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ABSTRACT

Real-time gridded 24-h quantitative precipitation forecasts from seven operational NWP models are verified
over the Australian continent. All forecasts have been mapped to a 18 latitude–longitude grid and have been
verified against an operational daily rainfall analysis, mapped to the same grid. The verification focuses on two
large subregions: the northern tropical monsoon regime and the southeastern subtropical regime. Statistics are
presented of the bias score, probability of detection, and false alarm ratio for a range of rainfall threshold values.
The basic measure of skill used in this study, however, is the Hanssen and Kuipers (HK) score and its two
components: accuracy for events and accuracy for nonevents.

For both regimes the operational models tend to overestimate rainfall in summer and to underestimate it in
winter. In the southeastern region the models have HK scores ranging from 0.5 to 0.7, and easily outperform a
forecast of persistence. Thus for the current operational NWP models, the 24-h rain forecasts can be considered
quite skillful in the subtropics. On the other hand, model skill is quite low in the northern regime with HK
values of only 0.2–0.6. During the summer wet season the low skill is associated with an inability to simulate
the behavior of tropical convective rain systems. During the winter dry season, it is associated with a low
probability of detection for the occasional rainfall event. Thus it could be said that models have no real skill
at rainfall forecasts in this monsoonal wet season regime.

Model skill falls dramatically for occurrence thresholds greater than 10 mm day21. This implies that the models
are much better at predicting the occurrence of rain than they are at predicting the magnitude and location of
the peak values.

1. Introduction

This study documents the level of skill at precipitation
forecasts of the large-scale numerical weather prediction
(NWP) models currently available at the National Me-
teorological Operations Centre Melbourne, Australia.
Real-time gridded precipitation data are verified from
seven models from Australia, the United Kingdom, Ger-
many, Japan, the United States, and the European Centre
for Medium-Range Weather Forecasts (ECMWF) over
a one-year period. The verifications are for the first 24
h of the forecast period and are carried out over the
Australian continent. The measures used are categorical
statistics based on the rain contingency table (Table 1)
applied at each analysis grid point over the verification
period.

This study falls within the Techniques Development
Initiative of the Australian Bureau of Meteorology,
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which has as one of its principal objectives the im-
provement of quantitative precipitation forecasts (QPF).
The purpose of the current study is to present a concise
and synthesized documentation of the current level of
skill of operational numerical models at precipitation
forecasts. Verification statistics are presented over a
standardized 18 latitude–longitude grid over the conti-
nent of Australia as well as two large subregions thereof.
It is hoped that the skill scores used over these standard
grids can be used as a benchmark to measure improve-
ments as NWP models develop further in coming years.
It is also intended that the concise statistics presented
here will provide a basic source of information to op-
erational weather forecasters on the reliability of the
precipitation forecasts from the various models used as
input to their daily operations.

Daily precipitation patterns include large gradients
over a range of scales, and forecasters and model de-
velopers are interested in quantitative verification on
timescales from individual days up to seasons or years.
Verification methods are not straightforward, however,
and constitute an active area of research. Some discus-
sions of current verification procedures in the United
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TABLE 1. Rain contingency table applied at each verification grid
point over the period of verification. A threshold value (e.g., 1 mm
day21) is chose to separate rain from no-rain events. Here, Z is the
number of correct predictions of rain amount below the specified
threshold, F is the number of false alarms, M is the number of misses,
and H is the number of correct rain forecasts or hits.

Observed

Predicted

No rain Rain

No rain
Rain

Z
M

F
H

TABLE 2. NWP models for which 0–24-h quantitative precipitation forecasts were verified. Italics signify that the grid resolution of the
model output received at the Bureau of Meteorology is coarser than the true resolution of the model.

Model Operational center Model type

Grid res-
olution

(8lat–lon)

DWD
ECMWF
GASP
JMA
LAPS
AVN
UKGC

Deutscher Wetterdienst, Germany
European Centre for Medium-Range Weather Forecasts, United Kingdom
Bureau of Meteorology, Australia
Japanese Meteorological Agency, Japan
Bureau of Meteorology, Australia
National Centers for Environmental Prediction, United States
Meteorological Office, United Kingdom

Global spectral model
Global spectral model
Global spectral model
Global spectral model
Nested regional gridpoint model
Global spectral model
Global gridpoint model

1.1258
0.508
2.508
2.508
0.758
1.258
1.258

States are contained in the studies by Mesinger et al.
(1990), Mesinger (1996), and Johnson and Olsen
(1998). An internal report by the current authors (Ebert
and McBride 1997) presents verification products over
Australia including maps, time series, scatterplots, and
tables of statistics over a number of time and space
scales. In that report we also describe the various cat-
egorical statistics skill scores and discuss their relative
advantages and disadvantages. On a more general level,
excellent reviews of forecast verification methods have
been carried out by Murphy and Winkler (1987), Stanski
et al. (1989), and Wilks (1995).

The current paper chooses a small subset of the var-
ious measures of accuracy and skill that are available,
and uses these measures to compare the performance at
QPF of various NWP models in two different rainfall
regimes for two different seasons (summer and winter).
This exercise reveals a number of interesting aspects of
the performance of the models. Thus a secondary pur-
pose of the current paper is to indicate by example the
type of information on model skill that can be quantified
through the various categorical measures of skill.

Section 2 of the paper briefly describes the period of
study, the data used for verification, and other aspects
of the verification. In section 3, statistics are presented
over the entire continent of Australia. One of the points
made in that section is that the statistics are difficult to
interpret as a number of very different rainfall regimes
is involved. As a consequence of that, statistics are pre-
sented for two large subareas of the country. In section
4 the QPF verification is carried out over the Tropics,
while in section 5 it is carried out over the subtropical
southeast. The final section summarizes the performance

of the seven models in tabular form for the two sub-
regions and two seasons. The same information is com-
pared against a persistence forecast through presentation
of the performance of the individual models on phase-
space diagrams where the dimensions are different mea-
sures of skill.

2. Verification procedures

Gridded precipitation forecasts were obtained for sev-
en NWP models over the 12-month period September
1997–August 1998 inclusive. The models involved are
all state of the science as they are the official operational
forecast models of the respective meteorological agen-
cies. The list of models, the owner meteorological agen-
cy, and the grid resolution of the precipitation data are
given in Table 2.

For each model the gridded quantitative precipitation
forecasts over the 0–24-h forecast period were collected
for the one year of verification. These were verified
against the gridded Australian operational daily rainfall
analysis described by Weymouth et al. (1999). This uses
a three-pass Barnes successive corrections technique to
analyze rainfall observations from approximately 6000
synoptic, telegraphic, and observer sites onto a 0.258
latitude–longitude grid covering the land area of Aus-
tralia, excluding some data-void areas in the central and
western part of the country that have no rain gauges
(Fig. 1). For details of data completeness and station
locations, the reader is referred to Fig. 2 of Ebert and
Weymouth (1999).

The rainfall analysis is based on 24-h accumulation
observations made at 0900 local time. This corresponds
to between 2300 and 0100 UTC in winter and between
2200 and 0100 UTC in summer (due to the spread of
time zones across the country, and the fact that some
states follow summer time and others do not). In this
study we analyze the model output from the 0000 UTC
run, which for each model has a base time of either
2300 or 0000 UTC. Thus in all cases the 24-h model
forecasts and the 0900 local time accumulated precip-
itation observations are synchronous to within 2 h.

The precipitation output from the seven models and
the operational rainfall analysis correspond to a variety
of grid sizes. In order to produce a valid intercomparison
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FIG. 1. Map of Australia showing the region of verification, which
is the entire land area minus the blank data-void regions. Also shown
are the northern and southeastern verification regions.

FIG. 2. Time series of monthly average values of (a) total rain area and (b) bias score over the
Australian continent for the seven models discussed in the text. The solid heavy line shows the
observed mean rain area from the operational daily rainfall analysis system.

it was necessary to transform all fields to a standard
grid size; an intermediate resolution of 18 latitude–lon-
gitude was chosen. The remapping was done by spatial
averaging or by simple bilinear interpolation, depending

on whether the grid size was being increased or reduced.
This procedure resulted in 608 matched grid points in
the analysis and in each of the prediction models. It is
possible this remapping procedure may affect the com-
parative skills of models. The authors intend to inves-
tigate this aspect of verification in a later study.

Verifications were carried out over these grids for
each individual month, as well as for the summer and
winter seasons. Direct comparison can be made of mean
values of rain area, rain rate, and rain volume. In ad-
dition simple point by point comparisons like root-
mean-square difference, mean absolute error, and co-
efficient of linear correlation between forecast and anal-
ysis can be computed.

In addition to these simple measures a number of
categorical statistics are applied. The term categorical
refers to the yes/no nature of the forecast verification at
each point. Some threshold (i.e., 0.1, 1, 2, 5, 10, 20, 50
mm day21) is considered to define the transition between
a rain versus nonrain event. Then at each grid point,
each verification time is scored as falling under one of
the four categories of correct nonrain forecasts, false
alarms, misses, or hits (Z, F, M, or H as shown in Table
1). Unless otherwise stated, in the following graphs and
tables a rain event is defined to occur when the grid
square average precipitation is equal to or greater than
1 mm day21.

A number of categorical statistics skill measures are
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FIG. 3. Space–time average values of bias score over the Australian continent for the seven
models as a function of rain threshold for (a) summer (Dec–Feb) and (b) winter (Jun–Aug).

used, computed from the elements of this rain/no-rain
contingency table. They include bias score (bias):

F 1 H
bias 5 . (1)

M 1 H

The bias score is equal to the number of rain forecasts
divided by the total number of observations of rain.
Thus the bias score is a measure of the relative frequency
of rain forecasts compared with observations. Averaged
over a number of forecasts it is equal to the average
rain area in the forecasts divided by the area in obser-
vations.

The probability of detection (POD) is equal to the
number of hits divided by the total number of rain ob-

servations; thus it gives a simple measure of the pro-
portion of rain events successfully forecast by the mod-
el:

H
POD 5 . (2)

M 1 H

The false alarm ratio (FAR) is equal to the number
of false alarms divided by the total number of times
rain was forecast; thus it gives a simple proportional
measure of the model’s tendency to forecast rain where
none was observed:

F
FAR 5 . (3)

F 1 H
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FIG. 4. As in Fig. 3 but for POD.

The Hanssen–Kuipers score (HK), also known as the
true skill statistic, was developed by Hanssen and Kui-
pers (1965) and is used by the current authors as a result
of the ideas advocated by Woodcock (1976) and dis-
cussed further by Ebert and McBride (1997):

(ZH 2 FM)
HK 5 . (4)

(Z 1 F )(M 1 H )

We can interpret the POD as being equal to a measure
of accuracy for rain events, that is, the number of correct
rain forecasts divided by the number of times rain was
observed [H/(M 1 H)]. We can similarly define an ac-
curacy for nonrain events, equal to the number of cor-
rect forecasts of nonrain divided by the number of non-
rain events observed [Z/(Z 1 F)]. Through algebraic

manipulation, it can be shown that the HK score is equal
to the sum of these two accuracies minus one, where
the last factor simply normalizes the score to the value
range 21 to 1. Thus,

HK 5 accuracy for events (POD)

1 accuracy for nonevents

H Z
5 1 2 1. (5)

M 1 H Z 1 F

We prefer this scale because it is independent of the
distribution of events and nonevents in the sample set.
This facilitates the comparison of model skill across
geographical and seasonal regimes. It also has an appeal
in the fact that it can be expressed in terms of the gen-
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FIG. 5. As in Fig. 3 but for FAR.

eralized expression for skill as described by Wilks
(1995):

accuracy 2 accuracyforecast referenceskill 5 . (6)
accuracy 2 accuracyperfect reference

When the HK score is expressed in this context, the
accuracy is that for all forecasts, that is, both rain and
nonrain events. In the numerator the reference forecast
is that obtained by random chance with a model with
the same distribution of yes/no (or event/nonevent) fore-
casts as that being verified. In the denominator the ac-
curacy of a perfect forecast is set to 1.0, while the ref-
erence accuracy in the denominator is that obtained by
chance by a hypothetical forecast model with the same
distribution of yes/no events as occurs in the observa-

tional sample. It is this fact, that the denominator is
totally independent of the characteristics of the partic-
ular forecast model, that gives the HK score an aesthetic
or intellectual appeal for the intercomparison of differ-
ent forecast models. For further details and discussion
of HK in terms of Eq. (6), the reader is referred to Wilks
(1995, chapter 7).

Referring back to Eq. (5), it is seen that the HK score
gives equal emphasis to the ability of the forecast model
to correctly predict events and nonevents. It has been
criticized by Stanski et al. (1989) and Doswell et al.
(1990) as being overly dependent on the probability of
detection, and therefore less appropriate than other mea-
sures of skill in forecasting rare events (where Z, the
correct forecasts of nonevents, dominates the contin-



FEBRUARY 2000 109N O T E S A N D C O R R E S P O N D E N C E

FIG. 6. As in Fig. 3 but for the HK score.

gency table). It is worth noting that the formulation of
the HK score contains an inherent scale. As described
above, the perfect forecast system (M 5 0, F 5 0) has
an HK score of 11, while a constant forecast (i.e., either
Z 5 M 5 0, or F 5 H 5 0) has an HK score of zero.

3. Verification over the Australian continent

Figure 2 shows a time series of monthly mean values
of total rain area and bias score averaged over the con-
tinent for the year of verification. The upper panel (rain
area) also shows the value from the analysis scheme.
From inspection of the upper panel it is seen that for
much of the year (October–May) four models [the Glob-
al Assimilation and Prediction System (GASP), the Jap-

anese Meteorological Agency global spectral model
(JMA), the Limited Area and Prediction System
(LAPS), and the National Centers for Environmental
Prediction’s (NCEP) Aviation Model (AVN)] consis-
tently overestimate the rain area. The ratio of the fore-
cast to observed rain area is equal to the bias score
shown in the second panel. This shows the overesti-
mation of rain area to be of the order of 50% for three
models (JMA, LAPS, and AVN) and approximately
100% for the GASP model. In contrast the remaining
three models [U.K. Meteorological Office Global Model
(UKGC), ECMWF, and the Deutscher Wetterdienst
global spectral Model (DWD)] reproduce the total rain
area to within 10% for most of the year, but two of them
(UKGC and DWD) underestimate it by about 20% over
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FIG. 7. Time series of monthly average values of (a) mae, (b) rmse, and (c) coefficient of
correlation between model and analysis, averaged over the Australian continent for the seven models
discussed in the text.

the winter months of September 1997 and June–August
1998.

This aspect of model behavior is further explored in
Fig. 3, which shows the bias score as a function of the
threshold value chosen to separate the rain/no-rain
events. The upper panel is for the three summer months
of December to February, while the lower panel is for
the winter months of June to August. The ‘‘spaghetti
diagram’’ nature of the upper panel reveals a large di-
versity in model behavior. A noteworthy feature of the
lower panel is that the two Australian models (LAPS
and GASP) have approximately linear curves with a bias
score well above one at low thresholds and well below
one at higher thresholds. This means that in this winter
regime these two models strongly overestimate the areal

coverage of rainfall and strongly underestimate the peak
values.

Summarizing the results of this diagram and the time
series of bias score in Fig. 2, it seems that each model
has consistent behavior within a particular (summer vs
winter) regime, but there is a very large diversity (or
lack of consistency) between models in this rather fun-
damental aspect of the moisture cycle. In general, how-
ever, throughout the range of thresholds most models
significantly overestimate the area of rain throughout
the summer months, while in winter all models except
one underestimate the frequency (or area) of rain at
thresholds above 2 mm day21.

The equivalent diagrams for probability of detection
and false alarm ratio as a function of rain threshold
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FIG. 8. Time series of monthly average values of rmse for the seven models discussed in the
text, averaged over the (a) northern region and (b) southeastern region.

are shown in Figs. 4 and 5. For both figures it is seen
that skill is a strong function of threshold, with the
probability of detection decreasing from about 80% for
rain/no rain (low thresholds) to about 30% or 40% for
rain amounts above 20 mm day21 . Consistent with this
the false alarm ratio increases with threshold, from
about 30% at low threshold to 60%–70% at high
thresholds.

These figures also reveal some noteworthy charac-
teristics of individual models. For example, in the sum-
mer regime the GASP model shows a much higher FAR
than the other models through the range of thresholds,
while the ECMWF model has the same characteristic
during winter. In the latter case, this high false alarm
ratio is apparently a reflection of the fact that the model
overestimates the area of rain, as seen on the corre-
sponding bias score diagram (Fig. 3b). In either case,
it is clear that various characteristics of the behavior
of individual models are brought out very clearly from
intercomparisons of these types of simple scores.

Figure 6 shows the two seasonal curves for the HK
score as a function of rain threshold. Interestingly, for
most models the skill remains relatively constant as a
function of threshold for low and moderate threshold
values. Above about 10 mm day21 the skill drops rap-
idly. These curves also show that two of the models
(AVN and JMA) clearly outperform the others at rainfall

prediction for both summer and winter for threshold
values ranging from 0.1 to 5 mm day21.

Figure 7 shows time series of several point by point
measures of skill: mean absolute error (mae), root-mean-
square error (rmse), and coefficient of linear correlation.
There are a number of comments to be made on inter-
pretation of these curves. The first is that comparison
with the HK diagrams in Fig. 6 shows that different
scores measure quite different aspects of model behav-
ior. For example the two models (AVN and JMA) that
outscored the others on the HK diagram do not stand
out as being particularly skillful on the mae, rmse, and
correlation diagrams. In fact during the summer months
of December to January, one of these (AVN) has among
the worst (highest) values of mae and rmse. This sug-
gests these two models have relatively greater success
in forecasting the presence of rain, but that the amount
of rainfall is incorrect.

The second comment is that all three scores in Fig.
7 reveal a large seasonal variation with highest skill
in winter and lowest skill in summer. For the mae and
rmse scores, this seasonal behavior is largely a result
of poor model skill during the wet season of the sum-
mer/wet–winter/dry monsoonal regime over northern
Australia. To illustrate, Fig. 8 shows rmse time series
for two subregions of the continent. The upper curve
is for tropical northern Australia while the lower curve
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TABLE 3. Total number of points at which rain occurred (i.e., the sum of M 1 H from Table 1) for each rainfall threshold, as plotted in
Figs. 10, 11, 13, 14, 15, and 18.

Threshold (mm) 0.1 1 2 5 10 20 50

Southeast, summer
Southeast, winter
North, summer
North, winter

7521
9321
8984
1486

3940
5377
6818

637

2873
4025
5753

449

1573
2304
3924

224

778
1201
2409

112

234
379

1106
49

14
38

218
15

No. of days (summer)
No. of days (winter)
No. of grid points (southeast)
No. of grid points (north)

72
92

222
147

is for the high-rainfall subtropical southeastern portion
of the country (as delineated in Fig. 1). In terms of
number of grid points, these subregions occupy 24%
and 37%, respectively, of the total domain. It is seen
that in the southeast (Fig. 8b) rms errors are of the
order of 2–3 mm day21 throughout the year. Thus the
high values of 6–10 mm day21 in summer over the
whole continent (Fig. 7b) are brought about by the
large values during the summer wet season in northern
Australia (Fig. 8a).

Due to this very different behavior of the models in
the two different (tropical/subtropical) regimes, we de-
cided the most sensible verification exercise would be
to score the two different regions separately. This is
done in the following two sections. To aid interpre-
tation, Table 3 gives an indication of the sample size
for each threshold value. For the southeastern region,
for example, the total sample size equals the number
of grid points (222) multiplied by the number of days
(72 in summer) equaling a sample size of 15 984 (ob-
servation, forecast) pairs. The numbers in the table give
the number of grid points in the sample at which rain
occurred above the given threshold. It can be seen that
for the first three rows the sample is quite large up to
a threshold value of 10 mm of rain; thus, meaningful
interpretation can be given to the graphs and tables to
follow at least up to this value. For the northern region
in winter, however, the sample of rain events is quite
small, such that for this regime care should be taken
in interpretation of the statistics above the lowest
threshold.

4. Verification over northern Australia

Northern Australia is characterized by a tropical mon-
soonal regime. It has a very large seasonal cycle with
almost all precipitation (as measured by volume) oc-
curring in the six months from November to April (Fig.
9). The meteorology of the region has been reviewed
by Manton and McBride (1992). The predominant rain-
producing mechanism is through cumulonimbus con-
vection and its associated altostratus anvils, and is often
associated with weather systems such as tropical cy-
clones, monsoon depressions, and tropical squall lines.
The ability of the models to accurately simulate pre-
cipitation in this regime will depend on such features

as their initialization of tropical moisture, their initial-
ization of divergence, and particularly on their repre-
sentation of cumulonimbus convection.

Figure 9 shows time series for the seven models of
mean rain area, rain rate, and their product, rain volume,
through the verification period. As was the case over
the continent, four models (GASP, JMA, LAPS, and
AVN) consistently overestimate the areal extent or fre-
quency of precipitation throughout the entire wet sea-
son. There is a wide variation in mean rain rate between
models, though the three that perform well at rain area
either strongly underestimate (UKGC and ECMWF) or
strongly overestimate (DWD) rain rate.

The threshold-dependent curves of POD, FAR, and
HK for the summer months where frequent convective
rain predominates are shown in Fig. 10. For this regime
the POD values are very high with two models (AVN
and JMA) detecting more than 90% of rain occurrences
at a threshold level of 1 mm day21. As before, POD
decreases and FAR increases strongly as a function of
model threshold. The HK scores, however, are relatively
constant through the range of threshold values (Fig.
10c). Despite the high values for POD, the HK scores
are very low, revealing a low level of skill of the models
in this tropical convective regime. The high frequency
of rain events in this regime means that Z is not sig-
nificantly greater than F in Eq. (5), so the false alarms
have a large effect on this score. For the general thresh-
old of 1 mm day21, the models that perform best are
the DWD and UKGC, primarily because they have the
smaller false alarm ratios compared to the other models.
The model that performs worst in this regime is GASP,
with a high false alarm ratio again being the main factor
separating it from the other models.

Figure 11 shows the same set of threshold-dependent
curves for the winter months of June to August. As seen
previously (Fig. 9) this is a time of very low rainfall in
this region. The most noticeable aspect of Fig. 11 is its
very different character from the equivalent graphs for
the whole continent (Figs. 4b, 5b, and 6b) and from the
equivalent graphs for summer (Fig. 10). In particular,
the characteristic decrease of POD and increase of FAR
with increasing threshold is only weakly present. The
graph of the true skill or HK score is very similar in
appearance to that for POD reflecting the very large
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FIG. 9. Monthly mean time series for the seven models averaged over the northern region of (a)
rain area, (b) rain rate, and (c) rain volume. Also shows are the observed (analysis) values.

value of Z compared to F in Eq. (5). This is consistent
with the observation by Wilks (1995) that ‘‘the contri-
butions made to the HK score by a correct ‘no’ or ‘yes’
forecast increases as the event is more or less likely,
respectively.’’ Thus when this score is applied to human
forecasters, they ‘‘are not discouraged from forecasting
rare events on the basis of their low climatological prob-
ability alone’’ (Wilks 1995). The cluster of HK curves
in the lower panel of Fig. 11 indicates an overall level
of skill that is greater than for the high-rainfall regime
in summer (Fig. 10c). There is a also a large difference
between the various models for this regime, with two
models (AVN and JMA) clearly outscoring the others.
Despite the relative rareness of a rainfall event in this
regime, the better skill of AVN and JMA is probably
significant as they were consistent in outscoring the oth-
er models for each of the three months making up the
average in Fig. 11.

5. Verification over southeastern Australia
Southeastern Australia is the most densely populated

part of the country and has the greatest density of rain-
fall observations, especially around the coastal fringe.
As seen in the time series of rain volume (Fig. 12), rain
amounts are much smaller than for the northern region
wet season. However, considerable rain falls all year
round, with winter having approximately 50% more
than summer. The meteorology of the region is sub-
tropical, and rain-bearing weather systems include cold
fronts, tropical–extratropical cloud bands, cutoff lows,
east coast lows, summertime convection in the humid
trade easterlies, and wintertime convection in the cold
air behind a front. Some important studies of major rain
events in the region have been carried out by Tapp and
Barrell (1984), Zhao and Mills (1991), Mills and Russell
(1992), McInnes and Hess (1992), Mills and Wu (1995),
and Wright (1989, 1997).
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FIG. 10. Space–time average values over the northern region for the summer wet season
(Dec–Feb) of (a) probability of detection, (b) false alarm ratio, and (c) HK score for the seven
models.

As seen in Fig. 12, in general the models overestimate
rainfall in summer and underestimate it in winter; this
is reflected in the values of bias score for the two seasons
(Fig. 13), which have summer values greater than one
(Fig. 13a) and winter values less than one (Fig. 13b).
An interesting aspect of Fig. 13a is the very large di-
vergence between models, which increases with increas-
ing threshold. This implies that there are major defi-
ciencies in the operational models in the simulation of
major or heavy rain events in summer.

Figure 14 shows the threshold-dependent POD, FAR,

and HK curves for summer. At thresholds above 2 mm
day21, the POD (Fig. 14a) and HK (Fig. 14c) curves
parallel one another, implying that the POD or accuracy
for events is the main determiner of skill. The overall
skill (as measured by HK) is much higher than for the
tropical north in the previous section, implying a greater
ability of the models to simulate rainfall associated with
subtropical weather systems. For most of the range of
thresholds, the AVN model outperforms most others,
and this is essentially due to its better POD scores. It
is interesting that this is one of the two models that
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FIG. 11. As in Fig. 10 but for the winter dry season (Jun–Aug) in the northern region.

demonstrated superior skill in the northern winter (pre-
vious section).

Figure 15 shows the same set of verification statistics
for the winter regime. The skill level is quite similar to
that for the summer (Fig. 14), though the HK scores for
the better models are slightly higher in winter. This im-
proved skill is associated with lower false alarm ratios
in winter. This mimics the behavior in the northern sum-
mer wet season and, presumably, reflects model defi-
ciencies in simulating summertime convective systems.
Once again the AVN model is superior to the others for
most of the range of thresholds.

As an aside, Fig. 15 gives an example of how these

categorical statistics can clearly reveal characteristics of
particular models. This is seen in the FAR graph (Fig.
15b), where the ECMWF model has a consistently high-
er value than the other models. This behavior penalizes
that model in the HK score (Fig. 15c). It is associated
with the fact that in this winter regime, the ECMWF
model overestimates the area (or frequency) of rain as
reflected by the bias score (Fig. 13b).

6. Summary and discussion

Verification statistics have been presented for 24-h
precipitation forecasts over the Australian continent, for
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FIG. 12. As in Fig. 9 but for the southeastern region.

seven operational NWP models. All model rainfall fore-
casts have been mapped to a 18 latitude–longitude grid
and have been verified against an operational rainfall
analysis, mapped to the same grid. The verification has
focused on two large subregions: the northern tropical
monsoon regime, and the southeastern subtropical re-
gime.

For both regimes the operational models tend to over-
estimate the rainfall in summer and to underestimate it
in winter. Model skill is much greater for the subtropical
regime and is actually quite low in the northern regime.
During the summer wet season the low skill is associated
with an inability to simulate the behavior of tropical
convective rain systems. During the winter dry season,
it is associated with a low probability of detection for
the occasional rainfall event.

For both regimes, model skill (as measured by the
HK score) falls dramatically for thresholds greater than
10 mm day21. This implies that the models are much

better at predicting the occurrence of rain than they are
at predicting the magnitude and location of the peak
values.

For comparison with other studies, and for a baseline
for future models, Tables 4 and 5 summarize the current
level of skill for the seven models. Table 4 is for a
threshold value of 1 mm day21, while Table 5 is for a
threshold of 10 mm day21. To put these scores into
perspective, the HK score for a persistence forecast at
each grid point is given in the last column of both tables.

For a subtropical (southeastern) regime, current mod-
els have POD values between 0.6 and 0.8 in both winter
and summer. The FAR values have a wide range between
models and FAR seems to be the main factor differ-
entiating models in the subtropics. The HK scores are
in the range of 0.5–0.7 and are slightly higher for winter
than for summer. The HK scores very easily outscore
persistence in the subtropics for both the 1 mm day21

(Table 4) and the 10 mm day21 threshold (Table 5). Thus
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FIG. 13. Space–time average values of bias score over the southeastern region as a function of
rain threshold for (a) summer (Dec–Feb) and (b) winter (Jun–Aug).

for the current operational NWP models, the 24-h rain
forecasts can be considered quite skilful.

For the tropical regime (upper two rows of each ta-
ble), model skill is much lower. For the summer wet
season, POD values are high (0.8–0.9), but in this trop-
ical convective regime, false alarms play an important
role so that HK scores are only around 0.2–0.4 and are
comparable to persistence. Thus it could be said the
models have no real skill at rainfall forecasts in this
monsoonal wet season regime.

It is noteworthy that over the four regimes, one model
stands out as being the most skillful. This is the AVN
model. For the eight upper-range values of HK listed
in the HK column in Tables 4 and 5, five were scored

by the AVN. Of the remaining three ‘‘best scores,’’ two
were obtained by the JMA model. As follow-up work
toward the improvement of model rainfall forecasts, it
would be worth investigating the differences between
the moisture cycles of the AVN and JMA models and
the other five operational models.

A cautionary note is made to the extent that these con-
clusions are all in the context of using the HK score as
the measure of skill. The referees of this paper advocated
the use of the equitable threat score (or ETS), which was
proposed by Schaefer (1990) and is in common usage,
particularly in the United States (e.g., Mesinger et al. 1990;
Mesinger 1996). The ETS has some philosophical differ-
ences to the HK score in that it focuses more on event
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FIG. 14. Space–time average values over the southeastern region for the summer season
(Dec–Feb) of (a) probability of detection, (b) false alarm ratio, and (c) HK score for the seven
models.

forecasts and has less emphasis on successful nonevent
forecasts. One disadvantage perceived by the current au-
thors is that the reference accuracy for a random forecast
in the ETS is dependent on the properties of the model
being verified. The relative advantages of various measures
of skill is a complex issue, however, and is beyond the
scope of the current study.

Given the common usage of the ETS score, ETS scores
for the four regimes were calculated for completeness.
These are presented in Fig. 16, which are the equivalent
figures to Figs. 10c, 11c, 14c, and 15c, but with ETS

replacing the HK score in each case. The numerical val-
ues of ETS differ from those of HK, but otherwise the
general character of the comparison between regimes and
between models follows that already discussed. The main
difference is for the southeastern regime in summer (Fig.
16c) where, compared with the equivalent figure for HK,
the UKGC has increased greatly in skill and the AVN
has decreased in skill. Inspection of Fig. 14b shows that
these differences can be attributed to the greater sensi-
tivity of the ETS to the number of false alarms, F.

Returning to the HK score as the measure, an alter-
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FIG. 15. As in Fig. 14 but for the winter season (Jun–Aug) in the southeastern region.

TABLE 5. The range of values of seven operational models over
the summer and winter seasons for two subdomains, for a rain thresh-
old value of 10 mm day21. Also shown in the last column are values
of the HK score for a persistence forecast.

POD FAR HK

HK for
persis-
tence

North, summer (wet)
North, winter (dry)
Southeast, summer
Southeast, winter

0.40–0.67
0.26–0.63
0.35–0.56
0.46–0.60

0.39–0.61
0.33–0.68
0.37–0.76
0.29–0.59

0.34–0.46
0.26–0.63
0.34–0.48
0.43–0.58

0.30
0.31
0.18
0.15

TABLE 4. The range of values of seven operational models over
the summer and winter seasons for two subdomains, for a rain thresh-
old value of 1 mm day21. Also shown in the last column are values
of the HK score for a persistence forecast.

POD FAR HK

HK for
persis-
tence

North, summer (wet)
North, winter (dry)
Southeast, summer
Southeast, winter

0.78–0.93
0.32–0.61
0.63–0.79
0.62–0.75

0.27–0.38
0.42–0.65
0.32–0.57
0.19–0.44

0.21–0.44
0.31–0.56
0.51–0.62
0.54–0.67

0.34
0.34
0.31
0.33
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FIG. 16. ETS as a function of rain threshold for the seven forecast models: (a) for the north
region in summer, (b) for the northern region in winter, (c) for the southeastern region in summer,
(d) for the southeastern region in winter.

native framework for summarizing the results of this
study is shown in Fig. 17. This plots the skill of every
model for all four regimes in (accuracy for events, ac-
curacy for nonevents) phase space. In this case the plot
is for a rain threshold of 1 mm day21. The four regimes
are denoted by different symbols, as given in the key.
The overall model skill can be measured by HK value,
which is marked by the labeled isopleths. The values
for persistence are indicated by filled symbols.

This figure shows that for the two subtropical regimes
HK scores are between 0.5 and 0.7, with both accuracy
for events and accuracy for nonevents playing a role in

determining comparative model skill. For the subtropics
(southeast), the model superiority over persistence is to-
tally associated with the models’ skill at accuracy for
events (or POD). The low values of HK score for the
tropical wet season can be seen to be due to a poor value
of accuracy for nonevents. For the tropical dry season,
the situation is reversed with all models having a high
accuracy for nonevents, so that POD is the determiner
of skill.

The equivalent diagram is shown in Fig. 18 for a thresh-
old of 10 mm day21. For this threshold an event is a much
rarer occurrence so that Z (the number of accurate no-rain
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FIG. 17. Skill of the models for four rainfall regimes for a rain/
no-rain threshold of 1 mm day21. The skill is plotted in (accuracy
for events, accuracy for nonevents) phase space. The contours denote
isolines of the HK score, with maximum skill (HK 5 1) in the top-
right corner. The value for persistence in each regime is marked by
the equivalent solid symbol.

FIG. 18. As in Fig. 17 but for a rain threshold of 10 mm day21.

forecasts) far exceeds F (the number of false alarms) in
Eq. (5). Thus the accuracy for nonevents is always greater
than 90% and the accuracy for events (or POD) is the
determiner of skill. The distribution of scores along the
right-hand y axis of the box in Fig. 18 reveals a wide
distribution between models at POD at this higher rain
threshold. The exception to this discussion is the northern
wet/summer regime, depicted by triangles. For this con-
vective regime at high thresholds, the accuracy for non-
events is often near 80%. Thus, even at this high threshold
the number of false alarms F is of the order of 25% of
the number of correct no-rain forecasts Z.

As a final comment, this paper has shown the use-
fulness of categorical statistics, calculated as a function
of rain threshold, in forecast verification. Tables 4 and
5, and Figs. 17 and 18, give a concise summary of many
aspects of the skill of current NWP models at 24-h

forecasts of precipitation. Using these values as base-
lines for comparison, questions of immediate interest
are the degree to which model skill decreases as fore-
casts are extended to two days and beyond, and the
comparative skills of mesocale models when mapped
onto this standard 18 grid. These aspects will be the
subject of immediate follow-on studies.
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