-
ing momentum, and some are already in operational 
use [e.g., the Met Office has been using the fractional 
skill score approach since 2007 (M. P. Mittermaier 
2010, personal communication); SAL is used for 
internal operational verification at the Finnish 
Meteorological Institute (M. Zimmer 2010, personal 
communication); MODE is in operational use in 
China and is being considered for operational use in 
the United States; and contiguous rain area (CRA) 
is used for precipitation verification at the Bureau 
of Meteorology]. Other methods are beginning to 
be applied in nonoperational settings [e.g., SAL is 
being studied by numerous scientists and is included 
as part of the High-Resolution Limited-Area Model 
(HIRLAM) community internal verification toolbox; 
MODE is being used in various research projects and 
in demonstrations for the U.S. Hydrometeorology and 
Hazardous Weather Testbeds (e.g., see http://verif.rap.
ucar.edu/eval/hmt/2010/graphics/); the Met Office 
has used the intensity-scale method for nonopera-
tional purposes, and the CRA is being implemented 
for assessing dust forecasts (M. P. Mittermaier 2010, 
personal communication). In addition to its op-
erational use, the FSS is being used in evaluation of 
hazardous weather forecasts in the United States (e.g., 
Schwartz et al. 2010)].

Future spatial verification methods are likely to 
combine filter and displacement approaches. While 
it is possible to apply one of each method, using them 
in concert can potentially provide a more complete 
picture of forecast performance. For example, one 
might want to know how serious location errors 
are for different scales. Does a forecast predict local 
phenomena well after accounting for a larger-scale 
displacement? It is certainly natural to apply any 
displacement method to scales obtained through 
filtering or multiresolution analyses. Such hybrid 
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methods are already being proposed (e.g., Lack 
et al. 2010).

Software for some of the techniques is available 
through the ICP Web site. The intensity-scale tech-
nique is available as part of the R (R Development 
Core Team 2009) package verification, as well as in 
the Model Evaluation Tools verification software 
(www.dtcenter.org/met/users/), which also includes 
software for employing MODE.
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