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ABSTRACT

Volatility has been one of the most active and successful areas of research in time series
econometrics and economic forecasting in recent decades.  This chapter provides a selective
survey of the most important theoretical developments and empirical insights to emerge from
this burgeoning literature, with a distinct focus on forecasting applications.  Volatility is
inherently latent, and Section 1 begins with a brief intuitive account of various key volatility
concepts.  Section 2 then discusses a series of different economic situations in which volatility
plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density
forecasting in risk management.  Sections 3, 4 and 5 present a variety of alternative procedures
for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and
realized volatility paradigms, respectively.  Section 6 extends the discussion to the multivariate
problem of forecasting conditional covariances and correlations, and Section 7 discusses
volatility forecast evaluation methods in both univariate and multivariate cases.  Section 8
concludes briefly.
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1.  Introduction

In everyday language, volatility refers to the fluctuations observed in some phenomenon over
time. Within economics, it is used slightly more formally to describe, without a specific implied
metric, the variability of the random (unforeseen) component of a time series. More precisely, or
narrowly, in financial economics, volatility is often defined as the (instantaneous) standard
deviation (or “sigma”) of the random Wiener-driven component in a continuous-time diffusion
model. Expressions such as the “implied volatility” from option prices rely on this terminology.
In this chapter, we use the term volatility in the looser descriptive sense, characteristic of
economics and econometrics, rather than the precise notion often implied in finance. 
Nonetheless, much of our discussion will be motivated by the need for forecasting the volatility
of financial asset return series.

Return volatility is, of course, central to financial economics.  Indeed, as noted by Campbell, Lo
and MacKinlay (1997):

“ ... what distinguishes financial economics is the central role that uncertainty
plays in both financial theory and its empirical implementation ... Indeed in the
absence of uncertainty, the problems of financial economics reduce to exercises in
basic microeconomics”  (p. 3). 

This departure of finance from standard microeconomics is even more striking once one
recognizes that volatility is inherently unobserved, or latent, and evolves stochastically through
time. Not only is there non-trivial uncertainty to deal with in financial markets, but the level of
uncertainty is latent. This imbues financial decision making with complications rarely
contemplated within models of optimizing behavior in other areas of economics.

Depending on the data availability as well as the intended use of the model estimates and
associated forecasts, volatility models are cast either in discrete time or continuous time. It is
clear, however, that the trading and pricing of securities in many of today’s liquid financial asset
markets is evolving in a near continuous fashion throughout the trading day.  As such, it is
natural to think of the price and return series of financial assets as arising through discrete
observations from an underlying continuous-time process.  It is, however, in many situations
useful - and indeed standard practice - to formulate the underlying model directly in discrete
time, and we shall consider both approaches in the chapter. Formally, there is also no necessary
contradiction between the two strategies, as it is always, in principle, possible to deduce the
distributional implications for a price series observed only discretely from an underlying
continuous-time model.  At the same time, formulation and estimation of empirically realistic
continuous-time models often presents formidable challenges.  Thus, even though many of the
popular discrete-time models in current use are not formally consistent with an underlying
continuous-time price processes, they are typically much easier to deal with from an inferential
perspective, and as such, discrete-time models and forecasting procedures remain the method of
choice in most practical applications.
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1.1   Basic Notation and Notions of Volatility

We first introduce some notation that will allow us to formalize the discussion of the different
models and volatility concepts considered throughout the chapter.  As noted above, although it is
often natural to think about the process being forecasted as evolving in continuous time, many of
the key developments in volatility forecasting have been explicitly formulated in terms of models
for discretely sampled observations.  In the univariate case, with observations available at
equally spaced discrete points in time, we shall refer to such a process as,

yt   /  y(t)                 t = 1, 2, . . . (1.1)

where y(t) in turn may be thought of as the underlying continuously evolving process.  We shall
assume throughout that the conditional second moments of the yt process exist, and refer to the
corresponding conditional mean and variance as,

:t|t-1   =   E [ yt | öt-1 ] , (1.2)

and,

 =   Var [ yt | öt-1 ]   =   E [(yt - :t|t-1 )2 | öt-1 ] , (1.3)

respectively, where the information set, öt-1 , is assumed to reflect all relevant information
through time t-1.  Just as the conditional mean may differ from the unconditional mean by
effectively incorporating the most recent information into the one-step-ahead forecasts,

, so will the conditional variance in many applications in macroeconomics and

finance, .  This difference between conditional and unconditional moments is, of
course, what underlies the success of time series based forecasting procedures more generally. 
For notational simplicity we will focus our discussion on the univariate case, but many of the
same ideas readily carry over to the multivariate case. In the case of vector processes, discussed
in detail in Section 6, we shall use the notation Yt, with the corresponding vector of conditional
means denoted by 9t|t-1 , and the conditional covariance matrix denote by St|t-1 .

As previously noted, most of the important developments and applications in volatility modeling
and forecasting have come within financial economics.  Thus, to help fix ideas, we focus on the
case of return volatility modeling and forecasting in the remainder of this section.  To facilitate 
subsequent discussions, it will sometimes prove convenient to refer to the corresponding “price”
and “return” processes by the letters p and r, respectively.  Specifically, let p(t) denote the
logarithmic price of an asset.  The return over the discrete interval [t-h,t], h > 0, is then given by,

r(t,h)  =   p(t) -  p(t-h) . (1.4)

When measuring the returns over one time unit, h = 1, indicating, say, daily returns, we will
generally drop the second indicator, so that
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 r(t)  /  r(t,1)  =  p(t) -  p(t-1) . (1.5)
 
Also, for discrete-time models and procedures, we shall follow the convention set out above,
indicating the timing of the returns by subscripts in lieu of parentheses,

rt     =    pt   -  pt-1 . (1.6)

Similarly, we shall refer to the multivariate case involving vectors of returns by the upper case
letter, Rt.

Consider the discretely sampled return process, rt .  This one-period return is readily decomposed
into an expected conditional mean return and an innovation, where the latter may be expressed as
a standardized white noise process scaled by the time-varying conditional volatility. 
Specifically, using the notation in equations (1.2) and (1.3), 

 , (1.7)

where zt denotes a mean zero, variance one, serially uncorrelated disturbance (white noise)
process.  This is the decomposition and volatility concept underlying the popular, and
empirically highly successful, ARCH and GARCH type models discussed in Section 3.  One
reason that this approach is very convenient and tractable is that - conditional on the null
hypothesis that all relevant information is observed and the model correctly specified - the
volatility is known, or predetermined, as of time t-1.

The assumption that all relevant information is observed and used in the formation of conditional
expectations in accordance with the true model is obviously strong, but has powerful and very
convenient implications. In contrast, if some relevant information is not directly observable, then
it is only possible to exploit a genuine subset of the full information set, say Tt-1 d öt-1 . Under
this scenario, the “true” conditional variance will be unobservable, even under correct model
specification, and the volatility process becomes genuinely latent,

 E [ ( rt - E [rt |  Tt-1 ] )2 | Tt-1 ]   …    /   E [ ,t
2 | öt-1 ].

Treating the volatility process as latent effectively transforms the volatility estimation problem
into a filtering problem in which the “true” volatility cannot be determined exactly, but only
extracted with some degree of error.  This general line of reasoning is relevant for our discussion
of stochastic volatility models in Section 4, and for the relationship between continuous and
discrete-time modeling and forecasting procedures.

For now, however, we proceed under the convenient assumption that we are dealing with
correctly specified models and the associated full information sets, so that the conditional first
and second moments are directly observable and well specified.  In this situation, the one-period-
ahead volatility defined in (1.3) provides an unbiased estimate of the subsequent squared return
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innovation. Consequently, model specification and forecast evaluation tests can be constructed
by comparing the realization of the squared return innovations to the corresponding one-step-
ahead forecasts,

,t
2   =  zt

2    =     +   ( zt
2 - 1 ). (1.8)

The second term on the right-hand-side has mean zero, confirming the unbiasedness of the
conditional variance. However, there is typically a large amount of noise in the one-period
squared return innovations relative to the underlying volatility, as manifest by a large
idiosyncratic error component governed by the variance of zt

2.  In fact, for daily or weekly return
data, this variance term is an order of magnitude larger than the period-per-period variation in
the volatility process. Hence, even if the conditional variance can be seen as the proper forecasts
of the corresponding “realized volatility,” as given by the squared return innovation, the latter
provides a poor ex-post indicator of the actual volatility over the period, and would consequently
not provide a very reliable way of judging the quality of the forecasts.  We return to this point
below.

Before doing so, however, it is useful to think of the returns as arising from an underlying
continuous-time process. In particular, suppose that this underlying model involves a continuous
sample path for the (logarithmic) price process.  The return process may then, under general
assumptions, be written in standard stochastic differential equation (sde) form as,

dp(t)   =   :(t) dt  +  F(t) dW(t)        t $0 , (1.9)

where :(t) denotes the drift, F(t) refers to the point-in-time or spot volatility, and W(t) denotes a
standard Brownian motion. We will be more specific regarding the additional properties of these
processes later on in the chapter.  Intuitively, over (infinitesimal) small time intervals, ,

 ,

where .  Of course, for , and constant drift, , 
and volatility, , for , this reduces to the discrete-time return decomposition
in (1.7) with the additional assumption that zt is i.i.d. N(0,1).  Importantly, however, the drift,
:(t), and instantaneous volatility, F(t), for the continuous-time model in (1.9) need not be
constant over the [t-1,t] time interval, resulting in the general expression for the one-period
return,

. (1.10)

The semblance between this representation and the previous one-period return for the discrete-
time model in (1.7) is clear. The conditional mean and variance processes in the discrete
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formulation are replaced by the corresponding integrated (averaged) realizations of the
(potentially stochastically time-varying) mean and variance process over the following period,
with the return innovations driven by the continuously evolving standard Brownian motion. For
full generality, the above continuous-time model can be extended with a jump process allowing
for discontinuities in the price path, as discussed further in Section 4.

Intuitively, the volatility for the continuous-time process in (1.9) over [t-1,t] is intimately related
to the evolution of the diffusive coefficient, F(t), which is also known as the spot volatility. In
fact, given the i.i.d. nature of the return innovations governed by the Brownian motion process,
the return variation should be related to the cumulative (integrated) spot variance. It is, indeed,
possible to formalize this intuition: the conditional return variation is linked closely and - under
certain conditions in an ex-post sense - equal to the so-called integrated variance (volatility),

. (1.11)

We provide more in-depth discussion and justification for this integrated volatility measure and
its relationship to the conditional return distribution in Section 4.  It is, however, straightforward
to motivate the association through the approximate discrete return process, , introduced
above. If the variation in the drift is an order of magnitude less than the variation in the volatility
over the  [t-1,t] time interval - which holds empirically over daily or weekly horizons and is
consistent with a no-arbitrage condition - it follows, for small (infinitesimal) time intervals, ,
 

.

Hence, the integrated variance measure corresponds closely to the conditional variance, ,
for discretely sampled returns. It represents the realized volatility over the same one-period-
ahead forecast horizon, and it simply reflects the cumulative impact of the spot volatility process
over the return horizon. In other words, integrated variances are ex-post realizations that are
directly comparable to ex-ante volatility forecasts. Moreover, in contrast to the one-period-ahead
squared return innovations, which, as discussed in the context of (1.8), are plagued by large
idiosyncratic errors, the integrated volatility measure is not distorted by error. As such, it serves
as an ideal theoretical ex-post benchmark for assessing the quality of ex-ante volatility forecasts.

To more clearly illustrate these differences between the various volatility concepts, Figure 1.1
graphs the simulations from a continuous-time stochastic volatility process.  The simulated
model is designed to induce temporal dependencies consistent with the popular, and empirically



1  The simulated continuous-time GARCH diffusion shown in Figure 1.1 is formally defined by dp(t) =
F(t)dW1(t) and dF2(t) = 0.035[0.636 - F2(t)]dt + 0.144F2(t)dW2(t), where W1(t) and W2(t) denote two independent
Brownian motions.  The same model has previously been analyzed in Andersen and Bollerslev (1998a), Andersen,
Bollerslev and Meddahi (2004, 2005), among others.
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successful, discrete-time GARCH(1,1) model dis\cussed in Section 3.1  The top left panel
displays sample path realization of the spot volatility or variance, , over the 2,500 “days” in
the simulated sample. The top panel on the right shows the corresponding “daily” integrated
volatility or variance, IV(t).  The two bottom panels show the “optimal” one-step-ahead discrete-
time GARCH(1,1) forecasts, , along with the “daily” squared returns, .  A number of
features in these displays are of interest.  First, it is clear that even though the “daily” squared
returns generally track the overall level of the volatility in the first two panels, as an unbiased
measure should, it is an extremely noisy proxy.  Hence, a naive assessment of the quality of the
GARCH based forecasts in the third panel based on a comparison with the ex post squared
returns in panel four invariable will suggest very poor forecast quality, despite the fact that by
construction the GARCH based procedure is the “optimal” discrete-time forecast.  We provide a
much more detailed discussion of this issue in Section 7 below.  Second, the integrated volatility
provides a mildly smoothed version of the spot volatility process. Since the simulated series has
a very persistent volatility component the differences are minor, but still readily identifiable. 
Third, the “optimal” discrete-time GARCH forecasts largely appear as smoothed versions of the
spot and integrated volatility series.  This is natural as forecasts, by construction, should be less
variable than the corresponding ex-post realizations.  Fourth, it is also transparent, however, that
the GARCH based forecasts fail to perfectly capture the nature of the integrated volatility series.
The largest spike in volatility (around the 700-750 “day” marks) is systematically
underestimated by the GARCH forecasts while the last spike (around the 2300-2350 “day”
marks) is exaggerated relative to the actual realizations. This reflects the fact that the volatility is
not constant over the “day,” and as such the (realized) integrated volatility is not equal to the
(optimal) forecast from the discrete-time GARCH model which only utilizes the past “daily”
return observations.  Instead, there is a genuine random component to the volatility process as it
evolves stochastically over the “trading day.” As a result, the “daily” return observations do not
convey all relevant information and the GARCH model simply cannot produce fully efficient
forecasts compared to what is theoretically possible given higher frequency “intraday” data.  At
the same time, in practice it is not feasible to produce exact real-time measures of the integrated,
let alone the spot, volatility, as the processes are latent and we only have a limited and discretely
sampled set of return observations available, even for the most liquid asset markets.  As such, an
important theme addressed in more detail in Sections 4 and 5 below involves the construction of
practical measures of ex-post realized volatility that mimic the properties of the integrated
volatility series.

1.2 Final Introductory Remarks

This section has introduced some of the basic notation used in our subsequent discussion of the
various volatility forecasting procedures and evaluation methods. Our initial account also
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emphasizes a few conceptual features and practical considerations. First, volatility forecasts and
measurements are generally restricted to (non-trivial) discrete-time intervals, even if the
underlying process may be thought of as evolving in continuous time. Second, differences
between ARCH and stochastic volatility models may be seen as direct consequences of
assumptions about the observable information set. Third, it is important to recognize the
distinction between ex-ante forecasts and ex-post realizations. Only under simplifying - and
unrealistic - assumptions are the two identical. Fourth, standard ex-post measurements of
realized volatility are often hampered by large idiosyncratic components. The ideal measure is
instead, in cases of general interest, given by the so-called integrated volatility. The relationships
among the various concepts are clearly illustrated by the simulations in Figure 1.1.

The rest of the chapter unfolds as follows. Section 2 provides an initial motivating discussion of
several practical uses of volatility forecasts. Section 3, 4 and 5 present a variety of alternative
procedures for univariate volatility forecasting based on the GARCH, stochastic volatility and
realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate
problem of forecasting conditional covariances and correlations, and Section 7 discusses
practical volatility forecast evaluation techniques.  Section 8 concludes briefly.

2.  Uses of Volatility Forecasts

This section surveys how volatility forecasts are used in practical applications along with
applications in the academic literature. While the emphasis is on financial applications the
discussion is kept at a general level. Thus, we do not yet assume a specific volatility forecasting
model. The issues involved in specifying and estimating particular volatility forecasting models
will be discussed in subsequent sections.

We will first discuss a number of general statistical forecasting applications where volatility
dynamics are important. Then we will go into some detail on various applications in finance.
Lastly we will briefly mention some applications in macroeconomics and in other disciplines. 

2.1 Generic Forecasting Applications

For concreteness, assume that the future realization of the variable of interest can be written as a
decomposition similar to the one already developed in equation (1.7),

 , (2.1)

where {yt+1} denotes a discrete-time real-valued univariate stochastic process, and F refers to the
distribution of the zero-mean, unit-variance innovation, zt+1. This representation is not entirely 
general as there could be higher-order conditional dependence in the innovations. Such higher-
moment dynamics would complicate some of the results, but the qualitative insights would
remain the same.  Thus, to facilitate the presentation we continue our discussion of the different
forecast usages under slightly less than full generality.
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2.1.1 Point Forecasting

We begin by defining the forecast loss function which maps the ex-ante forecasts  and the
ex-post realization  into a loss value , which by assumption increases with the
discrepancy between the realization and the forecast. The exact form of the loss function
depends, of course, directly on the use of the forecast.  However, in many situations the loss
function may reasonably be written in the form of an additive error,  as the
argument, so that  We will refer to this as the forecast error loss function.

In particular, under the symmetric quadratic forecast error loss function, which is implicitly used
in many practical applications, the optimal point forecast is simply the conditional mean of the
process, regardless of the shape of the conditional distribution.  That is

 .

Volatility forecasting is therefore irrelevant for calculating the optimal point forecast, unless the
conditional mean depends directly on the conditional volatility.  However, this exception is often
the rule in finance, where the expected return generally involves some function of the volatility
of market wide risk factors. Of course, as discussed further below, even if the conditional mean
does not explicitly depend on the conditional volatility, volatility dynamics are still relevant for
assessing the uncertainty of the point forecasts.

In general, when allowing for asymmetric loss functions, the volatility forecast will be a key part
of the optimal forecast. Consider for example the asymmetric linear loss function,

, (2.2)

where a, b > 0, and I(") denotes the indicator function equal to zero or one depending on the
validity of its argument.  In this case positive and negative forecast errors have different weights
(a and b respectively) and thus different losses. Now the optimal forecast can be shown to be 

 , (2.3)

which obviously depends on the relative size of a and b.  Importantly, the volatility plays a key
role even in the absence of conditional mean dynamics.  Only if F -1(a/(a+b)) = 0  does the
optimal forecast equal the conditional mean. 

This example is part of a general set of results in Granger (1969) who shows that if the
conditional distribution is symmetric (so that F -1(1/2) = 0) and if the forecast error loss function
is also symmetric (so that a/(a+b) = 1/2) but not necessarily quadratic, then the conditional mean
is the optimal point forecast.
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2.1.2  Interval Forecasting

Constructing accurate interval forecasts around the conditional mean forecast for inflation was a
leading application in Engle’s (1982) seminal ARCH paper. An interval forecast consists of an
upper and lower limit. One version of the interval forecast puts p/2 probability mass below and
above the lower and upper limit respectively. The interval forecast can then be written as

. (2.4)

Notice that the volatility forecast plays a key role again. Note also the direct link between the
interval forecast and the optimal point forecast for the asymmetric linear loss function in (2.3).

2.1.3  Probability Forecasting Including Sign Forecasting

A forecaster may care about the variable of interest falling above or below a certain threshold
value.  As an example, consider a portfolio manager who might be interested in forecasting
whether the return on a stock index will be larger than the known risk-free bond return. Another
example might be a rating agency forecasting if the value of a firm’s assets will end up above or
below the value of its liabilities and thus trigger bankruptcy. Yet another example would be a
central bank forecasting the probability of inflation – or perhaps an exchange rate – falling
outside its target band.  In general terms, if the concern is about a variable yt+1 ending up above
some fixed (known) threshold, c, the loss function may be expressed as 

 . (2.5)

Minimizing the expected loss by setting the first derivative equal to zero then readily yields

. (2.6)

Thus, volatility dynamics are immediately important for these types of probability forecasts,
even if the conditional mean is constant and not equal to c; i.e., 

The important special case where c = 0 is sometimes referred to as sign forecasting. In this
situation,

. (2.7)

Hence, the volatility dynamics will affect the forecast as long as the conditional mean is not zero,
or the conditional mean is not directly proportional to the standard deviation.

2.1.4  Density Forecasting
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In many applications the entire conditional density of the variable in question is of interest.  That
is, the forecast takes the form of a probability distribution function

(2.8)

Of course, the probability density function may itself be time-varying, for example due to time-
varying conditional skewness or kurtosis, but as noted earlier for simplicity we rule out these
higher order effects here.

Figure 2.1 shows two stylized density forecasts corresponding to a high and low volatility day,
respectively. Notice that the mean outcome is identical (and positive) on the two days. However,
on the high volatility day the occurrence of a large negative (or large positive) outcome is more
likely. Notice also that the probability of a positive outcome (of any size) is smaller on the high
volatility day than on the low volatility day.  Thus, as discussed in the preceding sections,
provided that the level of the volatility is forecastable, the figure indicates some degree of sign
predictability, despite the constant mean.

2.2  Financial Applications

The trade-off between risk and expected return, where risk is associated with some notion of
price volatility, constitute one of the key concepts in modern finance.  As such, measuring and
forecasting volatility is arguably among the most important pursuits in empirical asset pricing
finance and risk management. 

2.2.1  Risk management: Value-at-Risk (VaR) and Expected Shortfall (ES) 

Consider a portfolio of returns formed from a vector of N risky assets, Rt+1, with corresponding
vector of portfolio weights, Wt . The portfolio return is defined as 

, (2.9)

where the w subscript refers to the fact that the portfolio distribution depends on the actual
portfolio weights. 

Financial risk managers often report the riskiness of the portfolio using the concept of Value-at-
Risk (VaR) which is simply the quantile of the conditional portfolio distribution. If we model the
portfolio returns directly as a univariate process, 

, (2.10)

then the VaR is simply

. (2.11)
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This, of course, corresponds directly to the lower part of the interval forecast previously defined
in equation (2.4).

Figure 2.2 shows a typical simulated daily portfolio return time series with dynamic volatility
(solid line). The short-dashed line, which tracks the lower range of the return, depicts the true 1-
day, 1% VaR corresponding to the simulated portfolio return.  Notice that the true VaR varies
considerably over time and increases in magnitude during bursts in the portfolio volatility.  The
relatively sluggish long-dashed line calculates the VaR using the so-called Historical Simulation
(HS) technique.  This is a very popular approach in practice.  Rather than explicitly modeling the
volatility dynamics, the HS technique calculates the VaR as an empirical quantile based on a
moving window of the most recent 250 or 500 days.  The HS VaR in Figure 2.2 is calculated
using a 500-day window. Notice how this HS VaR reacts very sluggishly to changes in the
volatility, and generally is too large (in absolute value) when the volatility is low, and more
importantly too small (in absolute value) when the volatility is high.  Historical simulation thus
underestimates the risk when the risk is high. This is clearly not a prudent risk management
practice.  As such, these systematic errors in the HS VaR clearly highlight the value of explicitly
modeling volatility dynamics in financial risk management.

The VaR depicted in Figure 2.2 is a very popular risk-reporting measure in practice, but it
obviously only depicts a very specific aspect of the risk; that is with probability p the loss will be
at least the VaR.  Unfortunately, the VaR measure says nothing about the expected magnitude of
the loss on the days the VaR is breached. 

Alternatively, the Expected Shortfall (ES) risk measure was designed to provide additional
information about the tail of the distribution.  It is defined as the expected loss on the days when
losses are larger than the VaR.  Specifically,

. (2.12)

Again, it is possible to show that if  is i.i.d., the multiplicative factor, , is constant and
depends only on the shape of the distribution, Fw.  Thus, the volatility dynamics plays a similar
role in the ES risk measure as in the VaR in equation (2.11). 

The analysis above assumed a univariate portfolio return process specified as a function of the
portfolio weights at any given time. Such an approach is useful for risk measurement but is not
helpful, for example, for calculating optimal portfolio weights. If active risk management is
warranted, say maximizing expected returns subject to a VaR constraint, then a multivariate
model is needed. If we assume that each return is modeled separately then the vector of returns
can be written as

 , (2.13)
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where 9t+1|t and St+1|t denote the vector of conditional mean returns and the covariance matrix
for the returns, respectively, and all of the elements in the vector random process, Zt, are
independent with mean zero and variance one.  Consequently, the mean and the variance of the
portfolio returns, , may be expressed as,

. (2.14)

In the case of the normal distribution, , linear combinations of multivariate normal

variables are themselves normally distributed, so that , but
this aggregation property does not hold in general for other multivariate distributions.  Hence,
except in special cases, such as the multivariate normal, the VaR and ES measures are not known
in closed form, and will have to be calculated using Monte Carlo simulation. 

2.2.2  Covariance Risk: Time-varying Betas and Conditional Sharpe Ratios

The above discussion has focused on measuring the risk of a portfolio from purely statistical
considerations. We now turn to a discussion of the more fundamental economic issue of the
expected return on an asset given its risk profile. Assuming the absence of arbitrage
opportunities a fundamental theorem in finance then proves the existence of a stochastic discount
factor, say SDFt+1, which can be used to price any asset, say I, via the conditional expectation

. (2.15)

In particular, the return on the risk free asset, which pays one dollar for sure the next period,
must satisfy   It follows also directly from (2.15) that the expected
excess return on any risky asset must be proportional to its covariance with the stochastic
discount factor,

. (2.16)

Now, assuming that the stochastic discount factor is linearly related to the market return, 

(2.17)

it follows from  that 

 , (2.18)

where  and .  Notice that the dynamics in the
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moments of the market return (along with any dynamics in the risk-free rate) render the
coefficients in the SDF time varying.  Also, in parallel to the classic one-period CAPM model of
Markowitz (1952) and Sharpe (1964), the conditional expected excess returns must satisfy the
relation, 

 , (2.19)

where the conditional “beta” is defined by .  Moreover, the
expected risk adjusted return, also know as the conditional Sharpe ratio, equals 

. (2.20)

The simple asset pricing framework above illustrates how the expected return (raw and risk
adjusted) on various assets will be driven by the mean and volatility dynamics of the overall
market return as well as the dynamics of the covariance between the market and the individual
assets. Covariance forecasting is thus at least as important as volatility forecasting in the context
of financial asset pricing, and we discuss each in subsequent sections.

2.2.3  Asset Allocation with Time-varying Covariances

The above CAPM model imposes a very restrictive structure on the covariance matrix of asset
returns. In this section we instead assume a generic dynamic covariance matrix and study the
optimization problem of an investor who constructs a portfolio of N risky assets by minimizing
the portfolio variance subject to achieving a certain target portfolio return, :p. 

Formally, the investor chooses a vector of portfolio weights, Wt, by solving the quadratic
programming problem

 . (2.21)

From the corresponding first order conditions, the resulting portfolio weights for the risky assets
satisfy,

 , (2.22)

with the optimal portfolio weight for the risk-free asset given by 

 . (2.23)
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Moreover, from (2.21) the portfolio Sharpe ratio equals, 

 . (2.24)

Just as in the CAPM pricing model discussed above, both volatility and covariance dynamics are
clearly important for asset allocation. Notice also that even if we rule out exploitable conditional
mean dynamics, the optimal portfolio weights would still be time-varying from the second
moment dynamics alone. 

2.2.4  Option Valuation with Dynamic Volatility

The above tools are useful for the analysis of primitive securities with linear payoffs such as
stocks, bonds, foreign exchange and futures contracts. Consider now instead a European call
option which gives the owner the right but not the obligation to buy the underlying asset (say a
stock or currency) on a future date, T, at a strike price, K. The option to exercise creates a
nonlinear payoff which in turn requires a special set of tools for pricing and risk management.

In the Black-Scholes-Merton (BSM) option pricing model the returns are assumed to be normally
distributed with constant volatility, F, along with the possibility of (costless) continuous trading
and a constant risk free rate, rf .  In this situation, the call price of an option equals 

, (2.25)

where st denotes the current price of the asset, , and M(@) refers
to the cumulative normal distribution function.

Meanwhile, the constant volatility assumption in BSM causes systematic pricing errors when
comparing the theoretical prices with actual market prices.  One manifestation of this is the
famous volatility-smiles which indicate systematic underpricing by the BSM model for in- or
out-of-the-money options.  The direction of these deviations, however, are readily explained by
the presence of stochastic volatility, which creates fatter tails than the normal distribution, in turn
increasing the value of in- and out-of-the-money options relative to the constant-volatility BSM
model.

In response to this, Hull and White (1987) explicitly allow for an independent stochastic
volatility factor in the process for the underlying asset return.  Assuming that this additional
volatility risk factor is not priced in equilibrium, the Hull-White call option price simply equals
the expected BSM price, where the expectation is taken over the future integrated volatility. 
More specifically, defining the integrated volatility as the integral of the spot volatility during
the remaining life of the option,
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 ,

where   generalizes the integrated variance concept from
equation (1.11) to a multi-period horizon in straightforward fashion. The Hull-White option
valuation formula may then be succinctly written as

 . (2.26)

In discrete time, the integrated volatility may be approximated by the sum of the corresponding
one-period conditional variances,

 .

Several so-called realized volatility measures have also recently been proposed in the literature
for (ex-post) approximating the integrated volatility.  We will return to a much more detailed
discussion of these measures in Sections 4 and 5 below.

Another related complication that arises in the pricing of equity options, in particular, stems from
the apparent negative correlation between the returns and the volatility.  This so-called leverage
effect, as discussed further below, induces negative skewness in the return distribution and
causes systematic asymmetric pricing errors in the BSM model.

Assuming a mean-reverting stochastic volatility process, Heston (1993) first developed an option
pricing formula where the innovations to the returns and the volatility are correlated, and where
the volatility risk is priced by the market.  In contrast to the BSM setting, where an option can be
hedged using a dynamically rebalanced stock and bond portfolio alone, in the Heston model an
additional position must be taken in another option in order to hedge the volatility risk.

Relying on Heston’s formulation, Fouque, Papanicolaou and Sircar (2000) show that the price
may conveniently be expressed as 

 , (2.27)

where D refers to the (instantaneous) correlation between the returns and the volatility, and >t,T 
denotes a stochastic scaling factor determined by the volatility risk premium, with the property
that .  Importantly, however, the integrated volatility remains the leading term as
in the Hull-White valuation formula.

2.3 Volatility Forecasting in Fields Outside Finance
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Although volatility modeling and forecasting has proved to be extremely useful in finance, the
motivation behind Engle’s (1982) original ARCH model was to provide a tool for measuring the
dynamics of inflation uncertainty. Tools for modeling volatility dynamics have been applied in
many other areas of economics and indeed in other areas of the social sciences, the natural
sciences and even medicine. In the following we list a few recent papers in various fields
showcasing the breath of current applications of volatility modeling and forecasting. It is by no
means an exhaustive list but these papers can be consulted for further references.

Related to Engle’s original work, the modeling of inflation uncertainty and its relationship with
labor market variables has recently been studied by Rich and Tracy (2004). They corroborate
earlier findings of an inverse relationship between desired labor contract durations and the level
of inflation uncertainty. Analyzing the inflation and output forecasts from the Survey of
Professional Forecasters, Giordani and Soderlind (2003) find that while each forecaster on
average tends to underestimate uncertainty, the disagreement between forecasters provides a
reasonable proxy for inflation and output uncertainty.  The measurement of uncertainty also
plays a crucial role in many microeconomic models. Meghir and Pistaferri (2004), for instance,
estimate the conditional variance of income shocks at the micro level and find strong evidence of
temporal variance dynamics.

Lastrapes (1989) first analyzed the relationship between exchange rate volatility and U.S.
monetary policy.  In a more recent study, Ruge-Murcia (2004) developed a model of a central
bank with asymmetric preferences for unemployment above versus below the natural rate. The
model implies an inflation bias proportional to the conditional variance of unemployment.
Empirically, the conditional variance of unemployment is found to be positively related to the
rate of inflation. In another central banking application, Tse and Yip (2003) use volatility models
to study the effect on changes in the Hong Kong currency board on interbank market rates. 

Volatility modeling and forecasting methods have also found several interesting uses in
agricultural economics. Ramirez and Fadiga (2003), for instance, find evidence of asymmetric
volatility patterns in U.S. soybean, sorghum and wheat prices.  Building on the earlier volatility
spill-over models used in analyzing international financial market linkages in the papers by
Engle, Ito and Lin (1990) and King, Sentana and Wadhwani (1994), Buguk, Hudson and Hanson
(2003) have recently used similar methods in documenting strong price volatility spillovers in
the supply-chain of fish production. The volatility in feeding material prices (e.g. soybeans)
affects the volatility of fish feed prices which in turn affect fish farm price volatility and finally
wholesale price volatility. Also, Barrett (1999) uses a GARCH model to study the effect of real
exchange rate depreciations on stochastic producer prices in low-income agriculture.

The recent deregulation in the utilities sector has also prompted many new applications of
volatility modeling of gas and power prices.  Shawky, Marathe and Barret (2003) use dynamic
volatility models to determine the minimum variance hedge ratios for electricity futures. Linn
and Zhu (2004) study the effect of natural gas storage report announcements on intraday
volatility patterns in gas prices. They also find evidence of strong intraday patterns in natural gas
price volatility.  Batlle and Barquin (2004) use a multivariate GARCH model to simulate gas and
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oil price paths, which in turn are shown to be useful for risk management in the wholesale
electricity market.

In a related context, Taylor and Buizza (2003) use weather forecast uncertainty to model
electricity demand uncertainty.  The variability of wind measurements is found to be forecastable
using GARCH models in Dripps and Dunsmuir (2003), while temperature forecasting with
seasonal volatility dynamics is explored in Campbell and Diebold (2005).  Marinova and
McAleer (2003) model volatility dynamics in ecological patents.

In political science, Maestas and Preuhs (2000) suggest modeling political volatility broadly
defined as periods of rapid and extreme change in political processes, while Gronke and Brehm
(2002) use ARCH models to assess the dynamics of volatility in presidential approval ratings.

Volatility forecasting has recently found applications even in medicine. Ewing, Piette and Payne
(2003) forecast time varying volatility in medical net discount rates which are in turn used to
determine the present value of future medical costs. Also, Johnson, Elashoff and Harkema
(2003) use a heteroskedastic time series process to model neuromuscular activation patterns in
patients with spinal cord injuries, while Martin-Guerrero et al. (2003) use a dynamic volatility
model to help determine the optimal EPO dosage for patients with secondary anemia. 

2.4 Further Reading

Point forecasting under general loss functions when allowing for dynamic volatility has been
analyzed by Christoffersen and Diebold (1996, 1997). Patton and Timmermann (2004) have
recently shown that under general specifications of the loss function, the optimal forecast error
will have a conditional expected value that is a function of the conditional variance of the
underlying process. Methods for incorporating time-varying volatility into interval forecasts are
suggested in Granger, White and Kamstra (1989). Financial applications of probability
forecasting techniques are considered in Christoffersen and Diebold (2003).

Financial risk management using dynamic volatility models is surveyed in Christoffersen (2003)
and Jorion (2000). Berkowitz and O’Brien (2002), Pritsker (2001), and Barone-Adesi, 
Giannopoulos and Vosper (1999) explicitly document the value added from incorporating
volatility dynamics into daily financial risk management systems. 

Volatility forecasting at horizons beyond a few weeks is found to be difficult by West and Cho
(1995) and Christoffersen and Diebold (2000). However Brandt and Jones (2002) show that
using intraday information improves the longer horizon forecasts considerably. Guidolin and
Timmermann (2005a) uncover VaR dynamics at horizons of up to two years. Campbell (1987,
2003), Shanken (1990), Aït-Sahalia and Brandt (2001), Harvey (2001), Lettau and Ludvigsson
(2003) and Marquering and Verbeek (2004) find that interest rate spreads and financial ratios
help predict volatility at longer horizons.   
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A general framework for conditional asset pricing allowing for time-varying betas is laid out in
Cochrane (2001). Market timing arising from time-varying Sharpe ratios is analyzed in Whitelaw
(1997), while volatility timing has been explicitly explored by Johannes, Polson and Stroud
(2004). The relationship between time-varying volatility and return has been studied in Engle,
Lilien and Robbins (1987), French, Schwert and Stambaugh (1987), Bollerslev, Engle and
Wooldridge (1988), Bollerslev, Chou and Kroner (1992), Glosten, Jagannathan and Runkle
(1993), among many others. 

The value of modeling volatility dynamics for asset allocation in a single-period setting have
been highlighted in the series of papers by Fleming, Kirby and Oestdiek (2001, 2003), with
multi-period extensions considered by Wang (2004). The general topic of asset allocation under
predictable returns is surveyed in Brandt (2004). Brandt (1999) and Aït-Sahalia and Brandt
(2001) suggest portfolio allocation methods which do not require the specification of conditional
moment dynamics.  

The literature on option valuation allowing for volatility dynamics is very large and active.  In
addition to some of the key theoretical contributions mentioned above, noteworthy empirical
studies based on continuous-time methods include Bakshi, Cao and Chen (1997), Bates (1996),
Chernov and Ghysels (2000), Eraker (2004), Melino and Turnbull (1990), and Pan (2002). 
Recent discrete-time applications, building on the theoretical work of Duan (1995) and Heston
(1993), can be found in Christoffersen and Jacobs (2004), and Heston and Nandi (2000).

3.  GARCH Volatility

The current interest in volatility modeling and forecasting was spurred by Engle’s (1982) path
breaking ARCH paper, which set out the basic idea of modeling and forecasting volatility as a
time-varying function of current information.  The GARCH class of models, of which the
GARCH(1,1) remains the workhorse, were subsequently introduced by Bollerslev (1986), and
also discussed independently by Taylor (1986).  These models, including their use in volatility
forecasting, have been extensively surveyed elsewhere and we will not attempt yet another
exhaustive survey here.  Instead we will try to highlight some of the key features of the models
which help explain their dominant role in practical empirical applications.  We will concentrate
on univariate formulations in this section, with the extension to multivariate GARCH-based
covariance and correlation forecasting discussed in Section 6.

3.1  Rolling Regressions and RiskMetrics

Rolling sample windows arguably provides the simplest way of incorporating actual data into the
estimation of time-varying volatilities, or variances.  In particular, consider the rolling sample
variance based on the p most recent observations as of time t,

. (3.1)
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Interpreting  as an estimate of the current variance of , the value of p directly determines the
variance-bias tradeoff of the estimator, with larger values of p reducing the variance but
increasing the bias.  For instance, in the empirical finance literature, it is quite common to rely
on rolling samples of five-years of monthly data, corresponding to a value of  p=60, in
estimating time varying-variances, covariances, and CAPM betas.

Instead of weighting each of the most recent p observations the same, the bias of the estimator
may be reduced by assigning more weights to the most recent observations.  An exponentially
weighted moving average filter is commonly applied in doing so,

.

(3.2)

In practice, the sum will, of course, have to be truncated at I = t-1.  This is typically done by 
equating the pre-sample values to zero, and adjusting the finite sum by the corresponding
multiplication factor .  Of course, for large values of t and (1-()<1, the effect of
this truncation is inconsequential.  This approach is exemplified by RiskMetrics (J.P. Morgan,
1996), which rely on a value of ( = 0.06 and  in their construction of daily (monthly)
volatility measures for wide range of different financial rates of returns.

Although it is possible to write down explicit models for  which would justify the rolling
window approach and the exponential weighted moving average as the optimal estimators for the
time-varying variances in the models, the expressions in (3.1) and (3.2) are more appropriately
interpreted as data-driven filters.  In this regard, the theoretical properties of both filters as
methods for extracting consistent estimates of the current volatility as the sampling frequencies
of the underlying observations increases over fixed-length time intervals - or what is commonly
referred to as continuous record, or fill-in, asymptotics - has been extensively studied in a series
of influential papers by Dan Nelson (these papers are collected in the edited volume of readings
by Rossi, 1996).

It is difficult to contemplate optimal volatility forecasting without the notion of a model, or data
generating process.  Of course, density or VaR forecasting, as discussed in Section 2, is even
more problematic.  Nonetheless, the filters described above are often used in place of more
formal model building procedures in the construction of  h-period-ahead volatility forecasts by
simply equating the future volatility of interest with the current filtered estimate,

. (3.3)

In the context of forecasting the variance of multi-period returns, assuming that the
corresponding one-period returns are serially uncorrelated so that the forecast equals the sum of
the successive one-period variance forecasts, it follows then directly that
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. (3.4)

Hence, the multi-period return volatility scales with the forecast horizon, k.  Although this
approach is used quite frequently by finance practitioners it has, as discussed further below, a
number of counterfactual implications.  In contrast, the GARCH(1,1) model, to which we now
turn, provides empirically realistic mean-reverting volatility forecasts within a coherent and
internally consistent, yet simple, modeling framework.

3.2  GARCH(1,1)

In order to define the GARCH class of models, consider the decomposition of yt into the one-
step-ahead conditional mean, , and variance, , in
parallel to the expression in equation (1.7) above,

. (3.5)

The GARCH(1,1) model for the conditional variance is then defined by the recursive
relationship,

, (3.6)

where , and the parameters are restricted to be non-negative, , in
order to ensure that the conditional variance remains positive for all realizations of the 
process.  The model is readily extended to higher order GARCH(p,q) models by including
additional lagged squared innovations and/or conditional variances on the right-hand-side of the
equation.

By recursive substitution, the GARCH(1,1) model may alternatively be expressed as an
ARCH(4) model,

. (3.7)

This obviously reduces to the exponentially weighted moving average filter in (3.2) for T = 0, "
= (, and $ = 1-(.  The corresponding GARCH model in which " + $ = 1 is also sometimes
referred to as an Integrated GARCH, or IGARCH(1,1) model.  Importantly, however, what sets
the GARCH(1,1) model, and more generally the ARCH class of models, apart from the filters
discussed above is the notion of a data generating process embedded in the distributional
assumptions for .  This means that the construction of optimal variance forecasts is a well-
posed question within the context of the model. 
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In particular, it follows directly from the formulation of the model that the optimal, in a mean-
square-error sense, one-step ahead variance forecasts equals .  Corresponding expressions

for the longer run forecasts,  for h>1, are also easily constructed by recursive procedures. 
To facilitate the presentation, assume that the conditional mean is constant and equal to zero, or

, and that "+$ < 1 so that the unconditional variance of the process exists,

.
(3.8)

The h-step ahead forecast is then readily expressed as

, (3.9)

showing that the forecasts revert to the long-run unconditional variance at an exponential rate
dictated by the value of "+$.

Moreover, with serially uncorrelated returns, so that the conditional variance of the sum is equal
to the sum of the conditional variances, the optimal forecast for the variance of the k-period
return may be expressed as,

. (3.10)

Thus, the longer the forecast horizon (the higher the value of k), the less variable will be the
forecast per unit time-interval.  That is, the term-structure-of-variance, or , flattens with
k.

To illustrate, consider Figure 3.1.  The left-hand panel plots the unconditional distribution of
 for the same GARCH(1,1) model depicted in Figure 1.1.  The mean of the distribution

equals , but there is obviously considerable variation
around that value, with a much longer tail to the right.  The panel on the right gives the
corresponding term-structure for k = 1, 2, ..., 250, and  equal to the mean, five, and ninety-
five percentiles in the unconditional distribution.  The slope of the volatility-term-structure
clearly flattens with the horizon.  The figure also illustrates that the convergence to the long-run
unconditional variance occurs much slower for a given percentage deviation of  above the
median than for the same percentage deviation below the median.

To further illustrate the dynamics of the volatility-term structure, Figure 3.2 graphs  for
k = 1, 5, 22 and 66, corresponding to daily, weekly, monthly and quarterly forecast horizons, for
the same t = 1, 2,..., 2,500  GARCH(1,1) simulation sample depicted in Figure 1.1.  Comparing
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the four different panels, the volatility-of the-volatility clearly diminishes with the forecast
horizon.

It is also informative to compare and contrast the optimal GARCH(1,1) volatility forecasts to the
common empirical practice of horizon volatility scaling by k.  In this regard, it follows directly
from the expressions in (3.9) and (3.10) that

,

so that the level of the scaled volatility forecasts will be right on average.  However, comparing
the variance of the scaled k-period forecasts to the variance of the optimal forecast,

,

it is obvious that by not accounting for the mean-reversion in the volatility, the scaled forecasts
exaggerate the volatility-of-the-volatility relative to the true predictable variation.  On tranquil
days the scaled forecasts underestimate the true risk, while the risk is inflated on volatile days. 
Obviously not a very prudent risk management procedure.

This tendency for the horizon scaled forecasts to exhibit excessive variability is also directly
evident from the term structure plots in Figure 3.2.  Consider the optimal k-period ahead
variance forecasts defined by k times the  series depicted in the last three panels. 
Contrasting these correct multi-step forecasts with their scaled counterparts defined by k times
the  series in the first panel, it is obvious, that although both forecasts will be centered

around the right unconditional value of , the horizon scaled forecasts will result in too large
“day-to-day” fluctuations.  This is especially true for the longer run “monthly” (k = 22) and
“quarterly” (k = 66) forecasts in the last two panels.

3.3  Asymmetries and “Leverage” Effects

The basic GARCH model discussed in the previous section assumes that positive and negative
shocks of the same absolute magnitude will have the identical influence on the future conditional
variances.  In contrast, the volatility of aggregate equity index return, in particular, has been
shown to respond asymmetrically to past negative and positive return shocks, with negative
returns resulting in larger future volatilities.  This asymmetry is generally referred to as a
“leverage” effect, although it is now widely agreed that financial leverage alone cannot explain
the magnitude of the effect, let alone the less pronounced asymmetry observed for individual
equity returns.  Alternatively, the asymmetry has also been attributed to a “volatility feedback”
effect, whereby heightened volatility requires an increase in the future expected returns to
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compensate for the increased risk, in turn necessitating a drop in the current price to go along
with the initial increase in the volatility.  Regardless of the underlying economic explanation for
the phenomenon, the three most commonly used GARCH formulations for describing this type
of asymmetry are the GJR or Threshold GARCH (TGARCH) models of Glosten, Jagannathan
and Runkle (1993) and Zakoïan (1994), the Asymmetric GARCH (AGARCH) model of Engle
and Ng (1993), and the Exponential GARCH (EGARCH) model of Nelson (1991).

The conditional variance in the GJR(1,1), or TGARCH(1,1), model simply augments the
standard GARCH(1,1) formulation with an additional ARCH term conditional on the sign of the
past innovation,

, (3.11)

where I(@) denotes the indicator function.  It is immediately obvious that for ( > 0, past negative
return shocks will have a larger impact on the future conditional variances.  Mechanically, the
calculation of multi-period variance forecast works exactly as for the standard symmetric
GARCH model.  In particular, assuming that , it follows readily that

, (3.12)

where the long-run, or unconditional variance, now equals,

. (3.13)

Although the forecasting formula looks almost identical to the one for the GARCH(1,1) model in
equation (3.9), the inclusion of the asymmetric term may materially affect the forecasts by
importantly altering the value of the current conditional variance, .

The news impact curve, defined by the functional relationship between and holding all
other variables constant, provides a simple way of characterizing the influence of the most recent
shock on next periods conditional variance.  In the standard GARCH model this curve is
obviously quadratic around , while the GJR model with ( > 0  has steeper slopes for
negative values of .  In contrast, the Asymmetric GARCH, or AGARCH(1,1), model,

, (3.14)

shifts the center of the news impact curve from zero to (, affording an alternative way of
capturing asymmetric effects.  The GJR and AGARCH model may also be combined to achieve
even more flexible parametric formulations.
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Instead of directly parameterizing the conditional variance, the EGARCH model is formulated in
terms of the logarithm of the conditional variance, as in the EGARCH(1,1) model,

, (3.15)

where as previously defined, .  As for the GARCH model, the EGARCH model is
readily extended to higher order models by including additional lags on the right-hand-side.  The
parameterization in terms of logarithms has the obvious advantage of avoiding non-negativity
constraints on the parameters, as the variance implied by the exponentiated logarithmic variance
from the model is guaranteed to be positive.  As in the GJR and AGARCH models above, values
of ( > 0 in the EGARCH model directly captures the asymmetric response, or “leverage” effect. 
Meanwhile, because of the non-differentiability with respect to  at zero, the EGARCH model
is often somewhat more difficult to estimate and analyze numerically.  From a forecasting
perspective, the recursions defined by the EGARCH equation (3.15) readily deliver the optimal -
in a mean-square-error sense - forecast for the future logarithmic conditional variances,

.  However, in most applications the interest centers on point forecasts for ,

as opposed to .  Unfortunately, the transformation of the  forecasts to

 generally depends on the entire h-step ahead forecast distribution, .  As
discussed further in Section 3.6 below, this distribution is generally not available in closed-form,
but it may be approximated by Monte Carlo simulations from the convolution of the
corresponding h one-step-ahead predictive distributions implied by the  innovation process

using numerical techniques.  In contrast, the expression for  in equation (3.12) for the GJR
or TGARCH model is straightforward to implement, and only depends upon the assumption that

.

3.4 Long-Memory and Component Structures

The GARCH, TGARCH, AGARCH, and EGARCH models discussed in the previous sections
all imply that shocks to the volatility decay at an exponential rate.  To illustrate, consider the
GARCH(1,1) model.  It follows readily from equation (3.9) that the impulse effect of a time-t
shock on the forecast of the variance h period into the future is given by

, or more generally

, (3.16)

where 0 < * < 1.  This exponential decay typically works well when forecasting over short
horizons.  However, numerous studies, including Ding, Granger and Engle (1993) and Andersen
and Bollerslev (1997), have argued that the autocorrelations of squared and absolute returns
decay at a much slower hyperbolic rate over longer lags.  In the context of volatility forecasting
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using GARCH models parameterized in terms of , this suggests that better long term forecasts
may be obtained by formulating the conditional variance in such a way that the impulse effect
behaves as,

, (3.17)

for large values of h, where again 0 < * < 1.  Several competing long-memory, or fractionally
integrated, GARCH type models have been suggested in the literature to achieve this goal.

In the Fractionally Integrated FIGARCH(1,d,1) model proposed by Baillie, Bollerslev and
Mikkelsen (1996) the conditional variance is defined by,

(3.18)

For d = 0 the model reduces to the standard GARCH(1,1) model, but for values of 0 < d < 1
shocks to the point volatility forecasts from the model will decay at a slow hyperbolic rate.  The
actual forecasts are most easily constructed by recursive substitution in,

, (3.19)

with  for h<0, and the coefficients in 
calculated from the recursions,

 
 
where  refer to the coefficients in the Maclaurin series expansion of the

fractional differencing operator, .  Higher order FIGARCH models, or volatility forecast
filters, may be defined in an analogous fashion.  Asymmetries are also easily introduced into the
recursions by allowing for separate influences of past positive and negative innovations as in the
GJR or TGARCH model.  Fractional Integrated EGARCH, or FIEGARCH, models may be
similarly defined by parameterizing the logarithmic conditional variance as a fractionally
integrated distributed lag of past values.

An alternative, and often simpler, approach for capturing longer-run dependencies involves the
use of component type structures.  Granger (1980) first showed that the superposition of an
infinite number of stationary AR(1) processes may result in a true long-memory process.  In fact,
there is a long history in statistics and time series econometrics for approximating long-memory
by the sum of a few individually short-memory components.  This same idea has successfully
been used in the context of volatility modeling by Engle and Lee (1999) among others.

In order to motivate the Component GARCH model of Engle and Lee (1999), rewrite the
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standard GARCH(1,1) model in (3.6) as,

, (3.20)

where it is assumed that , so that the model is covariance stationary and the long term
forecasts converge to the long-run, or unconditional, variance .  The
component model then extends the basic GARCH model by explicitly allowing the long-term
level to be time-varying,

, (3.21)

with  parameterized by the separate equation,

. (3.22)

Hence, the transitory dynamics is governed by , while the long-run dependencies are
described by .  It is possible to show that for the model to be covariance stationary, and the
unconditional variance to exist, the parameters must satisfy .  Also,
substituting the latter equation into the first, the model may be expressed as the restricted
GARCH(2,2) model,

 .

As for the GARCH(1,1) model, volatility shocks therefore eventually dissipate at the exponential
rate in equation (3.15).  However, for intermediate forecast horizons and values of  close to
unity, the volatility forecasts from the component GARCH model will display approximate long-
memory.

To illustrate, consider Figure 3.3 which graphs the volatility impulse response function,
, h = 1, 2, ..., 250, for the RiskMetrics forecasts, the standard GARCH(1,1) model in

(3.6), the FIGARCH(1,d,1) model in (3.18), and the component GARCH model defined by
(3.21) and (3.22). The parameters for the different GARCH models are calibrated to match the
volatilities depicted in Figure 1.1.  To facilitate comparisons and exaggerate the differences
across models, the right-hand-panel depicts the logarithm of the same impulse response
coefficients.  The RiskMetrics forecasts, corresponding to an IGARCH(1,1) model with " =
0.06, $ = 1 - " = 0.94 and T = 0, obviously results in infinitely persistent volatility shocks.  In
contrast, the impulse response coefficients associated with the GARCH(1,1) forecasts die out at
the exponential rate (0.085 + 0.881)h, as manifest by the log-linear relationship in the right-hand-



-27-

panel.  Although the component GARCH model also implies an exponential decay and therefore
a log-linear relationship, it fairly closely matches the hyperbolic decay rate for the long-memory
FIGARCH model for the first 125 steps.  However, the two models clearly behave differently for
forecasts further into the future.  Whether these differences and potential gains in forecast
accuracy over longer horizons are worth the extra complications associated with the
implementation of a fractional integrated model obviously depends on the specific uses of the
forecasts.

3.5   Parameter Estimation

The values of the parameters in the GARCH models are, of course, not known in practice and
will have to be estimated.  By far the most commonly employed approach for doing so is
Maximum Likelihood Estimation (MLE) under the additional assumption that the standardized
innovations in equation (3.5), , are i.i.d. normally distributed, or equivalently
that the conditional density for  takes the form,   

. (3.23)

In particular, let 2 denote the vector of unknown parameters entering the conditional mean and
variance functions to be estimated.  By standard recursive conditioning arguments, the log-
likelihood function for the  sample is then simply given by the sum of the
corresponding T  logarithmic conditional densities,

(3.24)

The likelihood function obviously depends upon the parameters in a highly non-linear fashion,
and numerical optimization techniques are required in order to find the value of 2 which
maximizes the function, say .  Also, to start up the recursions for calculating , pre-
sample values of the conditional variances and squared innovations are also generally required. 
If the model is stationary, these initial values may be fixed at their unconditional sample counter
parts, without affecting the asymptotic distribution of the resulting estimates.  Fortunately, there
now exist numerous software packages for estimating all of the different GARCH formulations
discussed above based upon this likelihood approach.

Importantly, provided that the model is correctly specified and satisfies a necessary set of
technical regularity conditions, the estimates obtained by maximizing the function in (3.24)
inherit the usual optimality properties associated with MLE, allowing for standard parameter
inference based on an estimate of the corresponding information matrix.  This same asymptotic
distribution may also be used in incorporating the parameter estimation error uncertainty in the
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distribution of the volatility forecasts from the underlying model.  However, this effect is
typically ignored in practice, instead relying on a simple plugin approach using  in place of
the true unknown parameters in the forecasting formulas.  Of course, in many financial
applications the size of the sample used in the parameter estimation phase is often very large
compared to the horizon of the forecasts, so that the additional influence of the parameter
estimation error is likely to be relatively minor compared to the inherent uncertainty in the
forecasts from the model.  Bayesian inference procedures can, of course, also be used in directly
incorporating the parameter estimation error uncertainty in the model forecasts.

More importantly from a practical perspective, the log-likelihood function in equation (3.24)
employed in almost all software packages is based on the assumption that  is i.i.d. normally
distributed.  Although this assumption coupled with time-varying volatility implies that the
unconditional distribution of  has fatter tails than the normal, this is typically not sufficient to
account for all of the mass in the tails in the distributions of daily or weekly returns.  Hence, the
likelihood function is formally misspecified.

However, if the conditional mean and variance are correctly specified, the corresponding Quasi
Maximum Likelihood Estimates (QMLE) obtained under this auxiliary assumption of
conditional normality will generally be consistent for the true value of 2.  Moreover,
asymptotically valid robust standard errors may be calculated from the so-called “sandwich-
form” of the covariance matrix estimator, defined by the outer product of the gradients post- and
pre-multiplied by the inverse of the usual information matrix estimator.  Since the expressions
for the future conditional variances for most of the GARCH models discussed above do not
depend upon the actual distribution of , as long as  and , this
means that asymptotically valid point volatility forecasts may be constructed from the
conditionally normal QMLE for 2  without fully specifying the distribution of .

Still, the efficiency of the parameter estimates, and therefore the accuracy of the resulting point
volatility forecasts obtained by simply substituting  in place of the unknown parameters in the
forecasting formulas, may be improved by employing the correct conditional distribution of . 
A standardized student’s t distribution with degrees of freedom  often provides a good
approximation to this distribution.  Specifically,

(3.25)

with the log likelihood function given by the sum of the corresponding T  logarithmic densities,
and the degrees of freedom parameter < estimated jointly with the other parameters of the model
entering the conditional mean and variance functions.  Note, that for  the distribution
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converges to the conditional normal density in (3.23).  Of course, more flexible distributions
allowing for both fat tails and asymmetries could be, and have been, employed as well. 
Additionally, semi-nonparametric procedures in which the parameters in  and
are estimated sequentially on the basis of nonparametric kernel type estimates for the distribution
of  have also been developed to enhance the efficiency of the parameter estimates relative to
the conditionally normal QMLEs.  From a forecasting perspective, however, the main advantage
of these more complicated conditionally non-normal estimation procedures lies not so much in
the enhanced efficiency of the plugin point volatility forecasts, , but rather in their
ability to better approximate the tails in the corresponding predictive distributions,

.  We next turn to a discussion of this type of density forecasting.

3.6  Fat Tails and Multi-Period Forecast Distributions

The ARCH class of models directly specifies the one-step-ahead conditional mean and variance,
 and , as functions of the time t-1 information set, .  As such, the one-period-

ahead predictive density for  is directly determined by the distribution of .  In particular,
assuming that  is i.i.d. standard normal,

,

the conditional density of  is then given by the expression in equation (3.23) above, where the

term is associated with the Jacobian of the transformation from  to .  Thus, in this
situation, the one-period-ahead VaR at level p is readily calculated by

, where  equals the p’th quantile in the standard normal
distribution.

Meanwhile, as noted above the distributions of the standardized GARCH innovations often have
fatter tails than the normal distribution.  To accommodate this feature alternative conditional
error distributions, such as the student-t distribution in equation (3.25) discussed above, may be
used in place of the normal density in equation (3.23) in the construction of empirically more
realistic predictive densities.  In the context of quantile predictions, or VaR’s, this translates into
multiplication factors, , in excess of those for the normal distribution for small values of 

p.  Of course, the exact value of  will depend upon the specific parametric estimates for
the distribution of .  Alternatively, the standardized in-sample residuals based on the simpler-

to-implement QMLE for the parameters, say , may be used in non-

parametrically estimating the distribution of , and in turn the quantiles, .
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The procedures discussed above generally work well in approximating VaR’s within the main
range of support of the distribution, say 0.01 < p < 0.99.  However, for quantiles in the very far
left or right tail, it is not possible to meaningfully estimate  without imposing some
additional structure on the problem.  Extreme Value Theory (EVT) provides a framework for
doing so.  In particular, it follows from EVT that under general conditions the tails of any
admissible distribution must behave like those of the Generalized Pareto class of distributions. 
Hence, provided that  is i.i.d., the extreme quantiles in  may be inferred exactly as
above, using only the  smallest (largest) values of  in actually estimating the parameters of

the corresponding extreme value distribution used in calculating .  The fraction r of the
full sample T  used in this estimation dictates where the tails, and consequently the extreme
value distribution, begin.  In addition to standard MLE techniques, a number of simplified
procedures, including the popular Hill estimator, are also available for estimating the required
tail parameters.

The calculation of multi-period forecast distributions is more complicated.  To facilitate the
presentation, suppose that the information set defining the conditional one-step-ahead
distribution, , and consequently the conditional mean and variance,  and 
respectively, is restricted to current and past values of .  The multi-period-ahead predictive
distribution is then formally defined by the convolution of the corresponding h one-step-ahead
distributions, 

.

(3.26)

This multi-period mixture distribution generally has fatter tails than the underlying one-step-
ahead distributions.  In particular, assuming that the one-step-ahead distributions are
conditionally normal as in (3.23) then, if the limiting value exists, the unconditional distribution,

, will be leptokurtic relative to the normal.  This is, of course, entirely
consistent with the unconditional distribution of most speculative returns having fatter tails than
the normal.  It is also worth noting that even though the conditional one-step-ahead predictive
distributions, , may be symmetric, if the conditional variance depends on the past
values of  in an asymmetric fashion, as in the GJR, AGARCH or EGARCH models, the multi-
step-ahead distribution,  h>1, will generally be asymmetric.  Again, this is directly in
line with the negative skewness observed in the unconditional distribution of most equity index
return series.

Despite these general results, analytical expressions for the multi-period predictive density in
(3.26) are not available in closed-form.  However, numerical techniques may be used in
recursively building up an estimate for the predictive distribution, by repeatedly drawing future
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values for  based on the assumed parametric distribution , or by
bootstrapping  from the in-sample distribution of the standardized residuals.

Alternatively,  may be approximated by a time-invariant parametric or non-
parametrically estimated distribution with conditional mean and variance,  and

, respectively.  The multi-step conditional variance is readily calculated
along the lines of the recursive prediction formulas discussed in the preceding sections.  This
approach obviously neglects any higher order dependencies implied by the convolution in (3.26). 
However, in contrast to the common approach of scaling which, as illustrated in Figure 3.2, may
greatly exaggerate the volatility-of-the-volatility, the use of the correct multi-period conditional
variance means that this relatively simple-to-implement approach for calculating multi-period
predictive distributions usually works very well in practice.

The preceding discussion has focused on one or multi-period forecast distributions spanning the
identical unit time interval as in the underlying GARCH model.  However, as previously noted,
in financial applications the forecast distribution of interest often involves the sum of  over
multiple periods corresponding to the distribution of continuously compounded multi-period
returns, say .  The same numerical techniques used in approximating

 by Monte Carlo simulations discussed above may, of course, be used in
approximating the corresponding distribution of the sum, .

Alternatively, assuming that the ‘s are serially uncorrelated, as would be approximately true
for most speculative returns over daily or weekly horizons, the conditional variance of  is
simply equal to the sum of the corresponding h variance forecasts,

. (3.27)

Thus, in this situation the conditional distribution of  may be estimated on the basis of the

corresponding in-sample standardized residuals, .   Now, if the

underlying GARCH process for  is covariance stationary, we have  and

.  Moreover, as shown by Diebold (1988), it follows from a version of
the standard Central Limit Theorem that .  Thus, volatility clustering disappears
under temporal aggregation, and the unconditional return distributions will be increasingly better
approximated by a normal distribution the longer the return horizons.  This suggests that for
longer-run forecasts, or moderately large values of h, the distribution of  will be
approximately normal.  Consequently, the calculation of longer-run multi-period VaR’s may
reasonably rely on the conventional quantiles from a standard normal probability table in place
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of  in the formula .

3.7  Further Reading

The ARCH and GARCH class of models have been extensively surveyed elsewhere; see, e.g.,
review articles by Andersen and Bollerslev (1998b), Bollerslev, Chou and Kroner (1992),
Bollerslev, Engle and Nelson (1994), Diebold (2004), Diebold and Lopez (1995), Engle (2001,
2004), Engle and Patton (2001), Pagan (1996), Palm (1996), and Shephard (1996).  The models
have now also become part of the standard toolbox discussed in econometrics and empirical
oriented finance textbooks; see e.g., Hamilton (1994), Mills (1993), Franses and van Dijk
(2000), Gourieroux and Jasiak (2001), Alexander (2002), Brooks (2002), Chan (2002), Tsay
(2002), Christoffersen (2003), Enders (2004), and Taylor (2004).  A series of the most influential
early ARCH papers have been collected in Engle (1995).  A fairly comprehensive list as well as
forecast comparison of the most important parametric formulations are also provided in Hansen
and Lunde (2005).

Several different econometric and statistical software packages are available for estimating all of
the most standard univariate GARCH models, including EViews, PC-GIVE, Limdep, Microfit,
RATS, S+, SAS, SHAZAM, and TSP.  The open-ended matrix programming environments
GAUSS, Matlab, and Ox also offer easy add-ons for GARCH estimation, while the NAG library
and the UCSD Department of Economics website provide various Fortran based procedures and
programs.  Partial surveys and comparisons of some of these estimation packages and procedures
are given in Brooks (1997), Brooks, Burke and Persand (2001), and McCullough and Renfro
(1998).

The asymmetry, or “leverage” effect, directly motivating a number of the alternative GARCH
formulations were first documented empirically by Black (1976) and Christie (1982).  In
addition to the papers by Nelson (1991), Engle and Ng (1993), Glosten, Jagannathan and Runkle
(1993), and Zakoian (1994) discussed in Section 3.3, other important studies on modeling and
understanding the volatility asymmetry in the GARCH context include Campbell and Hentschel
(1992), Hentschel (1995), and Bekaert and Wu (2000), while Engle (2001) provides an
illustration of the importance of incorporating asymmetry in GARCH-based VaR calculations.

The long-memory FIGARCH model of Baillie, Bollerslev and Mikkelsen (1996) in Section 3.4
may be seen as a special case of the ARCH(4) model in Robinson (1991).  The FIGARCH
model also encompasses the IGARCH model of Engle and Bollerslev (1986) for d=1.  However,
even though the approach discussed here affords a convenient framework for generating point
forecasts with long-memory dependencies, when viewed as a model the unconditional variance
does not exist, and the FIGARCH class of models has been criticized accordingly by Giraitis,
Kokoszka and Leipus (2000), among others.  An alternative formulation which breaks the link
between the conditions for second-order stationarity and long-memory dependencies have been
proposed by Davidson (2004).  Alternative long-memory GARCH formulations include the
FIEGARCH model of Bollerslev and Mikkelsen (1996), and the model in Ding and Granger
(1996) based on the superposition of an infinite number of ARCH models.  In contrast, the
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component GARCH model in Engle and Lee (1999) and the related developments in Gallant,
Hsu and Tauchen (1999) and Müller et al. (1997), is based on the mixture of only a few
components; see also the earlier related results on modeling and forecasting long-run dynamic
dependencies in the mean by O’Connell (1971) and Tiao and Tsay (1994).  Meanwhile,
Bollerslev and Mikkelsen (1999) have argued that when pricing very long-lived financial
contracts, the fractionally integrated volatility approach can result in materially different prices
from the ones implied by the more standard GARCH models with exponential decay.  The
multifractal models recently advocated by Calvet and Fisher (2002, 2004) afford another
approach for incorporating long-memory into volatility forecasting.

Long-memory also has potential links to regimes and structural break in volatility. Diebold and
Inoue (2001) argue that the apparent finding of long-memory could be due to the existence of
regime switching. Mikosch and Starica (2004) explicitly uses nonstationarity as a source of long-
memory in volatility. Structural breaks in volatility is considered by Andreou and Ghysels
(2002), Lamoureux and Lastrapes (1990), Pastor and Stambaugh (2001), and Schwert (1989).
Hamilton and Lin (1996) and Perez-Quiros and Timmermann (2000) study volatility across
business cycle regimes. The connections between long-memory and structural breaks are
reviewed in Banerjee and Urga (2005); see also the chapter by Clements and Hendry in this
Handbook.

Early contributions concerning the probabilistic and statistical properties of GARCH models, as
well as the MLE and QMLE techniques discussed in Section 3.5, include Bollerslev and
Wooldridge (1992), Lee and Hansen (1994), Lumsdaine (1996), Nelson (1990), and Weiss
(1986); for a survey of this literature see also Li, Ling and McAleer (2002).  Bollerslev (1986)
discusses conditions for existence of the second moment in the specific context of the GARCH
model. Loretan and Phillips (1994) contains a more general discussion on the issue of covariance
stationarity. Bayesian methods for estimating ARCH models were first implemented by Geweke
(1989a) and they have since be developed further in Bauwens and Lubrano (1998, 1999).  The
GARCH-t model discussed in Section 3.5 was first introduced by Bollerslev (1987), while
Nelson (1991) suggested the so-called Generalized Error Distribution (GED) for better
approximating the distribution of the standardized innovations.  Engle and Gonzalez-Rivera
(1991) first proposed the use of kernel-based methods for non-parametrically estimating the
conditional distribution, whereas McNeil and Frey (2000) relied on Extreme Value Theory
(EVT) for estimating the uppermost tails in the conditional distribution; see also Embrechts,
Klüppelberg and Mikosch (1997) for a general discussion of extreme value theory.

As discussed in Section 3.6, even if the one-step-ahead conditional distribution is known (by
assumption), the corresponding multi-period distributions are not available in closed-form and
are generally unknown.  Some of the complications that arise in this situation have been
discussed in Baillie and Bollerslev (1992), who also consider the use of a Cornish-Fisher
expansion for approximating specific quantiles in the multi-step-ahead predictive distributions. 
Numerical techniques for calculating the predictive distributions based on importance sampling
schemes were first implemented by Geweke (1989b).  Other important results related to the
distribution of temporally aggregated GARCH models include Drost and Nijman (1993), Drost
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and Werker (1996), and Meddahi and Renault (2004).

4.  Stochastic Volatility

This section introduces the general class of models labeled Stochastic Volatility (SV).  In the
widest sense of the term, SV models simply allow for a stochastic element in the time series
evolution of the conditional variance process. For example, GARCH models are SV models. The
more meaningful categorization, which we adopt here, is to contrast ARCH type models with
genuine SV models. The latter explicitly includes an unobserved (non-measurable) shock to the
return variance into the characterization of the volatility dynamics. In this scenario, the variance
process becomes inherently latent so that - even conditional on all past information and perfect
knowledge about the data generating process - we cannot recover the exact value of the current
volatility state. The technical implication is that the volatility process is not measurable with
respect to observable (past) information. Hence, the assessment of the volatility state at day t
changes as contemporaneous or future information from days t+j, j $ 0, is incorporated into the
analysis. This perspective renders estimation of latent variables from past data alone (filtering) as
well as from all available, including future, data (smoothing) useful. In contrast, GARCH models
treat the conditional variance as observable given past information and, as discussed above,
typically applies (quasi-) maximum likelihood techniques for inference, so smoothing has no role
in that setting.

Despite these differences, the two model classes are closely related, and we consider them to be
complementary rather than competitors. In fact, from a practical forecasting perspective it is hard
to distinguish the performance of standard ARCH and SV models. Hence, even if one were to
think that the SV framework is appealing, the fact that ARCH models typically are easier to
estimate explains practitioners reliance on ARCH as the volatility forecasting tool of choice.
Nonetheless, the development of powerful method of simulated moments, Markov Chain Monte
Carlo (MCMC) and other simulation based procedures for estimation and forecasting of SV
models may render them competitive with ARCH over time.  Moreover, the development of the
concept of realized volatility and the associated use of intraday data for volatility measurement,
discussed in the next section, is naturally linked to the continuous-time SV framework of
financial economics. 

The literature on SV models is vast and rapidly growing, and excellent surveys are already
available on the subject, e.g., Ghysels, Harvey and Renault (1996) and Shephard (1996, 2004).
Consequently, we focus on providing an overview of the main approaches with particular
emphasis on the generation of volatility forecasts within each type of model specification and
inferential technique.

4.1  Model Specification

Roughly speaking, there are two main perspectives behind the SV paradigm when used in the
context of modeling financial rate of returns. Although both may be adapted to either setting,
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there are precedents for one type of reasoning to be implemented in discrete time and the other to
be cast in continuous time. The first centers on the Mixture of Distributions Hypothesis (MDH),
where returns are governed by an event time process that represents a transformation of the time
clock in accordance with the intensity of price relevant news, dating back to Clark (1973). The
second approach stems from financial economics where the price and volatility processes often
are modeled separately via continuous sample path diffusions governed by stochastic differential
equations. We briefly introduce these model classes and point out some of the similarities to
ARCH models in terms of forecasting procedures. However, the presence of a latent volatility
factor renders both the estimation and forecasting problem more complex for the SV models. We
detail these issues in the following subsections.

4.1.1   The Mixture-of-Distributions Hypothesis

Adopting the rational perspective that asset prices reflect the discounted value of future expected
cash flows, such prices should react almost continuously to the myriad of news that arrive on a
given trading day. Assuming that the number of news arrival is large, one may expect a central
limit theory to apply and financial returns should be well approximated by a conditional normal
distribution with the conditioning variable corresponding to the number of relevant news events.
More generally, a number of other variables associated with the overall activity of the financial
market such as the daily number of trades, the daily cumulative trading volume or the number of
quotes may well be similarly related to the information flow in the market. These considerations
inspire the following type of representation,

, (4.1)

where yt  is the market “activity” variable under consideration, st  is the strictly positive process
reflecting the intensity of relevant news arrivals, :y represents the mean response of the variable
per news event, Fy is a scale parameter, and zt   is i.i.d. N(0,1). Equivalently, this relationship may
be written,

. (4.2)

This formulation constitutes a normal mixture model. If the st  process is time-varying it induces
a fat-tailed unconditional distribution, consistent with stylized facts for most return and trading
volume series. Intuitively, days with high information flow display more price fluctuations and
activity than days with fewer news releases. Moreover, if the st  process is positively correlated,
then shocks to the conditional mean and variance process for yt  will be persistent. This is
consistent with the observed activity clustering in financial markets, where return volatility,
trading volume, the number of transactions and quotes, the number of limit orders submitted to
the market, etc., all display pronounced serial dependence.

The specification in (4.1) is analogous to the one-step-ahead decomposition given in equation
(3.5). The critical difference is that the formulation is endowed with a structural interpretation,
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implying that the mean and variance components cannot be observed prior to the trading day as
the number of news arrivals is inherently random. In fact, it is usually assumed that the st 
process is unobserved by the econometrician, even during period t, so that the true mean and
variance series are both latent. From a technical perspective this implies that we must distinguish
between the full information set (st  0 öt ) and observable information (st  ó Tt ). The latter
property is a defining feature of the genuine volatility class. The inability to observe this
important component of the MDH model complicates inference and forecasting procedures as
discussed below.

In the case of short horizon return series, :y is close to negligible and can reasonably be ignored
or simply fixed at a small constant value. Furthermore, if the mixing variable st  is latent then the
scaling parameter, Fy , is not separately identified and may be fixed at unity. This produces the
following return (innovation) model,

, (4.3)

implying a simple normal-mixture representation,

. (4.4)

Both univariate models for returns of the form (4.4) or multivariate systems including a return
variable along with other related market activity variables, such as trading volume or the number
of transactions, are referred to as derived from the Mixture-of-Distributions Hypothesis (MDH). 

The representation in (4.3) is of course directly comparable to that for the return innovation in
equation (3.5). It follows immediately that volatility forecasting is related to forecasts of the
latent volatility factor given the observed information,

. (4.5)

If some relevant information is not observed and thus not included in Tt, then the expression in
(4.5) will generally not represent the actual conditional return variance, E(st+h |öt ). This point is 
readily seen through a specific example.

In particular, Taylor (1986) first introduced the log SV model by adopting an autoregressive
parameterization of the latent log-volatility (or information flow) variable,

log st+1   =     00   +   01   log st   +    ut  ,          ut  -  i.i.d.(0, Fu
2 ), (4.6)

where the disturbance term may be correlated with the innovation in the return equation, that is,  
D =  corr( ut , zt ) … 0.  This particular representation, along with a Gaussian assumption on ut,
has been so widely adopted that it has come to be known as the stochastic volatility model. Note
that, if D is negative, there is an asymmetric return-volatility relationship present in the model,
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akin to the “leverage effect” in the GJR and EGARCH models discussed in Section 3.3, so that
negative return shocks induce higher future volatility than similar positive shocks. In fact, it is
readily seen that the log SV formulation in (4.6) generalizes the EGARCH(1,1) model by
considering the case,

, (4.7)

where the parameters  00  and  01  correspond to T and $ in equation (3.15) respectively. Under
the null hypothesis of EGARCH(1,1), the information set, Tt, includes past asset returns, and the
idiosyncratic return innovation series, zt , is effectively observable so likelihood based analysis is
straightforward. However, if ut is not (only) a function of zt , i.e., equation (4.7) no longer holds,
then there are two sources of error in the system. In this more general case it is no longer
possible to separately identify the underlying innovations to the return and volatility processes,
nor the true underlying volatility state.

This above example illustrates both how any ARCH model may be seen as a special case of a
corresponding SV model and how the defining feature of the genuine SV model may complicate
forecasting, as the volatility state is unobserved. Obviously, in representations like (4.6), the
current state of volatility is a critical ingredient for forecasts of future volatility.  We expand on
the tasks confronting estimation and volatility forecasting in this setting in Section 4.1.3.

There are, of course, an unlimited number of alternative specifications that may be entertained
for the latent volatility process. However, Stochastic Autoregressive Volatility (SARV) of
Andersen (1994) has proven particular convenient. The representation is again autoregressive,

, (4.8)

where ut denotes an i.i.d. sequence, and st  =  g(vt ) links the dynamic evolution of the state
variable to the stochastic variance factor in equation (4.3). For example, for the log SV model, 
g(vt ) = exp(vt ). Likewise, SV generalizations of the GARCH(1,1) may be obtained via g(vt ) = vt 
and an SV extension of a GARCH model for the conditional standard deviation is produced by
letting  g(vt ) =  vt

1/2.  Depending upon the specific transformation g(@) it may be necessary to
impose additional (positivity) constraints on the innovation sequence ut, or the parameters in
(4.8). Even if inference on parameters can be done, moment based procedures do not produce
estimates of the latent volatility process, so from a forecasting perspective the analysis must
necessarily be supplemented with some method of approximating the sample path realization of
the underlying state variables.

4.1.2   Continuous-Time Stochastic Volatility Models

The modeling of asset returns in continuous time stems from the financial economics literature
where early contributions to portfolio selection by Merton (1969) and option pricing by Black
and Scholes (1973) demonstrated the analytical power of the diffusion framework in handling
dynamic asset allocation and pricing problems. The idea of casting these problems in a
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continuous-time diffusion context also has a remarkable precedent in Bachelier (1900).

Under weak regularity conditions, the general representation of an arbitrage-free asset price
process is

dp(t)   =   :(t) dt  +  F(t) dW(t) + j(t) dq(t),     t 0 [0,T], (4.9)

where :(t) is a continuous, locally bounded variation process, the volatility process F(t) is
strictly positive, W(t) denotes a standard Brownian motion, q(t) is a jump indicator taking the
values zero (no jump) or unity (jump) and, finally, the j(t) represents the size of the jump if one
occurs at time t. (See, e.g., Andersen, Bollerslev and Diebold (2003a) for further discussion.) 
The associated one-period return is

(4.10)

where the last sum simply cumulates the impact of the jumps occurring over the period, as we
define 6(t) = j(t) @ I(q(t) = 1), so that 6(t) is zero everywhere except when a discrete jump occurs.

In this setting a formal ex-post measure of the return variability, derived from the theory of
quadratic variation for semi-martingales, may be defined,

. (4.11)

In the special case of a pure SV diffusion, the corresponding quantity reduces to the integrated
variance, as already defined in equation (1.11) in Section 1,

. (4.12)

These return variability measures are naturally related to the return variance. In fact, for a pure
SV diffusion (without jumps) where the volatility process, F(J), is independent of the Wiener
process, W(J), we have,

(4.13)

so the integrated variance is the true measure of the actual (ex-post) return variance in this
context. Of course, if the conditional variance and mean processes evolve stochastically we
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cannot perfectly predict the future volatility, and we must instead form expectations based on the
current information. For short horizons, the conditional mean variation is negligible and we may
focus on the following type of forecasts, for a positive integer h,

(4.14)

The expressions in (4.13) and (4.14) generalize the corresponding equations for discrete-time SV
models in (4.4) and (4.5) respectively. Of course, the return variation arising from the
conditional mean process may need to be accommodated as well over longer horizons.
Nonetheless, the dominant term in the return variance forecast will invariably be associated with
the expected integrated variance or, more generally, the expected quadratic variation. In simple
continuous-time models, we may be able to derive closed-form expressions for these quantities,
but in empirically realistic settings they are typically not available in analytic form and
alternative procedures must be used. We discuss these issues in more detail below.

The initial diffusion models explored in the literature were not genuine SV diffusions but rather,
with a view toward tractability, cast as special cases of the constant elasticity of variance (CEV)
class of models,

dp(t)   =  ( : - N [p(t) - :] ) dt  +  F p(t)( dW(t) ,     t 0 [0,T], (4.15)

where N $0 determines the strength of mean reversion toward the unconditional mean : in the
log-price process, while  (  $ 0 allows for conditional heteroskedasticity in the return process.
Popular representations are obtained by specific parameter restrictions, e.g., the Geometric
Brownian motion for N = 0 and ( = 0, the Vasicek model for ( = 0, and the Cox-Ingersoll and
Ross (CIR) or square-root model for ( = ½. These three special cases allow for a closed-form
characterization of the likelihood, so the analysis is straightforward. Unfortunately, they are also
typically inadequate in terms of capturing the volatility dynamics of asset returns. A useful class
of extensions have been developed from the CIR model. In this model the instantaneous mean
and variance processes are both affine functions of the log price. The affine model class extends
the above representation with ( = ½  to a multivariate setting with general affine conditional
mean and variance specifications. The advantage is that a great deal of analytic tractability is
retained while allowing for more general and empirically realistic dynamic features.

Many genuine SV representations of empirical interest fall outside of the affine class, however.
For example, Hull and White (1987) develop a theory for option pricing under stochastic
volatility using a model much in the spirit of Taylor’s discrete-time log SV in equation (4.6).
With only a minor deviation from their representation, we may write it, for t 0 [0,T],

dp(t)   =  :(t) dt  +  F(t) dW(t) ,    
(4.16)

dlog F2(t)  =  $ (" - logF2(t)) dt  +  < dWF(t).
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The strength of the mean reversion in (log-) volatility is given by $ and the volatility is governed
by <. Positive but low values of  $ induces a pronounced volatility persistence, while large
values of < increase the idiosyncratic variation in the volatility series. Furthermore, the log
transform implies that the volatility of volatility rises with the level of volatility, even if <  is
time invariant. Finally, a negative correlation, D < 0, between the Wiener processes W(t) and
WF(t) will induce an asymmetric return-volatility relationship in line with the leverage effect
discussed earlier. As such, these features allow the representation in (4.16) to capture a number
of stylized facts about asset return series quite parsimoniously.

Another popular non-affine specification is the GARCH diffusion analyzed by Drost and Werker
(1996). This representation can formally be shown to induce a GARCH type behavior for any
discretely sampled price series and it is therefore a nice framework for eliciting and assessing
information about the volatility process through data gathered at different sampling frequencies.
This is also the process used in the construction of Figure 1.1.  It takes the form,

dp(t)   =  : dt  +  F(t) dW(t) ,
(4.17)

dF2(t)  =  $ (" - F2(t)) dt  +  < F2(t) dWF(t) ,

where the two Wiener processes are now independent.

The SV diffusions in (4.16) and (4.17) are but simple examples of the increasingly complex
multi-factor (affine as well as non-affine) jump-diffusions considered in the literature. Such
models are hard to estimate by standard likelihood or method of moments techniques. This
renders their use in forecasting particularly precarious. There is a need for both reliable
parameter estimates and reliable extraction of the values for the underlying state variables. In
particular, the current value of the state vector (and thus volatility) constitutes critical
conditioning information for volatility prediction. The usefulness of such specifications for
volatility forecasting is therefore directly linked to the availability of efficient inference methods
for these models.

4.1.3   Estimation and Forecasting Issues in SV Models

The incorporation of a latent volatility process in SV models has two main consequences. First,
estimation cannot be performed through a direct application of maximum likelihood principles.
Many alternative procedures will involve an efficiency loss relative to this benchmark so model
parameter uncertainty may then be larger. Since forecasting is usually made conditional on point
estimates for the parameters, this will tend to worsen the predictive ability of model based
forecasts. Second, since the current state for volatility is not observed, there is an additional layer
of uncertainty surrounding forecasts made conditional on the estimated state of volatility. We
discuss these issues below and the following sections then review two alternative estimation and
forecasting procedures developed, in part, to cope with these challenges.

Formally, the SV likelihood function is given as follows. Let the vector of return (innovations)
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and volatilities over [0,T] be denoted by  r  =  ( r1 , ... , rT ) and  s  =  ( s1 , .. , sT ), respectively. 
Collecting the parameters in the vector 2, the probability density for the data given 2 may then
be written as,

 (4.18)

For parametric discrete-time SV models, the conditional density f(rt | st, 2 ) is typically known in
closed form, but  f(st |Tt-1 ;2) is not available. Without being able to utilize this decomposition,
we face an integration over the full unobserved volatility vector which is a T-dimensional object
and generally not practical to compute given the serial dependence in the latent volatility
process.

The initial response to these problems was to apply alternative estimation procedures. In his
original treatment Taylor (1986) uses moment matching. Later, Andersen (1994) shows that it is
feasible to estimate a broad class of discrete-time SV models through standard GMM
procedures. However, this is not particularly efficient as the unconditional moments that may be
expressed in closed form are quite different from the (efficient) score moments associated with
the (infeasible) likelihood function. Another issue with GMM estimates is the need to extract
estimates of the state variables if it is to serve as a basis for volatility forecasting. GMM does not
provide any direct identification of the state variables, so this must be addressed in a second step.
In that regard, the Kalman filter was often used. This technique allows for sequential estimation
of parameters and latent state variables. As such, it provides a conceptual basis for the analysis,
even if the basic Kalman filter is inadequate for general nonlinear and non-Gaussian SV models.

Nelson (1988) first suggested casting the SV estimation problem in a state space setting. We
illustrate the approach for the simplest version of the log SV model without a leverage effect,
that is, D = 0 in (4.4) and (4.6).  Now, squaring the expression in (4.3), takings logs and
assuming Gaussian errors in the transition equation for the volatility state in equation (4.6), it
follows that

log st+1  =  00  +  01  log st  +  ut  ,     ut  -  i.i.d. N(0, Fu
2 ).

To conform with standard notation, it is useful to consolidate the constant from the transition
equation into the measurement equation for the log squared return residual.  Defining ht / log st,
we have

(4.19)
ht+1  =   0 ht  +  ut  ,     ut  -  i.i.d. N(0, Fu

2 ),
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where T  =  00  +  E( log zt
2 )  =   00  - 1.27,   0 =  01 ,  and  >t is a demeaned log P2 distributed

error term. The system in (4.19) is given in the standard linear state space format. The top
equation provides the measurement equation where the squared return is linearly related to the
latent underlying volatility state and an i.i.d. skewed and heavy tailed error term. The bottom
equation provides the transition equation for the model and is given as a first-order Gaussian
autoregression. 

The Kalman filter applies directly to (4.19) by assuming Gaussian errors, see, e.g., Harvey
(1989, 2004). However, the resultant estimators of the state variables and the future observations
are only minimum mean squared error for estimators that are linear combinations of past log rt

2.
Moreover, the non-Gaussian errors in the measurement equation implies that the exact likelihood
cannot be obtained from the associated prediction errors. Nonetheless, the Kalman filter may be
used in the construction of QMLEs of the model parameters for which asymptotically valid
inference is available, even if these estimates generally are fairly inefficient. Arguably, the most
important insight from the state space representation is instead the inspiration it has provided for
the development of more efficient estimation and forecasting procedures through nonlinear
filtering techniques.

The state space representation directly focuses attention on the task of making inference
regarding the latent state vector, i.e., for SV models the question of what we can learn about the
current state of volatility. A comprehensive answer is provided by the solution to the filtering
problem, i.e., the distribution of the state vector given the current information set, f(st | Tt ;2). 
Typically, this distribution is critical in obtaining the one-step-ahead volatility forecast,

, (4.20)

where the first term in the integral is obtained directly from the transition equation in the state
space representation. Once the one-step-ahead distribution has been determined, the task of
constructing multiple-step-ahead forecasts is analogous to the corresponding problem under
ARCH models where multi-period forecasts also generally depend upon the full distributional
characterization of the model. A unique feature of the SV model is instead the smoothing
problem, related to ex-post inference regarding the in-sample volatility given the set of observed
returns over the full sample,  f(st | TT ;2), where t #T. At the end of the sample, either the
filtering or smoothing solution can serve as the basis for out-of-sample volatility forecasts (for h
a positive integer),

, (4.21)

where, again, given the solution for h = 1, the problem of determining the multi-period forecasts
is analogous to the situation with multi-period ARCH-based  forecasts discussed in Section 3.6.

As noted, all of these conditional volatility distributions may in theory be derived in closed form
under the linear Gaussian state space representation via the Kalman filter. Unfortunately, even
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the simplest SV model contains some non-Gaussian and/or nonlinear elements. Hence, standard
filtering methods provide, at best, approximate solutions and they have generally been found to
perform poorly in this setting, in turn necessitating alternative more specialized filtering and
smoothing techniques. Moreover, we have deliberately focused on the discrete-time case above.
For the continuous-time SV models, the complications are more profound as even the discrete
one-period return distribution conditional on the initial volatility state typically is not known in
closed form. Hence, not only is the last term on the extreme right of equation (4.18) unknown,
but the first term is also intractable, further complicating likelihood-based analysis. We next
review two recent approaches that promise efficient inference more generally and also provide
ways of extracting reliable estimates of the latent volatility state needed for forecasting purposes.

4.2  Efficient Method of Simulated Moments Procedures for Inference and Forecasting

The Efficient Method of Moments (EMM) procedure is the prime example of a method of
simulated moments (MSM) approach that has the potential to deliver efficient inference and
produce credible volatility forecasting for general SV models. The intuition behind EMM is that,
by traditional likelihood theory, the scores (the derivative of the log-likelihood with respect to
the parameter vector) provide efficient estimating moments. In fact, maximum likelihood is
simply a just-identified GMM estimator based on the score (moment) vector. Hence, intuitively,
from an efficiency point of view, one would like to approximate the score vector when choosing
the GMM moments. Since the likelihood of SV models is intractable, the approach is to utilize a
semi-nonparametric approximation to the log-likelihood estimated in a first step to produce the
moments. Next, one seeks to match the approximating score moments with the corresponding
moments from a long simulation of the SV model. Thus, the main requirement for applicability
of EMM is that the model can be simulated effectively and the system is stationary so that the
requisite moments can be computed by simple averaging from a simulation of the system. 
Again, this idea, like the MCMC approach discussed in the next section, is, of course, applicable
more generally, but for concreteness we will focus on estimation and forecasting with SV models
for financial rate of returns.

More formally, let the sample of discretely observed returns be given by r  =  (r1 , r2, ... , rT ).
Moreover, let  xt-1 denote the vector of relevant conditioning variables for the log-likelihood
function at time t, and let x  =  (x0 , x1, ... , xT-1 ). For simplicity, we assume a long string of prior
return observations are the only components of x, but other predetermined variables from an
extended dynamic representation of the system may be incorporated as well. In the terminology
of equation (4.18), the complication is that the likelihood contribution from the t’th return is not
available, that is,  f(rt | Tt-1 ; 2) / f(rt | xt-1 ; 2) is unknown. The proposal is to instead approximate
this density by a flexible semi-nonparametric (SNP) estimate using the full data sample. Without
going into specifics, an appropriate procedure may be developed to obtain a close approximation
to this conditional density within a class of SNP densities which are analytically tractable and
allow for explicit computation of the associated score vector. The leading term will typically
consist of a GARCH type model. Essentially, the information regarding the probabilistic
structure available from the data is being encoded into an empirically tractable SNP
representation, so that, for a large enough sample, we have
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, (4.22)

where   denotes the fitted SNP density evaluated at the (pseudo) maximum
likelihood estimate , and 20  denotes the true (unknown) parameter vector of the model
generating the data under the null hypothesis.  In general, the functional form of g is entirely
different from the unknown f, and hence there is no direct compatibility between the two
parameter vectors 0 and 2, although we require that the dimension of 0 is at least as large as that
of 2. Notice how this SNP representation sidesteps the lack of a tractable expression for the
likelihood contribution as given by the middle term in the likelihood expression in (4.18).
Although the SNP density is not used for formal likelihood estimation, it is used to approximate
the “efficient” score moments.

By construction,  satisfies a set of first order conditions for the pseudo log-likelihood function
under the empirical measure induced by the data, that is, letting  rt  =  ( rt , xt-1 ), it holds that,

(4.23)

It is clear that (4.23) takes the form of (pseudo) score moments. This representation of the data
through a set of (efficient) moment conditions is the key part of the “projection step” of EMM.
The data structure has effectively been projected onto an analytically tractable class of SNP
densities augmented, as appropriate, by a leading dynamic (GARCH) term.

Since we are working under the assumption that we have a good approximation to the underlying
true conditional density, we would intuitively expect that, for T large, 

(4.24)

and any large artificial sample, , generated by the same assumed
(true) data generating process, f(rt | Tt-1 ; 20 ), that is behind the observed return data, r. These
conjectures are formalized by Gallant and Tauchen (1996), who show how the pseudo score
moments obtained in (4.23) by fixing  can serve as valid (and efficient) moment conditions
for estimating the parameter of interest, 2. Since no analytic expression for the expectation on
the extreme left in (4.24) is available, they propose a simulation estimator where the expectation
is approximated arbitrarily well by a very large simulated sample moment (M>>T ) from the
true underlying model.  The ability to practically eliminate the simulation error renders the EMM
estimator (in theory) independent of simulation size, M, but the uncertainty associated with the
projection step, for which the sample size is constrained by the actual data, remains and the
estimator, , is asymptotically normal with standard errors that reflects the estimation
uncertainty in (4.23).
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An obvious attraction of the EMM technique, beyond the potential for efficient inference, is that
there are almost no restrictions on the underlying parametric model apart from stationarity and
the ability to be able to simulate effectively from the model. This implies that the procedure can
be used for continuous-time processes, even if we only observe a set of discretely sampled data.
A seemingly important drawback,  however, is the lack of any implied estimates of the
underlying latent state variables which are critical for successful forecasting. Gallant and
Tauchen (1998) provides a solution within the EMM setting through the so-called reprojection
technique, but the procedure can be used more widely in parametric dynamic latent variable
model estimated by other means as well.

Reprojection takes the parameter estimate of the system as given, i.e., the EMM estimator for 2
in the current context.  It is then feasible to generate arbitrarily long simulated series of
observable and latent variables. These simulated series can be used for estimation of the
conditional density via a SNP density function approximation as under the projection step
described above. In other words, the identical procedure is exploited but now for a long
simulated series from the null model rather than for the observed data sample. For illustration, let

 be a long simulated series from the null model,  f(ri | öi-1 ;  ),
where we condition on the EMM estimate. We may then utilize the SNP density estimate based
on the simulated sample, in lieu of the unknown density for practical calculations,
where the point estimate, is treated as independent of the sample size M since the estimation
error is negligible for a sufficiently large simulated sample. In effect, the simulations integrate
out the latent variables in the representation (4.5). Given the tractability of the SNP densities, we
can now evaluate the one-step-ahead conditional mean and variance (or any other moments of
interest) directly as a function of any observed history xt-1 by simply plugging into the SNP
density estimate and perform the integration analytically - this is the reprojection step of
recombining the SNP density with the actual data. Clearly, the corresponding multi-step ahead
conditional density estimates can be constructed in an analogous fashion. Moreover, since the
simulations also generate contemporaneous values for the latent state vectors we may similarly
represent the conditional distributions of future latent state variables given the current and past
observable variables through the SNP density approximation strategy,

 (4.25)

This allows for direct forecasts of conditional volatility and associated quantities in a genuine
SV setting. As such, reprojection may be interpreted as a numerically intensive, simulation-
based, nonlinear Kalman filtering technique, providing a practical solution to the filtering and
forecasting problems in equations (4.20) and (4.21).

4.3  Markov Chain Monte Carlo (MCMC) Procedures for Inference and Forecasting

The MCMC method represents a Bayesian approach to the high-dimensional inference problem
implicit in the expression for the likelihood given in equation (4.18). The approach was
advocated as particularly well suited for analysis of the discrete SV model by Jacquier, Polson
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and Rossi (1994). Beyond the standard Bayesian perspective of treating the model parameters as
random variables rather than fixed coefficients, the main conceptual shift is that the entire latent
state vector is treated as additional parameters. Hence, the main focus is on the joint distribution
of the parameters and the vector of state variables, R = (2, s ), conditional on the data,  f(R | r ),
termed the posterior distribution. This density is extremely high-dimensional and analytically
intractable. The MCMC approach instead exploits that the joint distribution can be characterized
fully through a set of associated conditional distributions where the density for a group of
parameters, or even a single parameter, is expressed conditional on the remaining parameters.
Concretely, let Ri denote the i’th group of coefficients in R, and R-I be the vector obtained from
R by excluding the i’th group of coefficients. The so-called Clifford-Hammersley theorem then
implies that the following set of conditional distributions determines  f(R | r ),

f(R1 | R-1 , r),   f(R2 | R-2 , r),  ... ,  f(Rk | R-k , r), (4.26)

where, as described above, R  = (R1 , R2 , ... , Rk ) is treated as k exclusive subsets of parameters.

The MCMC procedure starts by initializing R = (2, s ) through conditioning on the observed
data, r, and drawing R  from the assumed prior distribution. Next, by combining the current draw
for the parameter vector with the specified SV model dynamics and the observed returns, it is
often feasible to draw the (group of) parameters sequentially conditional on the remainder of the
system and cycle through the conditional densities in (4.26). A full run through the parameter
vector is termed a sweep of the MCMC sampler. Some of these distributions may not be given in
closed form and the draws may need to be extended through an accept-reject procedure termed a
Metropolis-Hastings algorithm to ensure that the resulting Markov chain produces draws from
the invariant joint posterior target distribution. If all the conditional distributions can be sampled
directly we have a Gibbs sampler, but SV models often call for the two techniques to be used at
different stages of the sweep, resulting in a hybrid MCMC algorithm. Typically, a large number
of sweeps is necessary to overcome the serial dependence inherent in draws of any parameter
from subsequent sweeps of the sampler. Once a long sample from the joint posterior distribution
has been generated, inference on individual parameters and latent state variables can be done via 
the mode, mean and standard deviation of the posterior distribution, for example. Likewise, we
can analyze properties of functions of the state variables directly using the posterior distribution.

A key advantage of the MCMC procedure is that the distribution of the latent state vector is
obtained as an inherent part of the estimation. Moreover, the inference automatically accounts
for the uncertainty regarding model parameters, 2.  The resulting chain produces an elegant
solution to the smoothing problem of determining  f(s | r ). Of course, from a forecasting
perspective, the interest is in determining  f(st+j | xt  ), where the integer j $ 0 and  xt = (r1 , r2 , ... ,
rt ), rather than  f(st+j | xT  ) which is generated by the MCMC procedure. Unfortunately, the filter
related distribution,  f(st+1 | xt  ), corresponds to the intractable term in equation (4.18) that renders
the likelihood estimation impractical for genuine SV models. The MCMC inference procedure
succeeds by sidestepping the need to compute this quantity. However, given the economic
import of the issue, recent research is actively seeking new effective ways for better handling the
filtering problem within the MCMC framework.
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For a discrete-time SV model, the possibility of filtering as well as sequential one-step-ahead
volatility forecasting is linked to the feasibility of providing an effective scheme to generate a
random sample from  f(st+1 | xt , 2  ) given an existing set of draws (or particles),  st

1, st
2, ... , st

N, 
from the preceding distribution  f(st | xt-1 , 2  ). Such an algorithm is termed a particle filter. In
order to recognize the significance of the particle filter, note that by Bayes’ law,

 . (4.27)

The first distribution on the right hand side is typically specified directly by the SV model, so the
issue of determining the filtering distribution on the left hand side is essentially equivalent to the
task of obtaining the predictive distribution of the state variable on the extreme right. But given a
large set of particles we can approximate the latter term in straightforward fashion,

(4.28)

This provides a direct solution to the latent state vector forecasting problem, that in turn can be
plugged into (4.27) to provide a sequential update to the particle filter. This in essence is the
MCMC answer to the filtering and out-of-sample forecasting problems in equations (4.20) and
(4.21). The main substantive problem is how to best sample from the last distribution in (4.28),
as schemes which may appear natural can be very inefficient, see, e.g., the discussion and
suggestions in Kim, Shephard and Chib (1998).

In summary, the MCMC approach works well for many problems of significant interest, but
there are serious issues under scrutiny concerning the use of the technique for more complex
settings. When applicable, it has some unique advantages such as providing a complete solution
to the smoothing problem and accounting for inherent parameter estimation uncertainty. On the
other hand, there are systems that are more amenable to analysis under EMM and the associated
diagnostic tools and general reprojection procedures under EMM render it a formidable
contender. It is remarkable that the issues of efficient forecasting and filtering within genuine SV
models now has two attractive, albeit computationally intensive, solutions whereas just a few
years ago no serious approach to the problem existed.

4.4  Further Reading

The formal distinction between genuine stochastic volatility and ARCH models is developed in
Andersen (1992); see also Fleming and Kirby(2003). An early advocate for the Mixture-of-
Distributions-Hypothesis (MDH), beyond Clark (1973), is Praetz (1972) who shows that an i.i.d.
mixture of a Gaussian term and an inverted Gamma distribution for the variance will produce
Student-t distributed returns. However, if the variance mixture is not linked to observed
variables, the i.i.d. mixture is indistinguishable from a standard fat-tailed error distribution and
the associated volatility process is not part of the genuinely stochastic volatility class.



-48-

Many alternative representations of the driving process st have been proposed. Clark (1973)
observes that trading volume is highly correlated with return volatility and suggest that volume
may serve as a good proxy for the “activity variable,” st . Moreover, he finds volume to be
approximately lognormal (unconditionally), suggesting a lognormal-normal mixture for the
return distribution. One drawback of this formulation is that daily trading volume is assumed
i.i.d. Not only is this counterfactual for trading volume, but it also implies that the return process
is i.i.d.. This is at odds with the strong empirical evidence of pronounced temporal dependence
in return volatility. A number of natural extensions arise from the simple MDH. Tauchen and
Pitts (1983) provide a more structural interpretation, as they develop a characterization of the
joint distribution of the daily return and volume relationship governed by the underlying latent
information flow st. However, partially for tractability, they retain the temporal independence of
the information flow series. For early tests of the MDH model using high-frequency data, see,
e.g., Harris (1986, 1987), while the early return-volume literature is surveyed by Karpoff (1987).
Gallant, Rossi and Tauchen (1992) provides an extensive study of the joint conditional
distribution without imposing any MDH restrictions. Direct studies of the MDH include
Lamoureux and Lastrapes (1994) and Richardson and Smith (1994). While the latter strongly
rejects the standard MDH formulation, Andersen (1996) develops an alternative structurally
based version of the hypothesis and finds the “modified” MDH to perform much better. Further
refinements in the specification have been pursued by, e.g., Liesenfeld (1998, 2001) and
Bollerslev and Jubinsky (1999). In principle, the use of additional non-return variables along
with return data should enhance estimation efficiency and allow for a better assessment of
current market conditions. On the other hand, it is far from obvious that structural modeling of
complicated  multivariate models will prove useful in a prediction context as even minor mis-
specification of the additional series in the system may impede forecast performance. In fact,
there is no credible evidence yet that these models help improve volatility forecast performance,
even if they have importantly enhanced our understanding of the qualitative functioning of
financial markets.

SV diffusion models of the form analyzed by Hull and White (1987) were also proposed
concurrently by Johnson and Shanno (1987), Scott (1987), and Wiggins (1987). An early
specification and exploration of a pure jump continuous-time model is Merton (1976). Melino
and Turnbull (1990) were among the first to estimate SV models via GMM. The log-SV model
from (4.2)-(4.3) has emerged as a virtual testing ground for alternative inference procedures in
this context. Andersen and Sørensen (1996) provide a systematic study of the choice of moments
and weighting matrix for this particular model. The lack of efficiency is highlighted in Andersen,
Chung and Sørensen (1999) where the identical model is estimated through the scores of an
auxiliary model developed in accordance with the efficient method of moments (EMM)
procedure. Another useful approach is to apply GMM to moment conditions in the spectral
domain, see, e.g., Singleton (2001), Jiang and Knight (2002), and Chacko and Viceira (2003).
Within the QMLE Kalman filter based approach, a leverage effect may be incorporated and
allowance for the idiosyncratic return error to be conditionally Student-t distributed can be made,
as demonstrated by Harvey, Ruiz and Shephard (1994) and Harvey and Shephard (1996).
Andersen and Sørensen (1997) provides an extensive discussion of the relative efficiency of
QMLE and GMM for estimation of the discrete-time log SV model. The issue of asymptotically
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optimal moment selection for GMM estimation from among absolute or log squared returns in
the log SV model has received a near definitive treatment in Dhaene and Vergote (2004). The
standard log SV model has also been estimated through a number of other techniques by among
others Danielsson and Richard (1993), Danielsson (1994), Fridman and Harris (1998),
Monfardini (1998), and Sandman and Koopman (1998). Long-memory in volatility as discussed
in Section 3.4 can be similarly accommodated within an SV setting, see, e.g., Breidt, Crato and
de Lima (1998), Harvey (1998), Comte and Renault (1998), and Deo and Hurvich (2001).
Duffie, Pan and Singleton (2000) is a good reference for a general treatment of modeling with
the so-called affine class of models, while Piazzesi (2003) provides a recent survey of these
models with a view toward term structure applications.

EMM may be seen as a refinement of the Method of Simulated Moments (MSM) of Duffie and
Singleton (1993), representing a particular choice of indirect inference criterion, or binding
function, in the terminology of Gouriéroux, Monfort and Renault (1993). The approach also has
precedents in Smith (1990, 1993). An early application of EMM techniques to the discrete-time
SV model is Gallant, Hsieh and Tauchen (1997). Among the earliest papers using EMM for
stochastic volatility models are Andersen and Lund (1997) and Gallant and Tauchen (1997).
Extensions of the EMM approach to SV jump-diffusions are found in Andersen, Benzoni and
Lund (2002) and Chernov, Gallant, Ghysels and Tauchen (2003). As a starting point for
implementations of the EMM procedure, one may access general purpose EMM and SNP code
from a web site maintained by A. Ronald Gallant and George E. Tauchen at Duke University at
the link ftp.econ.duke.edu in the directories pub/get/emm and pub/arg/snp, respectively. In
practical applications, it is often advantageous to further refine the SNP density approximations
through specifically designed leading GARCH terms which parsimoneously capture the
dependency structure in the specific data under investigation. The benefits of doing so is further
discussed in Andersen and Lund (1997) and Andersen, Benzoni and Lund (2002).

The particle filter discussed above for the generation of filter estimates for the latent variables of
interest within the standard SV model arguably provides a more versatile approach than the
alternative importance sampling methods described by, e.g., Danielsson (1994) and Sandmann
and Koopman (1998). The extension of the MCMC inference technique to a continuous-time
setting is discussed in Elerian, Chib and Shephard (2001) and Eraker (2001). The latter also
provides one of the first examples of MCMC estimation of an SV diffusion model, while Eraker,
Johannes and Polson (2003) further introduces jumps in both prices and volatility. Johannes and
Polson (2003) offer a recent comprehensive survey of the still ongoing research on the use of the
MCMC approach in the general nonlinear jump-diffusion SV setting.

5.   Realized Volatility

The notion of realized volatility has at least two key distinct implications for practical volatility
estimation and forecasting. The first relates to the measurement of realizations of the latent
volatility process without the need to rely on an explicit model. As such, the realized volatility
provides the natural benchmark for forecast evaluation purposes. The second relates to the
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possibility of  modeling volatility directly through standard time series techniques with
discretely sampled daily observations, while effectively exploiting the information in intraday
high-frequency data.

5.1   The Notion of Realized Volatility

The most fundamental feature of realized volatility is that it provides a consistent nonparametric
estimate of the price variability that has transpired over a given discrete interval. Any log-price
process subject to a no-arbitrage condition and weak auxiliary assumptions will constitute a
semi-martingale that may be decomposed into a locally predictable mean component and a
martingale with finite second moments. Within this class, there is a unique measure for the
realized sample-path variation termed the quadratic variation. By construction the quadratic
variation cumulates the intensity of the unexpected price changes over the specific horizon and it
is thus a prime candidate for a formal volatility measure.

The intuition behind the use of realized volatility as a return variation measure is most readily
conveyed within the popular continuous-time diffusion setting (4.9) obtained by ruling out jumps
and thus reducing to the representation (1.7), reproduced here for convenience,

dp(t)   =   :(t) dt  +  F(t) dW(t) ,     t 0 [0,T]. (5.1)

Applying a discretization of the process as in Section 1, we have for small ) > 0, that

 , (5.2)

where .

Over short intervals the squared return and the squared return innovation are closely related as
both are largely determined by the idiosyncratic return component,

. (5.3)

In particular, the return variance is (approximately) equal to the expected squared return
innovation,

. (5.4)

This suggests that we may be able to measure the return volatility directly from the squared
return observations. However, this feature is not of much direct use as the high-frequency returns
have a large idiosyncratic component that induces a sizeable measurement error into the actual
squared return relative to the underlying variance. Up to the dominant order in ),

, (5.5)
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where terms involving higher powers of ) are ignored as they become negligible for small
values of ). Thus, it follows that the “noise-to-signal” ratio in squared returns relative to the
underlying volatility is of the same order as volatility itself,

. (5.6)

This relationship cannot be circumvented when only one (squared) return observation is used as
a volatility proxy. Instead, by exploiting the fact that return innovations, under a no-arbitrage
(semi-martingale) assumption, are serially uncorrelated to construct volatility measures for lower
frequency returns we find, to dominant order in ),

, (5.7)

where the last approximation stems from the sum converging to the corresponding integral as the
size of ) shrinks toward zero. Equation (5.7) generalizes (5.4) to the multi-period setting with
the second approximation in (5.7) only being meaningful for ) small.

The advantage of (5.7) is that the uncorrelated “measurement errors” have been effectively
smoothed away to generate a much better noise-to-signal ratio. The expression in (5.5) may be
extended in a similar manner to yield,

. (5.8)

Consequently,

, (5.9)
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where the integrated quarticity is defined through the identity on the right hand side of (5.9),
with the integrated variance, IV(t), having previously been defined in (4.12).

The fact that the “noise-to-signal” ratio in (5.9) shrinks to zero with ) suggests that high-
frequency returns may be very useful for estimation of the underlying (integrated) volatility
process. The notion of realized volatility is designed to take advantage of these features.
Formally, realized volatility is defined as,

. (5.10)

Equation (5.8) suggests that realized volatility is consistent for the integrated volatility in the
sense that finer and finer sampling of the intraday returns, ) 6 0, ultimately will annihilate the
measurement error and, in the limit, realized volatility measures the latent integrated volatility
perfectly, that is,

RV(t,))  6  IV(t) , (5.11)

as ) 6 0. These arguments may indeed by formalized; see, e.g., the extended discussion in
Andersen, Bollerslev and Diebold (2003a). In reality, there is a definite lower bound on the
return horizon that can be used productively for computation of the realized volatility, both
because we only observe discretely sampled returns and, more important, market microstructure
features such as discreteness of the price grid and bid-ask spreads induce gross violations of the
semi-martingale property at the very highest return frequencies. This implies that we typically
will be sampling returns at an intraday frequency that leaves a non-negligible error term in the
estimate of integrated volatility. It is natural to conjecture from (5.9) that asymptotically, as )60,

, (5.12)

which turns out to be true under quite general assumptions. Of course, the IQ(t) measure must be
estimated as well for the above result to provide a practical tool for inference. The distributional
result in (5.12) and a feasible consistent estimator for IQ(t) based purely on intraday data have
been provided by Barndorff-Nielsen and Shephard (2002, 2004b). It may further be shown that
these measurement errors are approximately uncorrelated across consecutive periods which has
important simplifying implications for time series modeling.

The consistency result in (5.11) extends to the general semi-martingale setting where the price
path may display discontinuities due to jumps, as specified in equation (4.9). The realized
volatility will still converge in the continuous-record limit () 6 0) to the period-by-period
quadratic variation of the semi-martingale. However, the quadratic variation is no longer
identical to the integrated volatility but will also include the cumulative squared jumps,
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. (5.13)

A few comments are in order. First, QV(t) is best interpreted as the actual return variation that
transpired over the period, and as such it is the natural target for realized volatility measurement.
Second, QV(t) is the realization of a random variable which generally cannot be forecasted with
certainty at time t-1.  But it does represent the future realization that volatility forecasts for time t
should be compared against. In other words, the quadratic variation constitutes the quantity of
interest in volatility measurement and forecasting. Since the realizations of QV(t) are latent, it is
natural to use the observed RV(t,)) as a feasible proxy. Third, financial decision making is
concerned with forecasts of volatility (or quadratic variation) rather than the QV(t) directly.
Fourth, the identification of forecasts of return volatility with forecasts of quadratic variation is
only approximate as it ignores variation in the process induced by innovations in the conditional
mean process. Over short horizons the distinction is negligible, but for longer run volatility
prediction (quarterly or annual) one may need to pay some attention to the discrepancy between
the two quantities, as discussed at length in Andersen, Bollerslev and Diebold (2003a).

The distribution theory for quadratic variation under the continuous sample path assumption has
also been extended to cover cumulative absolute returns raised to an arbitrary power. The
leading case involves cumulating the high-frequency absolute returns. These quantities display
improved robustness properties relative to realized volatility as the impact of outliers are
mitigated. Although the limiting quantity - the power variation - is not directly linked to the
usual volatility measure of interest in finance, this concept has inspired further theoretical
developments that has led to intriguing new nonparametric tests for the presence of jumps and
the identification of the associated jump sizes, see, e.g., Barndorff-Nielsen and Shephard
(2004a). Since the jumps may have very different intertemporal persistence characteristics than
the diffusion volatility, explicit disentangling of the components of quadratic variation
corresponding to jumps versus diffusion volatility can have important implications for volatility
forecasting.

In summary, the notion of realized volatility represents a model-free approach to (continuous-
record) consistent estimation of the quadratic return variation under general assumptions based
primarily upon arbitrage-free financial markets. As such it allows us to harness the information
inherent in high-frequency returns for assessment of lower frequency return volatility. It is thus
the natural approach to measuring actual (ex post) realized return variation over a given horizon.
This perspective has now gained widespread acceptance in the literature, where alternative
volatility forecast models are routinely assessed in terms of their ability to explain the
distribution of subsequent realized volatility, as defined above.

5.2   Realized Volatility Modeling

The realized volatility is by construction an observed proxy for the underlying quadratic
variation and the associated (measurement) errors are uncorrelated. This suggests a
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straightforward approach where the temporal features of the series are modeled through standard
time series techniques, letting the data guide the choice of the appropriate distributional
assumptions and the dynamic representation. This is akin to the standard procedure for modeling
macroeconomic data where the underlying quantities are measured (most likely with a
substantial degree of error) and then treated as directly observed variables. 

The strategy of estimating time series models directly for realized volatility is advocated in a
sequence of papers by Andersen, Bollerslev, Diebold and Ebens (2001) and Andersen,
Bollerslev, Diebold and Labys, henceforth ABDL, (2001, 2003). A striking finding is that the
realized volatility series share fundamental statistical properties across different asset classes,
time periods, and countries. The evidence points strongly toward a long memory type of
dependency in volatility. Moreover, the logarithmic realized volatility series is typically much
closer to being homoskedastic and approximately unconditionally Gaussian. These features are
readily captured through an ARFIMA(p,d,0)  representation of the logarithmic realized volatility,

M(L) (1-L)d  ( log RV(t,)) - :0 )   =   ut  ,      t = 1,2, ... T, (5.14)

where (1-L)d denotes the fractional differencing operator, M(L) is a polynomial lag operator
accounting for standard autoregressive structure, :0  represents the unconditional mean of the
logarithmic realized volatility, and ut is a white noise error term that is (approximately)
Gaussian. The coefficient d usually takes a value around 0.40, consistent with a stationary but
highly persistent volatility process for which shocks only decay at a slow hyperbolic rate rather
than the geometric rate associated with standard ARMA models or GARCH models for the
conditional variance. Finally, the volatility of volatility is strongly increasing in the level of
volatility as log realized volatility is approximately homoskedastic. This is, of course,
reminiscent of the log SV and the EGARCH models.

A number of practical modeling issues have been sidestepped above. One is the choice of the
sampling frequency at which the realized volatility measures are constructed. The early literature
focused primarily on determining the highest intraday frequency at which the underlying returns
satisfy the maintained semi-martingale assumption of being approximately uncorrelated. An
early diagnostic along these lines termed the “volatility signature plot” was developed by ABDL
(1999, 2000), as discussed further in Section 7 below. A simple alternative is to apply standard
ARMA filtering to the high-frequency returns in order to strip them of any “artificial” serial
correlation induced by the market microstructure noise, and then proceed with the filtered
uncorrelated returns in lieu of the raw high-frequency returns. While none of these procedures
are optimal in a formal statistical sense, they both appear to work reasonable well in many
practical situations.  Meanwhile, a number of alternative more efficient sampling schemes under
various assumptions about the market microstructure complications have recently been proposed
in a series of interesting papers, and this is still very much ongoing research.

A second issue concerns the potential separation of jumps and diffusive volatility components in
the realized volatility process. The theoretical basis for these procedures and some initial
empirical work is presented in Barndorff-Nielsen and Shephard (2004a). The issue has been
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pursued empirically by Andersen, Bollerslev and Diebold (2003b), who find compelling
evidence that the diffusive volatility is much more persistent than the jump component. In fact,
the jumps appear close to i.i.d., although the jumps in equity indices display some clustering,
especially in the size of the jumps. This points to potentially important improvements in
modeling and forecasting from this type of separation of the realized volatility into sudden
discrete shifts in prices versus more permanent fluctuations in the intensity of the regular price
movements. Empirically, this is in line with the evidence favoring non-Gaussian fat-tailed return
innovations in ARCH models.

A third issue is the approach used to best accommodate the indications of “long memory.” An
alternative to fractional integration is to introduce several autoregressive volatility components
into the model. As discussed in the context of the GARCH class of models in Section 3.4, if the
different components display strong, but varying, degrees of persistence they may combine to
produce a volatility dependency structure that is indistinguishable from long memory over even
relatively long horizons.

5.3   Realized Volatility Forecasting

Forecasting is straightforward once the realized volatility has been cast within the traditional
time series framework and the model parameters have been estimated. Since the driving variable
is the realized volatility we no longer face a latent variable issue. This implies that standard
methods for forecasting a time series within the ARFIMA framework is available; see, e.g.,
Beran (1994) for an introduction to models incorporating long memory features. One-step-ahead
minimum mean-squared error forecasts are readily produced, and within the linear Gaussian
setting it is then legitimate to further condition on the forecast in order to iterate forward and
produce multiple-step-ahead forecasts. There are a couple of caveats, however. First, as with
most other volatility forecasting procedures, the forecasts are, of course, conditional on the point
estimate for the model parameters. Second, if the model is formulated in terms of the logarithmic
volatility then it is also log volatility that is being predicted through the usual forecast
procedures. There is a practical problem of converting the forecast for log volatility into a “pure”
volatility forecast as the expected value of the transformed variable depends not only on the
expected log volatility, but on the entire multiple-step-ahead conditional distribution of log
volatility. For short horizons this is not an issue as the requisite correction term usually is
negligible, but for longer horizons adjustments may be necessary. This is similar to the issue that
arise in the construction of forecast form the EGARCH model. As discussed in Section 3.6, the
required correction term may be constructed by simulation based methods, but the preferred
approach will depend on the application at hand and the distributional characteristics of the
model. For additional inspiration on how to address such issues consult, e.g., the chapter on
ARMA forecasting methods by Lütkepohl (2003).

A few additional comments are in order. First, the evidence in ABDL (2003a) indicates that the
above approach has very good potential. The associated forecasts for foreign exchange rate
volatility outperform a string of alternative candidate models from the literature. This is not a
tautology as it should be preferable to generate the forecasts from the true underlying model
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rather than an ad hoc time series model estimated from period-by-period observations of realized
volatility. In other words, if a GARCH diffusion is the true model then optimal forecasts would
incorporate the restrictions implied by this model. However, the high-frequency volatility
process is truly complex, possessing several periodic components, erratic short run dynamics and
longer run persistence features that combined appear beyond reach of simple parametric models.
The empirical evidence suggests that daily realized volatility serves as a simple, yet effective,
aggregator of the volatility information inherent in the intraday data.

Second, there is an issue of how to compute realized volatility for a calendar period when the
trading day is limited by an official closing. This problem is minor for the over-the-counter
foreign exchange market where 24-hour trading is observed, but this is often not the case for
equity or bond markets. For example, for a one-month-ahead equity volatility forecast there may
only be twenty-two trading days with about six-and-a-half hours of trading per day. But the
underlying price process is not stalled while the markets are closed. Oftentimes there will be
substantial changes in prices between one market close and the subsequent opening, reflecting
return volatility overnight and over the weekend. One solution is to simply rely on the intraday
returns for a realized volatility measure over the trading day and then scale this quantity up by a
factor that reflects the average ratio of volatility over the calendar day versus the trading day.
This may work quite satisfactorily in practice, but it obviously ignores the close-to-open return
for a given day entirely in constructing the realized volatility for that calendar day. Alternatively,
the volatility of the close-to-open return may be modeled by a conventional GARCH type model.

Third, we have not discussed the preferred sampling frequency of intraday returns in situations
where the underlying asset is relatively illiquid. If updated price observations are only available
intermittently throughout the trading day, many high-frequency returns may have to be computed
from prices or quotes earlier in the day. This brings up a couple of issues. One, the effective
sampling frequency is lower than the one that we are trying to use for the realized volatility
computation. Two, illiquid price series also tend to have larger bid-ask spreads and be more
sensitive to random fluctuations in order flow, implying that the associated return series will
contain a relatively large amount of noise. A simple response that will help alleviate both issues
is to lower the sampling frequency. However, with the use of less intraday returns comes a larger
measurement error in realized volatility, as evidenced by equation (5.12). Nonetheless, for an
illiquid asset it may only be possible to construct meaningful weekly rather than daily realized
volatility measures from say half-hourly or hourly return observations rather than five-minute
returns. Consequently, the intertemporal fluctuations are smoothed out so that the observed
measure carries less information about the true state of the volatility at the end of the period.
This, of course, can be critically important for accurate forecasting.

In sum, the use of the realized volatility measures for forecasting is still in its infancy and many
issues must be explored in future work. However, it is clear that the use of intraday information
has large potential to improve upon the performance of standard volatility forecast procedures
based only on daily or lower frequency data. The realized volatility approach circumvents the
need to model the intraday data directly and thus provides a great deal of simplification.
Importantly, it seems to achieve this objective without sacrificing a lot of efficiency. For
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example, Andersen, Bollerslev and Meddahi (2004) find the time series approach built directly
from the realized volatility measures to be very good approximations to the theoretically optimal
procedures in a broad class of SV diffusion models that can be analyzed analytically through
newly developed tools associated with the so-called Eigenfunction SV models of Meddahi
(2001). Nonetheless, if the objective exclusively is volatility forecasting, some very recent work
suggests that alternative intraday measures may carry even more empirically relevant
information regarding future volatility, including the power variation measures constructed from
cumulative absolute returns; see, e.g., Ghysels, Santa-Clara and Valkanov (2004). This likely
reflects superior robustness features of absolute versus squared intraday returns, but verification
of such conjectures awaits future research. The confluence of compelling empirical performance,
novel econometric theory, the availability of ever more high-frequency data and computational
power, and the importance of forecast performance for decision making render this approach
fertile ground for new research.

5.4  Further Reading

The realized volatility approach has a precedent in the use of cumulative daily squared returns as
monthly volatility measures, see, e.g., French, Schwert and Stambaugh (1987) and Schwert
(1989). Hsieh (1989) was among the first to informally apply this same procedure with high-
frequency intraday returns, while Zhou (1996) provides one of the earliest formal assessments of
the relationship between cumulative squared intraday returns and the underlying return variance,
albeit in a highly stylized setting. The pioneering work by Olsen & Associates on the use of
high-frequency data, as summarized in Dacorogna et al. (2001), also importantly paved the way
for many of the more recent empirical developments in the realized volatility area.

The use of component structures and related autoregressive specifications for approximating
long-memory dependencies within the realized volatility setting has been explored by Andersen,
Bollerslev and Diebold (2003b), Barndorff-Nielsen and Shephard (2001), Bollerslev and Wright
(2001), and Corsi (2003), among others.  The finite sample performance of alternative non-
parametric tests for jumps based on the bipower variation measure introduced by Barndorff-
Nielsen and Shephard (2004a) have been extensively analyzed by Huang and Tauchen (2004).
Andersen, Bollerslev and Diebold (2003b) demonstrate the importance of disentangling the
components of quadratic variation corresponding to jumps versus diffusion volatility for
volatility forecasting. The complexities involved in a direct high-frequency characterization of
the volatility process is also illustrated by Andersen and Bollerslev (1998c).

Ways of incorporating noisy overnight returns into the daily realized volatility measure are
discussed in Fleming, Kirby and Ostdiek (2003) and Hansen and Lunde (2004a).  The related
issue of measuring the integrated variance in the presence of market microstructure noise and
how to best use all of the available high frequency data has been addressed in a rapidly growing
recent literature. Corsi, Zumbach, Müller and Dacorogna (2001) argue for the use of exponential
moving average filtering, similar to a standard MA(1) filter for the high-frequency returns, while
other more recent procedures, including sub-sampling and ways of choosing the “optimal”
sampling frequency, have been suggested and analyzed empirically by, e.g., Aït-Sahalia,
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Mykland and Zhang (2005), Bandi and Russell (2004), Barucci and Reno (2002), Bollen and
Inder (2002), Curci and Corsi (2004), and Hansen and Lunde (2004b), among others. Some of
these issues are discussed further in Section 7 below, where we also consider the robust
alternative range based volatility estimator recently explored by Alizadeh, Brandt and Diebold
(2002) for dynamic volatility modeling and forecasting.

Implied volatility provides yet another forward looking volatility measure. Implied volatilities
are based on the market’s forecasts of future volatilities extracted from the prices of options
written on the asset of interest. As discussed in Section 2.2.4 above, using a specific option
pricing formula, one may infer the expected integrated volatility of the underlying asset over the
remaining time-to-maturity of the option. The main complication associated with the use of these
procedures lies in the fact that the option prices also generally reflect a volatility risk premium in
the realistic scenario where the volatility risk cannot be perfectly hedged; see, e.g., the
discussion in Bollerslev and Zhou (2005). Nonetheless, many studies find options implied
volatilities to provide useful information regarding the future volatility of the underlying asset.
At the same time, the results pertaining to the forecast performance of implied volatilities are
somewhat mixed, and there is still only limited evidence regarding the relative predictive power
of implied volatilities versus the realized volatility procedures discussed above. Another issue is
that many assets of interest do not have sufficiently active options markets that reliable implied
volatilities can be computed on, say, a daily basis.

6.  Multivariate Volatility

The discussion in the preceding three sections has been focused almost exclusively on univariate
forecasts.  Yet, as discussed in Section 2, in many practical situations covariance and/or
correlation forecasting plays an equal, if not even more important, role in the uses of volatility
forecasts.  Fortunately, many of the same ideas and procedures discussed in the context of
univariate forecasts are easily adapted to the multivariate setting.  However, two important
complications arise in this setting, namely the imposition of sufficient conditions to ensure that
the forecasts for the covariance matrix remain positive definite for all forecasting horizons, and,
second, maintaining an empirically realistic yet parsimoniously parameterized model.  We will
organize our discussion of the various multivariate approaches with these key concerns in mind.

Before turning to this discussion, it is worth noting that in many situations, multivariate volatility
modeling and forecasting may be conveniently sidestepped through the use of much-simpler-to-
implement univariate procedures for appropriately transformed series.  In particular, in the
context of financial market volatility forecasting, consider the leading case involving the
variance of a portfolio made up of N individual assets.  In the notation of Section 2.2.1 above,

. (6.1)

The conditional one-step-ahead variance of the portfolio equals,
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 , (6.2)

where  denotes the N×N covariance matrix for the returns.  A forecast for the portfolio
return variance based upon this representation therefore requires the construction of multivariate
forecasts for the ½N(N+1) unique elements in the covariance matrix for the assets in the
portfolio.  Alternatively, define the univariate time series of artificial historical portfolio returns
constructed on the basis of the weights for the current portfolio in place,

. (6.3)

A univariate forecast for the variance of the returns on this artificially constructed portfolio
indirectly ensures that the covariances among the individual assets receive exactly the same
weight as in equation (6.2).  Note, that unless the portfolio weights for the actual portfolio in
place are constantly re-balanced, the returns on this artificially constructed  portfolio will
generally differ from the actual portfolio returns, that is  for J…t.  As

such, the construction of the variance forecasts for  requires the estimation of a new
(univariate) model each period to properly reflect the relevant portfolio composition in place at
time t.  Nonetheless, univariate volatility models are generally much easier to implement than
their multivariate counterparts, so that this approach will typically be much less computationally
demanding than the formulation of a satisfactory full scale multivariate volatility model for

, especially for large values of N.  Moreover, since the relative changes in the actual
portfolio weights from one period to the next are likely to be small, good starting values for the
parameters in the period-by-period univariate models are readily available from the estimates
obtained in the previous period.  Of course, this simplified approach also requires that historical
returns for the different assets in the portfolio are actually available.  If that is not the case,
artificial historical prices could be constructed from a pricing model, or by matching the returns
to those of other assets with similar characteristics; see, e.g., Andersen, Bollerslev,
Christoffersen and Diebold (2005) for further discussion along these lines.

Meanwhile, as discussed in Sections 2.2.2 and 2.2.3, there are, of course, many situations in
which forecasts for the covariances and/or correlations play a direct and important role in
properly assessing and comparing the risks of different decisions or investment opportunities. 
We next turn to a discussion of some of the multivariate models and forecasting procedures
available for doing so.

6.1  Exponential Smoothing and RiskMetrics

The exponentially weighted moving average filter, championed by RiskMetrics, is arguable the
most commonly applied approach among finance practitioners for estimating time-varying
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covariance matrices.  Specifically, let  denote the N×1 vector of asset returns.  The
estimate for the current covariance matrix is then defined by,

. (6.4)

This directly parallels the earlier univariate definition in equation (3.2), with the additional
assumption that the mean of all the elements in  is equal to zero.  As in the univariate case,
practical implementation is typically done by truncating the sum at  I = t-1, scaling the finite sum
by .  This approach is obviously very simple to implement in any dimension N,
involving only a single tuning parameter, (, or by appealing to the values advocated by
RiskMetrics (0.06 and 0.04 in the case of daily and monthly returns, respectively) no unknown
parameters whatsoever.  Moreover, the resulting covariance matrix estimates are guaranteed to
be positive definite.

The simple one-parameter filter in (6.4) may, of course, be further refined by allowing for
different decay rates for the different elements in .  Specifically, by using a smaller value of (

for the off-diagonal, or covariance, terms in , the corresponding time-varying correlations,

 , (6.5)

will exhibit more persistent dynamic dependencies.  This slower rate of decay for the
correlations often provide a better characterization of the dependencies across assets.

Meanwhile, the h-period-ahead forecasts obtained by simply equating the future conditional
covariance matrix with the current filtered estimate,

 , (6.6)

are plagued by the same counterfactual implications highlighted in the context of the
corresponding univariate filter in Sections 3.1 and 3.2.  In particular, assuming that the one-
period returns are serially uncorrelated so that the forecast for the covariance matrix of the multi-
period returns equals the sum of the successive one-period covariance forecasts,

, (6.7)

the multi-period covariance matrix scales with the forecast horizon, k, rather than incorporating
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empirically more realistic mean-reversion.  Moreover, it is difficult to contemplate the choice of
the tuning parameter(s), (, for the various elements in  without a formal model.  The
multivariate GARCH class of models provides an answer to these problems by formally
characterizing the temporal dependencies in the forecasts for the individual variances and
covariances within a coherent statistical framework.

6.2  Multivariate GARCH Models

The multivariate GARCH class of models was first introduced and estimated empirically by
Bollerslev, Engle and Wooldridge (1998).  Denoting the one-step-ahead conditional mean vector
and covariance matrix for Yt by  and , respectively,
the multivariate version of the decomposition in (3.5) may be expressed as,

, (6.8)

where Zt now denotes a vector white noise process with unit variances.  The square root of the
matrix is not unique, but any operator satisfying the condition that will

give rise to the same conditional covariance matrix.

The multivariate counterpart to the successful univariate GARCH(1,1) model in (3.6) is now
naturally defined by,

, (6.9)

where , vech(@ ) denotes the operator that stacks the ½N(N+1) unique elements in the
lower triangular part of a symmetric matrix into a ½N(N+1)×1 vector, and the parameter
matrices C, A, and B, are of dimensions ½N(N+1)×1, ½N(N+1)×½N(N+1), and
½N(N+1)×½N(N+1), respectively.  As in the univariate case, the GARCH(1,1) model in (6.9) is
readily extended to higher order models by including additional lagged terms on the right-hand-
side of the equation.  Note, that for N=1 the model in (6.9) is identical to formulation in (3.6),
but for N>1 each of the elements in the covariance matrix is allowed to depend (linearly) on all
of the other lagged elements in the conditional covariance matrix as well as the cross products of
all the lagged innovations.

The formulation in (6.9) could also easily be extended to allow for asymmetric influences of past
negative and positive innovations, as in the GJR or TGARCH model in (3.11), by including the
signed cross-products of the residuals on the right-hand-side.  The most straightforward
generalized would be to simply include , but other matrices
involving the cross-products of  and/or  have proven important in
some empirical applications.  Of course, other exogenous explanatory variables could be
included in a similar fashion.
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Meanwhile, multi-step-ahead forecasts for the conditional variances and covariances from the
linear model in (6.9) are readily generated by recursive substitution in the equation,

(6.10)

where by definition,

and,
.

These recursions, and their extensions to higher order models, are, of course, easy to implement
on a computer.  Also, provided that the norm of all the eigenvalues of A+B are less than unity,
the long-run forecasts for  will converge to the “unconditional covariance matrix” implied

by the model, , at the exponential rate of decay dictated by (A+B)h.  Again, these
results directly mirror the univariate expressions in equations (3.8) and (3.9).

Still, nothing guarantees that the  “unconditional covariance matrix” implied by (6.9), 
, is actually positive definite, nor that the recursion in (6.10) results in positive

definite h-step ahead forecasts for the future covariance matrices.  In fact, without imposing any
additional restrictions on the C, A, and B parameter matrices, the forecasts for the covariance
matrices will most likely not be positive definite.  Also, the unrestricted GARCH(1,1)
formulation in (6.9) involves a total of ½N4+N3+N2+½N  unique parameters.  Thus, for N=5 the
model has 465 parameters, whereas for N=100 there is a total of 51,010,050 parameters! 
Needless to say, estimation of this many free parameters isn’t practically feasible.  Thus, various
simplifications designed to ensure positive definitness and a more manageable number of
parameters have been developed in the literature.

In the diagonal vech model the A and B matrices are both assumed to be diagonal, so that a
particular element in the conditional covariance matrix only depends on its own lagged value and
the corresponding cross product of the innovations.  This model may alternatively be written in
terms of Hadamard products, or element-by-element multiplication, as

 , (6.11)

where C, A, and B now denote symmetric positive definite matrices of dimension N×N.  This
model greatly reduces the number of free parameters to 3(N2+N)/2, and, importantly, covariance
matrix forecasts generated from this model according to the recursions in (6.10) are guaranteed
to be positive definite.  However, the model remains prohibitively “expensive” in terms of
parameters in large dimensions.  For instance, for N=100 there are still 15,150 free parameters in
the unrestricted diagonal vech model.
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A further dramatic simplification is obtained by restricting all of the elements in the A and B
matrices in (6.11) to be the same,  

. (6.12)

This scalar diagonal multivariate GARCH representation mimics the RiskMetrics exponential
smoother in equation (6.4), except for the positive definite C matrix intercept, and the one
additional smoothing parameter.  Importantly however, provided that "+$<1, the unconditional
covariance matrix implied by the model in (6.12) equals S = (1-"-$)-1C, and in parallel to the
expression for the univariate GARCH(1,1) model in equation (3.9), the h-period forecasts mean
reverts to S according to the formula,

.

This contrasts sharply with the RiskMetrics forecasts, which as previously noted show no mean
reversion, with the counter-factual implication that the multi-period covariance forecasts for
(approximately) serially uncorrelated returns scale with the forecast horizon.  Of course, the
scalar model in (6.12) could easily be refined to allow for different (slower) decay rates for the
covariances by adding just one or two additional parameters to describe the off-diagonal
elements.  Still, the model is arguably too simplistic from an empirical perspective, and we will
discuss other practically feasible multivariate models and forecasting procedures in the
subsequent sections.  Before doing so, however, we briefly discuss some of the basic principles
and ideas involved in the estimation of multivariate GARCH models.

6.3  Multivariate GARCH Estimation

Estimation and inference for multivariate GARCH models may formally proceed along the same
lines as for the univariate models discussed in Section 3.5.  In particular, assume that the
conditional distribution of  is multivariate normal with mean, , and covariance matrix,

.  The log-likelihood function is given by the sum of the corresponding T  logarithmic
conditional normal densities,

(6.13)

 ,

where we have highlighted the explicit dependence on the parameter vector, 2.  Provided that the
assumption of conditional normality is true and the parametric models for the mean and
covariance matrices are correctly specified, the resulting estimates, say , will satisfy the usual
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optimality conditions associated with maximum likelihood.  Moreover, even if the conditional
normality assumption is violated, the resulting estimates may still be given a QMLE
interpretation, with robust parameter inference based on the “sandwich-form” of the covariance
matrix estimator, as discussed in Section 3.5.

Meanwhile, as discussed in Section 2, when constructing interval or VaR type forecasts, the
whole conditional distribution becomes important.  Thus, in parallel to the discussion in Sections
3.5 and 3.6, other multivariate conditional distributions may be used in place of the multivariate
normal distributions underlying the likelihood function in (6.13).  Different multivariate
generalizations of the univariate fat-tailed student t distribution in (3.24) have proved quite
successful for many daily and weekly financial rate of returns.

The likelihood function in (6.13), or generalizations allowing for conditionally non-normal
innovations, may in principle be maximized by any of a number of different numerical
optimization techniques.  However, even for moderate values of N, say N$5, the dimensionality
of the problem for the general model in (6.9) or the diagonal vech model in (6.11) renders the
computations hopelessly demanding from a practical perspective.  As previously noted, this lack
of tractability motivates the more parsimonious parametric specifications discussed below.

An alternative approach for circumventing the curse-of-dimensionality within the context of the
diagonal vech model has recently been advocated by Ledoit, Santa-Clara and Wolf (2003). 
Instead of estimating all of the elements in the C, A and B matrices jointly, inference in their Flex
GARCH approach proceed by estimating separate bivariate models for all of the possible
pairwise combinations of the N elements in Yt .  These individual matrix estimates are then
“pasted” together to a full dimensional model in such a way that the resulting N×N matrices in
(6.11) are ensured to be positive definite.

Another practical approach for achieving more parsimonious and empirically meaningful
multivariate GARCH forecasting models rely on so-called variance targeting techniques. 
Specifically, consider the general multivariate formulation in (6.9) obtained by replacing C with 

, (6.14)

where V denotes a positive definite matrix.   Provided that the norm of all the eigenvalues for
A+B are less than unity, so that the inverse of (I-A-B) exists, this re-parameterization implies that
the long-run forecasts for  will converge to V  for .  As such, variance targeting can
help ensure that the long-run forecasts are well behaved.  Of course, this doesn’t reduce the
number of unknown parameters in the model per se, as the long-run covariance matrix, V, must
now be determined.  However, an often employed approach is to fix V at the unconditional
sample covariance matrix,

 ,
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where  denotes some first-stage estimate for the conditional mean.  This estimation of V
obviously introduces an additional source of parameter estimation error uncertainty, although the
impact of this is typically ignored in practice when conducting inference about the other
parameters entering the equation for the conditional covariance matrix.

6.4  Dynamic Conditional Correlations

One commonly applied approach for large scale dynamic covariance matrix modeling and
forecasting is the Constant Conditional Correlation (CCC) model of Bollerslev (1990). 
Specifically, let  denote the N×N diagonal matrix with the conditional standard deviations,
or the square root of the diagonal elements in , along the diagonal.  The
conditional covariance matrix may then be uniquely expressed in terms of the decomposition,

, (6.15)

where  denote the N×N  matrix of conditional correlations.  Of course, this decomposition
does not result in any immediate simplifications from a modeling perspective, as the conditional
correlation matrix must now be estimated.  However, following Bollerslev (1990) and assuming
that the temporal variation in the covariances are driven solely by the temporal variation in the
corresponding conditional standard deviations, so that the conditional correlations are constant,

, (6.16)

dramatically reduces the number of parameters in the model relative to the linear vech
specifications discussed above.  Moreover, this assumption also greatly simplifies the
multivariate estimation problem, which may now proceed in two steps.  In the first step N
individual univariate GARCH models are estimated for each of the series in Yt , resulting in an
estimate for the diagonal matrix, .  Then defining the N×1 vector of standardized residuals
for each of the univariate series,

, (6.17)

the elements in ' may simply be estimated by the corresponding sample analogue,

 . (6.18)

Importantly, this estimate for ' is guaranteed to be positive definite with ones along the diagonal
and all of the other elements between minus one and one.  In addition to being simple to
implement, this approach therefore has the desirable feature that as long as the individual
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variances in  are positive, the resulting covariance matrices defined by (6.15) are
guaranteed to be positive definite.

While the assumption of constant conditional correlations may often be a reasonable
simplification over shorter time periods, it is arguable too simplistic in many situations of
practical interest.  To circumvent this, while retaining the key features of the decomposition in
(6.15), Engle (2002) and Tse and Tsui (2002) have recently proposed a convenient framework
for directly modeling any temporal dependencies in the conditional correlations.  In the most
basic version of the Dynamic Conditional Correlation (DCC) model of Engle (2002), the
temporal variation in the conditional correlation is characterized by a simple scalar GARCH(1,1)
model, along the lines of (6.12), with the covariance matrix for the standardized residuals
targeted at their unconditional value in (6.18).  That is, 

. (6.19)

Although this recursion guarantees that the  matrices are positive definite, the individual
elements are not necessarily between minus one and one.  Thus, in order to arrive at an estimate
for the conditional correlation matrix, the elements in  must be standardized, resulting in
the following estimate for the ij’th correlation,

 . (6.20)

Like the CCC model, the DCC model is also relatively simple to implement in large dimensions,
requiring only the estimation of N univariate models along with a choice of the two exponential
smoothing parameters in (6.19).

Richer dynamic dependencies in the correlations could be incorporated in a similar manner,
although this immediately raises some of the same complications involved in directly
parameterizing .  However, as formally shown in Engle and Sheppard (2001), the
parameters in (6.19) characterizing the dynamic dependencies in , and in turn , may
be consistently estimated in a second step by maximizing the partial log likelihood function,

 ,
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where  refers to the first step estimates defined in (6.17).  Of course, the standard errors for the
resulting correlation parameter estimates must be adjusted to take account of the first stage
estimation errors in .  Extensions of the basic DCC structure in (6.19) and (6.20) along
these lines allowing for greater flexibility in the dependencies in the correlations across different
types of assets, asymmetries in the way in which the correlations respond to past negative and
positive return innovations, regime switches in the correlations, to name but a few, are currently
being actively explored by a number of researchers.

6.5  Multivariate Stochastic Volatility and Factor Models

An alternative approach for achieving a more manageable and parsimonious multivariate
volatility forecasting model entails the use of factor structures.  Factor structures are, of course,
central to the field of finance, and the Arbitrage Pricing Theory (APT) in particular. 
Multivariate factor GARCH and stochastic volatility models were first analyzed by Diebold and
Nerlove (1989) and Engle, Ng and Rothschild (1990).  To illustrate, consider a simple one-factor
model in which the commonality in the volatilities across the N×1 Rt vector of asset returns is
driven by a single scalar factor, ft,

 , (6.21)

where a and b denote N×1 parameter vectors, and et is assumed to be i.i.d. through time with
covariance matrix 7.  This directly captures the idea that variances (and covariances) generally
move together across assets.  Now, assuming that the factor is conditionally heteroskedastic,
with conditional variance denoted by , the conditional covariance matrix
for Rt takes the form,

. (6.22)

Compared to the unrestricted GARCH models discussed in Section 6.2, the factor GARCH
representation greatly reduces the number of free parameters.  Moreover, the conditional
covariance matrix in (6.22) is guaranteed to be positive definite.

To further appreciate the implications of the factor representation, let bi and 8ij denote the i’th
and ij’th element in b and 7, respectively.  It follows then directly from the expression in (6.22)
that the conditional correlation between the i’th and the j’th observation is given by,

 . (6.23)
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Thus, provided that the corresponding factor loadings are of the same sign, or bi bj > 0, the
conditional correlation implied by the model will increase toward unity as the volatility of the
factor increases.  That is, there is an empirically realistic built-in volatility-in-correlation effect.

Importantly, multivariate conditional covariance matrix forecasts are also readily constructed
from forecasts for the univariate factor variance.  In particular, assuming that the vector of
returns is serially uncorrelated, the conditional covariance matrix for the k-period continuously
compounded returns is simply given by,

, (6.24)

where .  Further assuming that the factor is directly observable
and that the conditional variance for ft  is specified in terms of the observable information set,

, the forecasts for  may be constructed along the lines of the univariate GARCH class
of models discussed in Section 3.  If, on the other hand, the factor is latent or if the conditional
variance for ft  is formulated in terms of unobservable information, Tt-1, one of the more intensive
numerical procedures for the univariate stochastic volatility class of models discussed in Section
4 must be applied in calculating .  Of course, the one-factor model in (6.21) could easily be
extended to allow for multiple factors, resulting in obvious generalizations of the expressions in
(6.22) and (6.24).  As long as the number of factors remain small, the same appealing
simplifications hold true.

Meanwhile, an obvious drawback from an empirical perspective to the simple factor model in
(6.21) with homoskedastic innovations concerns the lack of heteroskedasticity in certain
portfolios.  Specifically, let Q={R | R’b = 0, R…0} denote the set of N×1 vectors orthogonal to
the vector of factor loadings, b.  Any portfolio constructed from the N original assets with
portfolio weights, w=R /(R1 +  . . .+ RN ) where R0Q, will then be homoskedastic,

.

Similarly, the corresponding multi-period forecasts defined in (6.24) will also be time invariant.
Yet, in applications with daily or weekly returns it is almost always impossible to construct
portfolios which are void of volatility clustering effects.  The inclusion of additional factors does
not formally solve the problem.  As long as the number of factors is less than N, the
corresponding null-set Q is not empty.  Of course, allowing the covariance matrix of the
idiosyncratic innovations to be heteroskedastic would remedy this problem, but that then raises
the issue of how to model the temporal variation in the N×N dimensional 7t matrix.  One
approach would be to include enough factors so that the 7t matrix may be assumed to be
diagonal, only requiring the estimation of N univariate volatility models for the elements in et.

Whether the rank deficiency in the forecasts of the conditional covariance matrices from the
basic factor structure and the counterfactual implication of no volatility clustering in certain
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portfolios discussed above should be a cause for concern ultimately depends upon the uses of the
forecasts.  However, it is clear that the reduction in the dimension of the problem to a few
systematic risk factors may afford great computational simplifications in the context of large
scale covariance matrix modeling and forecasting.

6.6  Realized Covariances and Correlations

The high-frequency data realized volatility approach for measuring, modeling and forecasting
univariate volatilities outlined in Section 5 may be similarly adapted to modeling and forecasting
covariances and correlations.  To set out the basic idea, let R(t,)) denote the N×1 vector of
logarithmic returns over the [t-),t] time interval,

 . (6.26)

The N×N realized covariation matrix for the unit time interval, [t-1,t] , is then formally defined
by,

. (6.27)

This directly parallels the univariate definition in (5.10).  Importantly, the realized covariation
matrix is symmetric by construction, and as long as the returns are linearly independent and
N<1/), the matrix is guaranteed to be positive definite.

In order to more formally justify the realized covariation measure, suppose that the evolution of
the N×1 vector price process may be described by the N dimensional continuous-time diffusion,

dP(t)   =   9(t) dt  +  E(t) dW(t) ,     t 0 [0,T] , (6.28)

where 9(t) denotes the N×1 instantaneous drifts, E(t) refer to the N×N instantaneous diffusion
matrix, and W(t) now denotes an N×1 dimensional vector of independent standard Brownian
motions.  Intuitively, for small values of ) > 0,

 , (6.29)

where .  Of course, this latter expression directly mirrors
the univariate equation (5.2).  Now, using similar arguments to the ones in Section 5.1, it follows
that the multivariate realized covariation in (6.27) will converge to the corresponding
multivariate integrated covariation for finer and finer sampled high-frequency returns, or )60, 

. (6.30)
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Again, by similar arguments to the ones in Section 5.1,  the multivariate integrated covariation
defined by the right-hand-side of equation (6.30) provides the true measure for the actual return
variation and covariation that transpired over the [t-1,t] time interval.  Also, extending the
univariate results in (5.12), Barndorff-Nielsen and Shephard (2004b) have recently shown that
the multivariate realized volatility errors, , are approximately
serially uncorrelated and asymptotically (for )60) distributed as a mixed normal with a random
covariance matrix that may be estimated.  Moreover following (5.13), the consistency of the
realized covariation measure for the true quadratic covariation caries over to situations in which
the vector price process contains jumps. As such, these theoretical results set the stage for
multivariate volatility modeling and forecasting based on the realized covariation measures
along the same lines as the univariate discussion in Sections 5.2 and 5.3.

In particular, treating the ½N(N+1)×1 vector, vech[RCOV(t,))], as a direct observation (with
uncorrelated measurement errors) on the unique elements in the covariation matrix of interest,
standard multivariate time series techniques may be used in jointly modeling the variances and
the off-diagonal covariance elements.  For instance, a simple VAR(1) forecasting model,
analogues to the GARCH(1,1) model in (6.9), may be specified as,

, (6.31)

where ut denotes an N×1 vector white noise process.  Of course, higher order dynamic
dependencies could be included in a similar manner.  Indeed, the results in Andersen, Bollerslev,
Diebold and Labys (2001, 2003), suggest that for long-run forecasting it may be important to
incorporate long-memory type dependencies in both variances and covariances.  This could be
accomplished through the use of a true multivariate fractional integrated model, or as previously
discussed an approximating component type structure.

Even though RCOV(t,)) is positive definite by construction, nothing guarantees that the
forecasts from an unrestricted multivariate time series model along the lines of the VAR(1) in
(6.31) will result in positive definite covariance matrix forecasts.  Hence, it may be desirable to
utilize some of the more restrictive parameterizations for the multivariate GARCH models
discussed in Section 6.2, to ensure positive definite covariance matrix forecasts.  Nonetheless,
replacing  with the directly observable RCOV(t,)), means that the parameters in the
corresponding models may be estimated in a straightforward fashion using simple least squares,
or some other easy-to-implement estimation method, rather than the much more numerically
intensive multivariate MLE or QMLE estimation schemes.

Alternatively, an unrestricted model for the ½N(N+1) non-zero elements in the Cholesky
decomposition, or lower triangular matrix square-root, of RCOV(t,)), could also be estimated. 
Of course, the non-linear transformation involved in such a decomposition means that the
corresponding matrix product of the forecasts from the model will generally not be unbiased for
the elements in the covariation matrix itself.  Following Andersen, Bollerslev, Diebold and
Labys (2003), sometimes it might also be possible to infer the covariances of interest from the
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variances of different cross-rates or portfolios through appropriately defined arbitrage
conditions.  In those situations forecasts for the covariances may therefore be constructed from a
set of forecasting models for the corresponding variances, in turn avoiding directly modeling any
covariances.

The realized covariation matrix in (6.27) may also be used in the construction of realized
correlations, as in Andersen, Bollerslev, Diebold and Labys (2001) and Andersen, Bollerslev,
Diebold and Ebens (2001).  These realized correlations could be modeled directly using standard
time series techniques.  However, the correlations are, of course, restricted to lie between minus
one and one.  Thus, to ensure that this constraint is not violated, it might be desirable to use the
Fisher transform, , or some other similar transformation, to convert
the support of the distribution for the correlations from [-1,1] to the whole real line. This is akin
to the log transformation for the univariate realized volatilities employed in equation (5.14). 
Meanwhile, there is some evidence that the dynamic dependencies in the correlations between
many financial assets and markets are distinctly different from that of the corresponding
variances and covariances, exhibiting occasional “correlation breakdowns.”  These types of
dependencies may best be characterized by regime switching type models.  Rather than modeling
the correlations individually, the realized correlation matrix could also be used in place of 
in the DCC model in (6.19), or some generalization of that formulation, in jointly modeling all of
the elements in the conditional correlation matrix.

The realized covariation and correlation measures discussed above are, of course, subject to the
same market micro structure complications that plague the univariate realized volatility measures
discussed in Section 5.  In fact, some of the problems are accentuated with the possibility of non-
synchronous observations in two or more markets.  Research on this important issues is still very
much ongoing, and it is too early to draw any firm conclusions about the preferred method or
sampling scheme to employ in the practical implementation of the realized covariation measures. 
Nonetheless, it is clear that the realized volatility approach afford a very convenient and
powerful approach for effectively incorporating high-frequency financial data into both
univariate and multivariate volatility modeling and forecasting.

6.7  Further Reading

The use of historical pseudo returns as a convenient way of reducing the multivariate modeling
problem to a univariate setting, as outlined in Section 6.1, is discussed at some length in
Andersen, Bollerslev, Christoffersen and Diebold (2005).  This same study also discusses the use
of a smaller set of liquid base assets along with a factor structure as another computationally
convenient way of reducing the dimension of time-varying covariance matrix forecasting for
financial rate of returns.

The RiskMetrics, or exponential smoothing approach, for calculating covariances and associated
Value-at-Risk measures is discussed extensively in Christoffersen (2003), Jorion (2000), and
Zaffaroni (2004) among others.  Following earlier work by DeSantis and Gerard (1997),
empirically more realistic slower decay rates for the covariances in the context of exponential
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smoothing has been successfully implemented by DeSantis, Litterman, Vesval and Winkelmann
(2003).

In addition to the many ARCH and GARCH survey papers and book treatments listed in Section
3, the multivariate GARCH class of models has recently been surveyed by Bauwens, Laurent
and Rombouts (2005).  A comparison of some of the available commercial software packages for
the estimation of multivariate GARCH models is available in Brooks, Burke and Persand (2003).
Conditions for the covariance matrix forecasts for the linear formulations discussed in Section
6.2 to be positive definite was first established by Engle and Kroner (1995), who also introduced
the so-called BEKK parameterization.  Asymmetries, or leverage effects, within this same class
of models were subsequently studied by Kroner and Ng (1998).  The bivariate EGARCH model
of Braun , Nelson and Sunier (1995) and the recent matrix EGARCH model of Kawakatsu
(2005) offer alternative ways of doing so.  The multivariate GARCH QMLE procedures outlined
in Section 6.3 were first discussed by Bollerslev and Wooldridge (1992), while Ling and
McAleer (2003) provide a more recent account of some of the subsequent important theoretical
developments.  The use of a fat tailed multivariate student t-distribution in the estimation of
multivariate GARCH models was first considered by Harvey, Ruiz and Sentana (1992); see also
Bauwens and Laurent (2005) and Fiorentini, Sentana and Calzolari (2003) for more recent
applications of alternative multivariate non-normal distributions.  Issues related to cross-
sectional and temporal aggregation of multivariate GARCH and stochastic volatility models
have been studied by Nijman and Sentana (1996) and Meddahi and Renault (2004).

Several empirical studies have documented important temporal dependencies in asset return
correlations, including early contributions by Erb, Harvey and Viskanta (1994) and Longin and
Solnik (1995) focusing on international equity returns.  More recent work by Ang and Chen
(2002) and Cappiello, Engle and Sheppard (2004) have emphasized the importance of explicitly
incorporating assymmetries in the way in which the correlations respond to past negative and
positive return shocks.  Along these lines, Longin and Solnik (2001) report evidence in support
of more pronounced dependencies following large (extreme) negative return innovations.  A test
for the assumption of constant conditional correlations underlying the CCC model discussed in
Section 6.4 has been derived by Bera and Kim (2002).  Recent work on extending the DCC
model to allow for more flexible dynamic dependencies in the correlations, asymmetries in the
responses to past negative and positive returns, as well as switches in the correlations across
regimes, include Billio, Caporin and Gobbo (2003), Cappiello, Engle and Sheppard (2004),
Franses and Hafner (2003), and Pelletier (2005). Guidolin and Timmermann (2005b) find large
variations in the correlation between stock and bond returns across different market regimes
defined as crash, slow growth, bull and recovery. Sheppard (2004) similarly finds evidence of
business cycle frequency dynamics in conditional covariances.  

The factor ARCH models proposed by Diebold and Nerlove (1989) and Engle, Ng and
Rothschild (1990) have been used by Ng, Engle and Rothschild (1992) and Bollerslev and Engle
(1993), among others, in modeling common persistence in conditional variances and
covariances.  Harvey, Ruiz and Shephard (1994) and King, Sentana and Wadhwani (1994) were
among the first to estimate multivariate stochastic volatility models.  More recent empirical
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studies and numerically efficient algorithms for the estimation of latent multivariate volatility
structures include Aguilar and West (2000), Fiorentini, Sentana and Shephard (2004) and
Liesenfeld and Richard (2003).  Issues related to identification within heteroskedastic factor
models have been studied by Sentana and Fiorentini (2001).  A recent insightful discussion of
the basic features of multivariate stochastic volatility factor models, along with a discussion of
their origins, is provided in Shephard (2004).  The multivariate Markov-switching multifractal
model of Calvet, Fisher and Thompson (2005) may also be interpreted as a latent factor
stochastic volatility model with a closed form likelihood.  Other related relatively easy-to-
implement multivariate approaches include the two-step Orthogonal GARCH model of
Alexander (2001), in which the conditional covariance matrix is determined by univariate
models for a (small) set of the largest (unconditional) principal components.

The realized volatility approach discussed in Section 6.6 affords a simple practically feasible
way for covariance and correlation forecasting in situations when high-frequency data is
available.  The formal theory underpinning this approach in the multivariate setting has been
spelled out in Andersen, Bollerslev, Diebold and Labys (2003) and Barndorff-Nielsen and
Shephard (2004b).  A precursor to some of these results is provided by the alternative double
asymptotic rolling regression based framework in Foster and Nelson (1996).  The benefits of the
realized volatility approach versus more conventional multivariate GARCH based forecasts in
the context of asset allocation have been forcefully demonstrated by Fleming, Kirby and Ostdiek
(2003).  Meanwhile, the best way of actually implementing the realized covariation measures
with high-frequency financial data subject to market micro structure frictions still remains very
much of an open research question. In a very early paper, Epps (1979) first observed a dramatic
drop in high-frequency based sample correlations among individual stock returns as the length of
the return interval approached zero; see also Lundin, Dacorogna and Müller (1998).  In addition
to the many mostly univariate studies noted in Section 4, Martens (2003) provides a recent
assessment and comparison of some of the existing ways for best alleviating the impact of
market micro structure frictions in the multivariate setting, including the covariance matrix
estimator of De Jong and Nijman (1997), the lead-lag adjustment of Scholes and Williams
(1977), and the range-based covariance measure of Brandt and Diebold (2005).

The multivariate procedures discussed in this section are (obviously) not exhaustive of the
literature.  Other recent promising approaches for covariance and correlation forecasting include
the use of copulas for conveniently linking univariate GARCH (e.g., Jondeau and Rockinger,
2005, and Patton, 2004) or realized volatility models; the use of shrinkage to ensure positive
definitness in the estimation and forecasting of very large dimensional covariance matrices (e.g.,
Jagannathan and Ma, 2003, and Ledoit and Wolf, 2003); and forecast model averaging
techniques (e.g., Pesaran and Zaffaroni, 2004).  It remains to be seen which of these, if any, will
be added to the standard multivariate volatility forecasting toolbox.

7.  Evaluating Volatility Forecasts

The discussion up until this point has surveyed the most important univariate and multivariate
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volatility models and forecasting procedures in current use.  This section gives an overview of
some of the most useful methods available for volatility forecast evaluation. The methods
introduced here can either be used by an external evaluator or by the forecaster him/herself as a
diagnostic tool on the forecasting model. A more general discussion and review of the forecast
evaluation literature can be found in Diebold and Lopez (1996) and the chapter by West in this
Handbook.

Below, we will first introduce a general loss function framework and then highlight the
particular issues involved when forecasting volatility itself is the direct object of interest. We
then discuss several other important forecasting situations where volatility dynamics are crucial,
including Value-at-Risk, probability, and density forecasting. 

7.1  Point Forecast Evaluation from General Loss Functions

Consider the general forecast loss function, , discussed in Section 2, in which the
arguments are the univariate discrete-time real-valued stochastic variable, yt+1 , as well as its
forecast, . From the optimization problem solved by the optimal forecast,  must solve
the generic first order condition

(7.1)

The partial derivative of the loss function - the term inside the conditional expectation - is
sometimes referred to as the generalized forecast error. Realizations of this partial derivative
should fluctuate unpredictably around zero, directly in line with the standard optimality
condition that regular forecasts display uncorrelated prediction errors.

Specifically, consider the situation in which we observe a sequence of out-of-sample forecasts
and subsequent realizations, .  A natural diagnostic on (7.1) is then given by the
simple regression version of the conditional expectation, that is

 , (7.2)

where xt denotes a vector of candidate explanatory variables in the time t information set
observed by the forecaster, , and b is a vector of regression coefficients. An appropriately
calibrated forecast should then have a = b = 0, which can be tested using standard t- and F-tests
properly robustified to allow for heteroskedasticity in the regression errors, ,t+1. Intuitively, if a
significant coefficient is obtained on a forecasting variable, which the forecaster should
reasonably have known at time t, then the forecasting model is not optimal, as the variable in
question could and should have been used to make the generalized forecast error variance lower
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than it actually is. 

If the forecasts arise from a known well-specified statistical model with estimated parameters
then the inherent parameter estimation error should ideally be accounted for. This can be done
using the asymptotic results in West and McCracken (1998) or the finite sample Monte Carlo
tests in Dufour (2004).  However, external forecast evaluators may not have knowledge of the
details of the underlying forecasting model (if one exists) in which case parameter estimation
error uncertainty is not easily accounted for.  Furthermore, in most financial applications the
estimation sample is typically fairly large rendering the parameter estimation error relatively
small compared with other potentially more serious model specification errors.  In this case
standard (heteroskedasticity robust) t-tests and F-tests may work reasonably well. Note also that
in the case of, say, h-day forecasts from a daily model, the horizon overlap implies that the first
h-1 autocorrelations will not be equal to zero, and this must be allowed for in the regression.

As an example of the general framework in (7.2), consider the case of quadratic loss,
.  In this situation

, (7.3)

which suggests the forecast evaluation regression

. (7.4)

While the choice of information variables to include in xt is somewhat arbitrary, one obvious
candidate does exist, namely the time t forecast itself.  Following this idea and letting ,
results in the so-called Mincer and Zarnowitz (1969) regression, which can thus be viewed as a
test of forecast optimality relative to a limited information set. We write 

,

or equivalently

. (7.5)

Clearly the ex-ante forecast should not be able to explain the ex post forecast error. For example,
if b is significantly negative, and thus (b+1)<1, then the forecast is too volatile relative to the
subsequent realization and the forecast should be scaled down. 

It is often of interest to compare forecasts from different models, or forecasters. This is easily
done by letting , where  denotes the alternative forecast.  The forecast
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evaluation regression then takes the form,

, (7.6)

where a failure to reject the hypothesis that bA = 0 implies that the additional information
provided by the alternative forecast is not significant.  Or, in other words, the benchmark
forecast encompasses the alternative forecast.

7.2  Volatility Forecast Evaluation

The above discussion was cast at a general level. We now turn to the case in which volatility
itself is the forecasting object of interest. Hence,  now refers to some form of ex-post

volatility measure, while  denotes the corresponding ex-ante volatility forecast.

The regression-based framework from above then suggests the general volatility forecast
evaluation regression

, (7.7)

or as a special case the Mincer-Zarnowitz volatility regression

,

where an optimal forecast would satisfy a = b = 0.  Immediately, however, the question arises of
how to actually measure the ex-post variance?  As discussed at some length in Sections 1 and 5,
the “true” variance, or volatility, is inherently unobservable, and we are faced with the challenge
of having to rely on a proxy in order to assess the forecast quality.

The simplest proxy is the squared observation of the underlying variable, , which, when the

mean is zero, has the property of being (conditionally) unbiasedness, or . Thus,
the accuracy of the volatility forecasts could be assessed by the following simple regression

. (7.8)

However, as illustrated by Figure 1.1, the squared observation typically provides a very noisy
proxy for the true (latent) volatility process of interest. We are essentially estimating the variance
each period using just a single observation, and the corresponding regression fit is inevitably
very low, even if the volatility forecast is accurate.  For instance, regressions of the form (7.8),
using daily or weekly squared returns as the left-hand-side independent variable, typically result
in unspectacular R2s of around 5-10%. We are seemingly stuck with an impossible task, namely
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to precisely assess the forecastability of something which is itself not observed.

Fortunately, Figure 1.1 and the accompanying discussion in Sections 1 and 5 suggest a workable
solution to this conundrum. In financial applications observations are often available at very high
frequencies. For instance, even if the forecaster is only interested in predicting volatility over
daily or longer horizons, observations on the asset prices are often available at much finer
intradaily sampling frequencies, say 1/) >> 1 observations per “day” or unit time interval. 
Hence, in this situation following the discussion in Section 5.1, a proxy for the (latent) daily
volatility may be calculated from the intradaily squared return as

.

The resulting forecast evaluation regression thus takes the form,

, (7.9)

which coincides with (7.8) for ) = 1. However, in contrast to the low R2's associated with (7.8),
Andersen and Bollerslev (1998a) find that in liquid markets the R2 of the regression in (7.9) can
be as high as 50% for the very same volatility forecast that produces an R2 of only 5%-10% in
the former regression!  In other words, even a reasonably accurate volatility forecasting model
will invariably appear to have a low degree of forecastability when evaluated on the basis of a
noisy volatility proxy. Equally important, it will be difficult to detect a poor volatility forecasting
model when a noisy volatility proxy is used. 

Reliable high-frequency information is, of course, not available for all financial markets. Still,
intra-day high and low prices, or quotes, are often available over long historical time periods.
Under idealized conditions - a Geometric Brownian motion with a constant diffusive volatility F
- the expected value of the log range (the difference between the high and the low logarithmic
price) over the unit time interval is directly related to volatility of the process by the equation

 . (7.10)

Hence, a range-based proxy for the per-period volatility is naturally defined by

. (7.11)

It is readily seen that, under ideal conditions, this range-based volatility proxy is inferior to the
realized variance measure constructed with a large number of intraday observations, or )<<1.
However, as previously discussed, a host of market microstructure and other complications often
render practical situations less than ideal.  Thus, even when high-frequency data are available,
the range-based volatility forecast evaluation regression,
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, (7.12)

may still provide a useful robust alternative, or complement, to the realized volatility regression
in (7.9).

To illustrate, consider Figure 7.1, which graphs a simulated geometric Brownian motion price
process during a “24 hour,” or “288 five-minute,” period.  The “fundamental,” but unobserved,
price process is given by the dashed line.  In practice, however, we only observe this
fundamental price plus a random bid-ask spread, as indicated by the jagged solid line in the
figure. The figure conveys several important insights. First, notice that the squared daily return is
small (close to zero) even though there are large within-day price fluctuations. As such, the true
but unobserved volatility is fairly high, and poorly estimated by the daily squared return. Second,
the bid-ask bounces effect introduces artificial volatility in the observed prices. As a result,
realized volatilities based on very finely sampled high-frequency squared returns produce
upward biased volatility measures. As previously discussed, it is, of course, possible to adjust for
this bias, and several procedures for doing so have recently been proposed in the literature. 
Nonetheless, the figure highlights the dangers of using too small a value for ) in the realized
volatility estimation without accounting for the bid-ask spread effect. Third, the bid-ask spread
only affects the range-based measure (the difference between the two horizontal lines) twice as
opposed to 1/) times for every high-frequency return entering the realized volatility calculation.
As such, the range affords a more robust (to market micro structure frictions) volatility measure. 
Meanwhile, an obvious drawback to the range-based volatility measure is that the multiplicative
adjustment in equation (7.11) only provides an unbiased measure for integrated volatility under
the ideal, and empirically unrealistic, assumption of a geometric Brownian motion, and the
“right” multiplication factor is generally unknown.  Moreover, extensions to multivariate settings
and covariance estimation is difficult to contemplate in the context of the range.

The preceding discussion highlights the need for tools to help in choosing the value of ) in the
realized volatility measure.  To this end Andersen, Bollerslev, Diebold and Labys (1999, 2000)
first proposed the “volatility signature plot,” as a simple indicative graphical tool. The signature
plot provides a graphical representation of the realized volatility averaged over multiple days as
a function of the sampling frequency, ), going from very high (say one-minute intervals) to low
(say daily) frequencies. Recognizing that the bid-ask spread (and other frictions) generally bias
the realized volatility measure, this suggests choosing the highest frequency possible for which
the average realized volatility appears to have stabilized. To illustrate, Figure 7.2 shows a
simulated example corresponding to the somewhat exaggerated market microstructure effects
depicted in Figure 7.1. In this situation the plot suggests a sampling frequency of around “120 to
180 minutes,” or “2 to 3 hours.” Meanwhile, the actual empirical evidence for a host of actively
traded assets indicate that fixing ) somewhere between 5 and 15-minutes typically works well,
but many other more refined procedures for eliminating the systematic bias in the simple realized
volatility estimator are now also available.

7.3  Interval Forecast and Value-at-Risk Evaluation
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We now discuss situations where the dynamic volatility constitutes an important part of the
forecast, but the volatility itself is not the direct object of interest, leading examples of which
include Value-at-Risk and probability forecasts.  Specifically, consider the interval forecasts of
the form discussion in Section 2,

, (7.13)

where the lower and upper parts of the interval forecast are defined so that there is a (1 - p/2)
probability of the ex post realization falling below the lower interval and above the upper
interval, respectively. In other words, the forecast promises that the ex post outcome, yt+1, will
fall inside the ex ante forecasted interval with conditional probability, p.  This setting naturally
suggests the definition of a zero-one indicator sequence taking the value one if the realization
falls inside the predicted interval and zero otherwise. We denote this indicator by

. (7.14)

Thus, for a correctly specified conditional interval forecast the conditional probability satisfies,

,

which also equals the conditional expectation of the zero-one indicator sequence,

. (7.15)

A general regression version of this conditional expectation is readily expressed as,

, (7.16)

where the joint hypothesis that a = b = 0 would be indicative of a correctly conditionally
calibrated interval forecast series.

Since the construction of the interval forecast depends crucially on the forecasts for the
underlying volatility, the set of information variables, xt , could naturally include one or more
volatility forecasts. The past value of the indicator sequence itself could also be included in the
regression as an even easier and potentially effective choice of information variable. If the
interval forecast ignores important volatility dynamics then the ex-post observations falling
outside the ex-ante interval will cluster corresponding to periods of high volatility. In turn, this
will induce serial dependence in the indicator sequence leading to a significantly positive b
coefficient for 

As noted in Section 2, the popular Value-at-Risk forecast corresponds directly to a one-sided
interval forecast, and the regression in (7.16) can similarly be used to evaluate, or backtest,
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VaR’s. The indicator sequence in this case would simply be 

, (7.17)

where yt+1 now refers to the ex-post portfolio return. Capturing clustering in the indicator series
(and thus clustered VaR violations) is particularly important within the context of financial risk
management. The occurrence of, say, three VaR violations in one week is more likely to cause
financial distress than three violations scattered randomly throughout the year. Recognizing that
clusters in VaR violations likely are induced by neglected volatility dynamics again highlights
the importance of volatility modeling and forecasting in financial risk management.

7.4  Probability Forecast Evaluation and Market Timing Tests

The interval and VaR forecasts discussed above correspond to quantiles (or thresholds) in the
conditional distribution for a fixed and pre-specified probability of interest, p.  In Section 2 we
also considered probability forecasting in which the threshold of interest is pre-specified, with
the probability of the random variable exceeding the threshold being forecasted.  In this case the
loss function is given by

, (7.18)

where c denotes the threshold, and the optimal forecast equals  .  The
generalized forecast error follows directly from (7.3), , resulting in the
corresponding forecast evaluation regression

, (7.19)

where the hypothesis of probability forecast unbiasedness corresponds to a = 0 and b = 0. Again,
the volatility forecast as well as the probability forecast itself would both be natural candidates
for the vector of information variables. Notice also the similarity between the probability
forecast evaluation regression in (7.19) and the interval forecast and VaR evaluation regression
in (7.16).

The probability forecast evaluation framework above is closely related to tests for market timing
in empirical finance. In market timing tests, yt+1 is the excess return on a risky asset and interest
centers on forecasting the probability of a positive excess return, thus c = 0.  In this regard,
money managers are often interested in the correspondence between ex ante probability forecasts
which are larger than 0.5 and the occurrence of a positive excess return ex post.  In particular,
suppose that a probability forecast larger than 0.5 triggers a long position in the risky asset and
vice versa.  The following regression

 , (7.20)
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then provides a simple framework for evaluating the market timing ability in the forecasting
model underlying the probability forecast,  Based on this regression it is also possible to
show that b = p+ + p- -1, where p+ and p- denote the probabilities of a correctly forecasted
positive and negative return, respectively. A significantly positive b thus implies that either p+ or
p- or both are significantly larger than 0.5.

7.5  Density Forecast Evaluation

The forecasts considered so far all predict certain aspects of the conditional distribution without
necessarily fully specifying the distribution over the entire support. For many purposes,
however, the entire predictive density is of interest, and tools for evaluating density forecasts are
therefore needed.  In Section 2 we explicitly defined the conditional density forecast as

.

The Probability Integral Transform (PIT), defined as the probability of obtaining a value below
the actual ex post realization according to the ex ante density forecast,

 , (7.21)

provides a general framework for evaluating the predictive distribution.  As the PIT variable is a
probability, its support is necessarily between zero and one. Furthermore, if the density forecast
is correctly specified, ut+1  must be i.i.d. uniformly distributed,

. (7.22)

Intuitively, if the density forecast on average puts too little weight, say, in the left extreme of the
support then a simple histogram of the PIT variable would not be flat but rather have too many
observations close to zero. Thus, the PIT variable should be uniformly distributed. Furthermore,
one should not be able to forecast at time t where in the forecasted density the realization will
fall at time t+1. If one could, then that part of the density forecast is assigned too little weight at
time t. Thus, the PIT variable should also be independent over time.
 
These considerations show that it is not sufficient to test whether the PIT variable is uniformly
distributed on average. We also need conditional tests to properly assess whether the ut+1 's are 
i.i.d.  Testing for an i.i.d. uniform distribution is somewhat cumbersome due to the bounded
support.  Alternatively, one may more conveniently test for normality of the transformed PIT
variable,

, (7.23)
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where  denotes the inverse cumulative density function of a standard normal variable. 

In particular, the i.i.d. normal property in (7.23) implies that the conditional moment of any order
j should equal the corresponding unconditional (constant) moment in the standard normal
distribution, say . That is

. (7.24)

This in turn suggests a simple density forecast evaluation system of regressions

, (7.25)

where j determines the order of the moment in question.  For instance, testing the hypothesis that
 for j = 1, 2, 3, 4 will assess if the first four conditional (non-central) moments are

constant and equal to their standard normal values.

Consider now the case where the density forecast specification underlying the forecast
supposedly is known,

. (7.26)

In this situation, it is possible to directly test the validity of the dynamic model specification for
the innovations,

. (7.27)

The i.i.d. property is most directly and easily tested via the autocorrelations of various powers, j,
of the standardized residuals, say 

In particular, under the null hypothesis that the autocorrelations are zero at all lags, the Ljung-
Box statistics for up to Kth order serial correlation,

, (7.28)

should be the realization of a chi-square distribution with K degrees of freedom.  Of course, this
K degree of freedom test ignores the fact that the parameters in the density forecasting model
typically will have to be estimated. As noted in Section 7.1, refined test statistics as well as
simulation based techniques are available to formally deal with this issue.

As previously noted, in most financial applications involving daily or weekly returns, it is
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reasonable to assume that , so that

.

Thus, a dynamic variance model can readily be thought of as removing the dynamics from the
squared observations.  Misspecified variance dynamics are thus likely to show up as significant
autocorrelations in  This therefore suggests setting  j = 2 in (7.28) and calculating the Ljung-

Box test based on the autocorrelations of the squared innovations,   This same
Ljung-Box test procedure can, of course, also be used in testing for the absence of dynamic
dependencies in the moments of the density forecast evaluation variable from (7.23), .

7.6  Further Reading

This section only scratches the surface on forecast evaluation.  The properties and evaluation of
point forecasts from general loss functions have recently been analyzed by Patton and
Timmermann (2003, 2004). The statistical comparison of competing forecasts under general loss
functions has been discussed by Diebold and Mariano (1995), Giacomini and White (2004), and
West (1996). Forecast evaluation under mean squared error loss is discussed in detail by West in
this Handbook. Interval, quantile and Value-at-Risk forecast evaluation is developed further in
Christoffersen (1998), Christoffersen (2003), Christoffersen, Hahn and Inoue (2001),
Christoffersen and Pelletier (2004), Engle and Manganelli (2004) and Giacomini and Komunjer
(2005).  The evaluation of probability forecasts, sign forecasts and market timing techniques is
surveyed in Breen, Glosten and Jagannathan (1989), Campbell, Lo and MacKinlay (1997,
chapter 2), and Christoffersen and Diebold (2003).  Methods for density forecast evaluation are
developed in Berkowitz (2001), Diebold, Gunther and Tay (1998), Giacomini (2002) and Hong
(2000), as well as the chapter by Corradi and Swanson in this Handbook.

White (2000) provides a framework for assessing if the best forecasting model from a large set
of potential models outperforms a given benchmark. Building on this idea, Hansen, Lunde and
Nason (2003, 2005) develop a model confidence set approach for choosing the best volatility
forecasting model.

Moreover, combining a number of volatility forecasts may be preferable to choosing a single
best forecast. The general topic of forecast combination is discussed in detail in the chapter by
Timmermann in this Handbook. Volatility forecast combination has  been found to work well in
practice by Hu and Tsoukalas (1999). 

Further discussion of volatility forecasting and forecast evaluation based on realized volatility
measures can be found in Andersen and Bollerslev (1998a), Andersen, Bollerslev and Meddahi
(2004, 2005), and Patton (2005). Andersen, Bollerslev, Diebold and Labys (1999), Aït-Sahalia,
Mykland, and Zhang (2005) and Bandi and Russel (2003, 2004), Bollen and Inder (2002), Curci
and Corsi (2004), Hansen and Lunde (2004b), Martens (2003), and Zhang, Aït-Sahalia and
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Mykland (2005) all analyze the important choice of sampling frequency and/or the use of various
sub-sampling and other corrective procedures in the practical construction of unbiased (and
efficient) realized volatility measures.  Alizadeh, Brandt, and Diebold (2002) discuss the relative
merits of realized and range-based volatility. For early work on the properties of range-based
estimates, see Feller (1951) and Parkinson (1980).

Testing for normality of the transformed Probability Integral Transform (PIT) variable can be
done in numerous ways. A couple of interesting recent procedures for testing dynamic models
for correct distributional assumptions taking into account the parameter estimation error
uncertainty are given by Bontemps and Meddahi (2005) and Duan (2003) .

Several important topics were not explicitly discussed in this section. In the general forecasting
area they include covariance and correlation forecast evaluation (see, e.g., Brandt and Diebold,
2005), as well as related multivariate density forecast evaluation (see, e.g.,  Diebold, Hahn and
Tay, 1999). In the area of financial forecast applications, we did not discuss the evaluation of
time-varying betas (see, e.g., Ghysels, 1998), volatility-based asset allocation (see, e.g., Fleming,
Kirby and Ostdiek, 2001 and 2003), and option valuation models (see, e.g., Bates, 2003, and
Christoffersen and Jacobs, 2004a,b), to mention some. Nonetheless, the general volatility
forecast evaluation framework set out above is flexible enough so that it may easily be adapted
to each of these more specific situations.

8.  Concluding Remarks

This chapter has focused on rigorous yet practical methods for volatility modeling and
forecasting.  The literature has obviously advanced rapidly and will almost surely continue to
thrive for the foreseeable future, as key challenges remain at least partially open.  Some of these,
such as large-dimensional covariance matrix modeling and practical ways in which to best make
use of the newly available ultra-high-frequency data have been touched upon.

Less obviously, and beyond the narrower realm of mathematical volatility models, the financial-
econometric volatility literature has impacted the financial landscape in additional and important
ways.  Most notably, the newly-entrenched awareness of large time variation and high
persistence in asset return volatility has led to the emergence of volatility as an asset class, with a
variety of vehicles now available for taking positions exclusively in volatility.  This contrasts
with traditional options-based instruments, the value of which varies, for example, with the price
of the underlying in addition to its volatility.  The new vehicles include both exchange-traded
products such as the Chicago Board Options Exchange’s VIX volatility index, which depends
directly on the one-month options implied volatility for the S&P500 aggregate market index, as
well as more specialized over-the-counter volatility and covariance swaps, which are essentially
futures contracts written on various realized volatility measures.

In addition to the obvious and traditional uses of such products, such as hedging volatility
exposure associated with running an options book, important new uses in asset allocation
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environments are emerging, as portfolio managers add volatility to otherwise-standard portfolios. 
While large positions in volatility may be undesirable, because volatility reverts to a fixed mean
and hence has zero expected return in the long-run, small positions can provide a valuable hedge
against crisis episodes in which simultaneously plunging prices cause both correlations and
volatilities to increase.  This type of hedge, of course, can be very appealing in both private and
central bank asset-management environments.

Although it would be an exaggeration to claim that the mathematical volatility forecasting
models reviewed here are solely responsible for the emergence and deepening of financial
volatility markets, the development of the models nevertheless provided (and continue to
provide) a major push, the effects of which we predict will continue to evolve and resonate with
financial market practice for many years to come.
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Figure 1.1
Different Volatility Concepts
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Notes to figure:  We show the “daily” spot volatility, , the integrated volatility, , the
discrete-time GARCH based volatility forecasts, , and the corresponding squared returns,

, from a simulated continuous-time GARCH diffusion.
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Figure 2.1 
Density Forecasts on High Volatility and Low Volatility Days
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Notes to figure:   The figure shows two hypothetical return distributions for a low volatility
(solid line) and high volatility (dashed line) day.  The areas to the left of the vertical line
represent the probability of a negative return.
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Figure 2.2
Simulated Portfolio Returns with Dynamic Volatility and Historical Simulation VaRs
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Notes to figure: The solid line shows a time series of typical simulated daily portfolio returns.
The short-dashed line depicts the true one-day-ahead, 1% VaR.  The long-dashed line gives the
1% VaR based on the so-called Historical Simulation (HS) technique and a 500-day moving
window.
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Figure 3.1
GARCH Volatility Term Structure

Notes to figure:  The first panel shows the unconditional distribution of .  The second panel

shows the term-structure-of-variance, , for  equal to the mean, together with the
fifth and the ninety-fifth percentiles in the unconditional distribution.
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Figure 3.2
GARCH Volatility Forecasts and Horizons

Notes to figure:  The four panels show the standardized “daily” GARCH(1,1) volatility forecasts,
, for horizons k = 1, 5, 22, 66.
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Figure 3.3
Volatility Impulse Response Coefficients

Notes to figure:  The left panel graphs the volatility impulse response function, , h =
1, 2, ..., 250, for the RiskMetrics forecasts, the standard GARCH(1,1) model in (3.6), the
FIGARCH(1,d,1) model in (3.18), and the component GARCH model in (3.21) and (3.22).  The
right panel plots the corresponding logarithmic values.
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Figure 7.1
Simulated Fundamental and Observed Intraday Prices

Notes to figure:  The smooth dashed line represents the fundamental, but unobserved, simulated
asset price. The jagged solid line solid represents the observed transaction prices reflecting bid or
ask driven transactions. The two horizontal lines denote the min and max prices observed within
the day.
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Figure 7.2
Volatility Signature Plot

Notes to figure:  The figure depicts the impact of the bid-ask spread for measuring realized
volatility by showing the unconditional sample means for the realized volatilities as a function of
the length of the return interval for the high-frequency data underlying the calculations.  The
simulated prices are subject to bid-ask bounce effects shown in Figure 7.1.
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