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SUMMARY

In November 2000 the resolution of the forecast model in the operational European Centre for Medium-
Range Weather Forecasts Ensemble Prediction System was increased from a 120 km truncation scale (EPS) to
an 80 km truncation scale (High-resolution EPS or HEPS). The HEPS performance is compared with that of
EPS and with different � avours of poor-man’s ensembles. Average results based on Brier skill scores and the
potential economic value of probabilistic predictions for 57 winter and 30 summer cases indicate that the new
HEPS system is about 12 hours more skilful than the old EPS. Averages over 39 winter cases indicate that HEPS
forecasts perform better than � ve-centre ensemble forecasts. Results also show that if forecasts are transformed
into parametrized Gaussian distribution functions centred on the bias-corrected ensemble mean and with re-scaled
standard deviation, HEPS-based parametrized forecasts outperform all other con� gurations. Diagnostics based on
parametrized forecast probabilities indicate that the different impact on the probabilistic or deterministic forecast
skill is related to the fact that HEPS better represents the daily variation in the uncertainty of the atmosphere, and
is not simply a re� ection of improved mean bias or of a better level of spread.
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1. INTRODUCTION

Errors in atmospheric initial conditions and the approximate representation of
atmospheric processes in numerical models are sources of uncertainty which limit
forecast skill in a highly � ow-dependent way. The variability of forecast error growth
is related to the � ow-dependent sensitivity of the forecast model to the above sources
of uncertainty. This is particularly true for single, deterministic forecasts, with days of
high quality followed by days of poor quality predictions. A complete description of the
weather prediction problem can be stated in terms of the time evolution of an appropriate
probability density function (PDF) in the atmosphere’s state space. Ensemble prediction
based on a sampling of this PDF by a � nite number of deterministic integrations
designed to represent both initial and model uncertainties, appears to be the only feasible
method to predict the PDF beyond the range of linear error growth (Epstein 1969;
Fleming 1971a,b; Leith 1974).

The Ensemble Prediction System (EPS) has been part of the operational suite at
the European Centre for Medium-Range Weather Forecasts (ECMWF) since December
1992. The � rst version, a 33-member T63L19 con� guration (spectral triangular trunca-
tion T63 with 19 vertical levels, Palmer et al. 1993; Molteni et al. 1996), simulated the
effect of initial uncertainties by starting 32 members from perturbed initial conditions
de� ned by perturbations rapidly growing during the � rst 48 hours of the forecast range
(Buizza and Palmer 1995). In 1996 the system was upgraded to a 51-member TL159L31
system (spectral triangular truncation T159 with linear grid, Buizza et al. 1998). In
March 1998, initial uncertainties due to perturbations that had grown during the 48 hours
previous to the starting time (evolved singular vectors, Barkmeijer et al. 1999) were in-
cluded. In October 1998, a scheme to simulate model uncertainties due to random model
error in the parametrized physical processes was introduced (Buizza et al. 1999). As a
result of these changes, the upgraded 51-member system had a better level of spread, a
more skilful ensemble mean, a higher chance of including the veri� cation analysis inside
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the forecast distribution and more accurate probabilistic predictions. In October 1999,
following the increase of the number of vertical levels of the data-assimilation and high-
resolution deterministic model from 31 to 60, the number of vertical levels in the EPS
was increased from 31 to 40. In 1999, extensive experimentation started to investigate
the potential bene� t of further increasing the ensemble resolution from TL159L40 to
TL255L40.

In the � rst part of this paper, results from the set of experiments designed to assess
the impact of a further resolution increase of the ensemble system from TL159L40 to
TL255L40 is discussed, while in the second part of the paper the performance of the
TL255L40 ensemble is compared to alternative (‘poor-man’s’) methods of generating
probability forecasts. Section 2 describes the higher-resolution system and the accuracy
measures used to assess the ensemble performance. Section 3 documents the positive
impact of this resolution increase on the ensemble system. In section 4, the TL255L40
ensemble system is compared with different variants of the poor-man’s ensemble sys-
tem, based on a few high-resolution forecasts run at different centres. This comparison
examines the value of a multi-model approach to ensemble prediction, the value of � t-
ting parametrized distributions to ensemble forecast data and the value of applying a
bias-correction and a spread re-scaling to the ensemble forecasts. Section 5 investigates
possible reasons for the greater improvement in probability than in deterministic scores
induced by the resolution increase. This difference implies an improvement in the high-
resolution EPS representation of the day-to-day variability of the forecast PDF.

2. METHODOLOGY

(a) The new 80 km High-resolution EPS (HEPS)
Molteni et al. (1996) and Buizza et al. (1998, 1999)describe the successive versions

of the operational EPS used at ECMWF. Until 20 November2000 the EPS was based on
51 10-day integrations performed with a TL159L40 version of the ECMWF model, with
unperturbed initial conditions interpolated from the TL319L40 analysis. One forecast,
the control, started from the interpolated analysis, while the other 50 forecasts started
from the analysis perturbed by adding/subtracting a combination of the dynamically
fastest-growing perturbations (with total energy used as a measure of growth), scaled
to have an amplitude consistent with analysis error estimates. These perturbations,
called singular vectors (Buizza and Palmer 1995), have been shown to capture growing
components of the analysis errors (Gelaro et al. 1998). On 21 November 2000, the
resolutions of the ECMWF analysis and of the forecasting system were changed as
follows.

² Deterministic model and analysis: from TL319L60 (60 km grid point spacing) to
TL511L60 (40 km grid point spacing).

² Ensemble system: from TL159L40 (120 km grid point spacing) to TL255L40
(80 km grid point spacing).

Hereafter, HEPS denotes the new 80 km High-resolution EPS (ensemble member-
ship remains the same, i.e. 50 perturbed and one unperturbed members).

(b) Performance measures and data used
For each ensemble con� guration, the following measures of ensemble performance

have been considered for the 850 hPa temperature and the 500 hPa geopotential height.
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² Accuracy of the ensemble’s control, measured in terms of anomaly correlation
coef� cient (ACC).

² Ensemble spread with respect to the control forecast, measured in terms of ACC.
² Accuracy of the ensemble-mean, measured in terms of ACC.
² Brier skill score (BSS) of probabilistic predictions of positive and negative

anomalies with amplitude larger than the seasonal variability (de� ned as the standard
deviation of the analysed � elds).

² Potential economic value.

The EPS and HEPS con� gurations have been compared for 87 cases covering two
periods: summer 1999 (30 cases, from 2 to 30 August) and winter 1999–2000 (57 cases,
from 26 November to 27 December and from 22 January to 15 February). All scores
have been computed using forecast and analysed � elds de� ned on a regular latitude–
longitude grid with a spacing of 2.5 degrees, for two regions—the northern hemisphere
(NH) and Europe. Results are shown mostly for NH, mainly to maximize statistical
signi� cance but also for reasons of space.

The verifying analysis is de� ned by the operational TL319L60analysis, from which
the HEPS starts, interpolated on the regular latitude–longitude 2.5-degree resolution
grid, rather than the TL511L60 analysis. This choice has a negligible effect in the
forecast range after forecast day 2, but it has a small but detectable impact for earlier
forecast ranges where it slightly favours the EPS (see discussion of Fig. 1 in section
3(a)).

For each area and ensemble con� guration, average scores are computed separately
for the summer and winter periods (con� dence intervals have been computed, but they
are not shown since otherwise � gures become unreadable). The degree of similarity
between the score distributions of the two ensemble con� gurations is measured by
the Rank–Mann–Wilcoxon (RMW) test (Wilks 1995). The RMW test estimates the
probability that the distribution of scores of the EPS and the HEPS con� gurations are
statistically distinguishable: low(high) RMW values indicate that there is a small(large)
probability that the two distributions are sub-samples of the same overall distribution.
For any score, HEPS and EPS distributions are considered statistically different if
RMW 6 10, i.e. if there is a 10% or lower probability that the two distributions of scores
come from the same overall distribution.

(c) Relative improvement index
To highlight the level of skill gained by the resolution increase, HEPS scores are

contrasted with EPS scores and also with EPS scores shifted by 1 day (EPS(d ¡ 1)),
i.e. with the scores of an EPS system characterized by a 1-day gain in skill. More
speci� cally, EPS(d ¡ 1) is the EPS forecast of one-day shorter lead time but verifying on
the same day as EPS and HEPS. For any score measure, SC, the Relative Improvement
index (RI) is de� ned as:

RI.SC/ D
SC.HEPS/ ¡ SC.EPS/

SC.EPS.d ¡ 1// ¡ SC.EPS/
: (1)

The RI is a normalized measure of the gain in skill obtained by con� guration HEPS;
RI D 100% indicates an improvement equivalent to a 1-day gain in skill when measured
using the score SC.
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Figure 1. Mean anomaly correlation coef� cients (ACCs) of 850 hPa temperatures over the northern hemisphere
for: (a) the EPS (grey solid line), HEPS (dashed line) and EPS(d ¡ 1) (black solid line) control forecasts (Con,
left vertical axis) and Rank–Mann–Wilcoxon (RMW) test value (dotted line, right vertical axis) for summer; (b)
as (a) but for winter; (c) and (d), as (a) and (b) but for the ensemble spread; (e) and (f), as (a) and (b) but for the

ensemble-mean. See text for details.
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Figure 2. Briers Skill Scores (BSSs) over the northern hemisphere for: (a) the EPS (grey solid line), HEPS
(dashed line) and EPS(d ¡ 1) (black solid line) probabilistic predictions of the event ‘850 hPa temperature positive
anomalies larger than one standard deviation’ (left vertical axis) and Rank–Mann–Wilcoxon test value (dotted
line, right vertical axis) for summer; (b) as (a) but for winter; (c) and (d) as (a) and (b) but for the event ‘850 hPa

temperature negative anomalies larger than one standard deviation’. See text for details.

3. IMPACT OF THE RESOLUTION INCREASE

(a) Accuracy of control and ensemble-mean 850 hPa temperature forecasts, and
ensemble spread

Figure 1 shows the ACCs of the 850 hPa temperature for the EPS and HEPS control
forecasts, the ensemble spread and the ensemble mean. The ACC of the HEPS control is
higher than the ACC of the EPS control, with statistically signi� cant differences (from
the RMW test) up to forecast day 6 for summer (Fig. 1(a)) and up to day 8 for winter
(Fig. 1(b)). The fact that at forecast day 1 the ACC of the HEPS control is lower than
the ACC of the EPS control is a direct consequence of using the operational TL319L60
analysis for veri� cation (it should be remembered that the EPS unperturbed analysis is a
TL159 interpolation of the operational TL319 analysis, while HEPS starts from a TL255
interpolation of the TL511 analysis). The HEPS spread is larger than the EPS spread
especially for the summer period (Figs. 1(c) and (d)). The ACC of the HEPS ensemble-
mean is higher for all but forecast day 1 (Figs. 1(e) and (f)), especially during winter.
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Figure 3. Same as Fig. 2 but BSSs over Europe.

The RMW test shows that the differences are statistically signi� cant for all forecast
times for winter (Fig. 1(f)) and up to forecast day 8 for summer (Fig. 1(e)).

(b) Brier skill score (BSS) of 850 hPa temperature anomaly predictions
The following two events have been considered: ‘850 hPa temperature positive

anomalies larger than one standard deviation’ and ‘850 hPa temperature negative anoma-
lies larger than one standard deviation’. The accuracy of any probabilistic prediction
of these two events has been assessed using the BSS, the rank probability skill score
and measures related to the relative operating characteristic curve (see Mason (1982),
Stanski et al. (1989) and Wilks (1995) for descriptions of these measures). For reasons
of space, only BSSs are shown, but similar conclusions could have been drawn by con-
sidering the other scores.

Figure 2 shows the BSS for the three ensemble con� gurations, EPS, HEPS and
EPS(d ¡ 1), with BSSs computed using a climatological forecast as reference. During
summer (Figs. 2(a) and (c)) results indicate that the HEPS performs better, with
signi� cant differences between the EPS and the HEPS for all forecast ranges other than
days 2 and 10. Similar results are shown for winter (Figs. 2(b) and (d)), with slightly
larger positive differences signi� cant for all forecast ranges but day 10.
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Figure 4. Relative improvement index (RI) for 850 hPa temperature computed over the northern hemisphere for:
(a) control anomaly correlation coef� cient (ACC, � rst bar, white), the control Brier skill score (BSS, second bar,
grey), the ensemble-mean ACC (third bar, dotted), the ensemble-mean BSS (fourth bar, grey) and the EPS BSS
(� fth bar, black), for summer. A RI of 100% indicates a gain in predictability of one day; (b) as (a) but for winter.

See text for details.

Figure 3 is similar to Fig. 2 but shows the BSSs for Europe. Compared to NH
(Fig. 2), the RMW test values for Europe indicate that these distributions of EPS and
HEPS scores are less signi� cantly different.

(c) Relative improvement index (RI) for 850 hPa temperature
Figure 4 shows the RI computed over NH for � ve accuracy measures: control ACC

and BSS, ensemble-mean ACC and BSS, and ensemble BSS. Results indicate that for
summer (Fig. 4(a)) RIs are positive for all but forecast days 2 and 10, while for winter
(Fig. 4(b)) all RIs are positive. The day 2 negative RIs shown for the control and the
ensemble-mean are due to the fact that the TL319L60 analysis is used as veri� cation.
Note that only the control forecasts (but not the ensemble-mean or EPS forecasts) show
a negative RI at day 10. Considering, for example, the days 5 to 7 forecast range, RI
results show that the summer HEPS probabilistic predictions are 55–70% better than the
EPS (Fig. 4(a)) and that the winter HEPS are 45–66% better than the EPS (Fig. 4(b)).

Comparing the RIs computed for the BSSs of the control, the ensemble-mean and
the EPS, it can be seen that for all forecast steps the largest RIs are those for the EPS. In
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Figure 5. Value, V , of the EPS, HEPS and EPS(d ¡ 1) ensemble con� gurations for: (a) the prediction of event
‘850 hPa temperature positive anomalies larger than one standard deviation’ in summer; (b) as (a) but in winter;
(c) and (d), as (a) and (b) but for the prediction of event ‘850 hPa temperature negative anomalies larger than one

standard deviation’. See text for details.

particular, the EPS RIs are always larger than the control RIs, especially at the end of the
forecast period. Considering, for example, 5-day forecasts during summer (Fig. 4(a)),
results indicate RI D 20% for the control forecast, RI D 30% for the ensemble-mean
and RI D 55% for the BSS (in other words, a gain in skill of about 5, 7.5 and 12 hours
for the three different forecast products). This indicates that the upgrade from EPS to
HEPS has induced a larger relative impact on the ensemble probability forecasts than
on the deterministic forecasts given by the control or the ensemble-mean forecast.

(d ) Potential economic value of 850 hPa temperature forecasts
The user-dependent bene� t of a forecast system can be quanti� ed using the value

diagnostic (V / derived from a simple decision-making model, the cost–loss model
(Murphy 1977; Liljas and Murphy 1994; Richardson 2000). According to this model, a
user can decide to spend an amount C to protect himself against a possible loss L, and
thus depending on whether the event occurs or not the user incurs an expense of either
C or L (Table 1). The value V is a relative measure of the savings made by a forecast
user in such a decision process with a cost–loss ratio, C=L; maximum value, V D 1, will
be obtained if one has perfect knowledge of future weather, while V D 0 indicates that
the forecasts have no value over climatological information. Each user has a different
sensitivity to a particular weather event, and this is represented by considering different
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Figure 6. Value relative improvement index, RI(V /, for the northern hemisphere in (a) summer and (b) winter,
for selected cost–loss ratios: C=L D 0:02 (white), C=L D 0:05 (light grey), C=L D 0:10 (dark grey) and C=L D

0:25 (black).



1278 R. BUIZZA et al.

TABLE 1. COST/LOSS DECISION MODEL

Event occurs Event does not occur

User protects C C
User does not protect L 0

This shows the expense a user incurs if he spends C to protect
against a possible loss L.

TABLE 2. ENSEMBLE CONFIGURATIONS

Horizontal Parametrized PDF
prediction Resolution Number of

system (km) members Models PDF-Mean PDF-std Bias corrected

EPS 120 51 1 – – No
HEPS 80 51 1 – – No
MCEPS 60–120 5 5 – – No
HCG 80 1 1 fC ¡ ¹C ¾C Yes
HEPS-bias 80 51 1 – – Yes
EPSG 120 51 1 fm ¡ ¹m ¾f Yes
HEPSG 80 51 1 fmH ¡ ¹mH ¾H Yes
MCEPSG 60–120 5 5 fmMC ¡ ¹mMC ¾MC Yes

Symbols are as follows: fC the HEPS control forecast with mean error ¹C and error variance ¾C;
fm the EPS ensemble-mean forecast with mean error ¹m and re-scaled error variance ¾f; fmH the
HEPS ensemble-mean forecast with mean error ¹mH and re-scaled error variance ¾H; fmMC the MCEPS
ensemble-mean forecast with mean error ¹mMC and error variance ¾MC.

C=Ls between 0 and 1. Low values of C=L represent users with high sensitivity to
adverse weather; the potential economic loss is high compared to the cost of taking
protective action. The distribution of users’ C=Ls is not well known, but is likely to be
concentrated towards low C=Ls (Roebber and Bosart 1996).

Figure 5 shows V at day 6 for the two events ‘850 hPa temperature positive anoma-
lies larger than one standard deviation’ and ‘850 hPa temperature negative anomalies
larger than one standard deviation’. HEPS is consistently better than EPS for all users,
with greatest bene� t for those users with low C=L.

Figure 6 shows the RI for V , RI(V /, calculated for a selection of C=Ls (0.02, 0.05,
0.10 and 0.25). The variation in bene� t with different users seen in Fig. 5 applies at
all forecast times. The RI for the lowest resolvable cost–loss (C=L D 0:02/ is close to
or exceeds 100% for forecast days 4–10. For larger C=Ls, the RI is generally closer to
40%, similar to the RIs for the BSS (Fig. 4).

4. COMPARISON OF HEPS WITH A FIVE-MEMBER MULTI-CENTRE’S ENSEMBLE
(MCEPS)

In the previous sections it was shown that the greatest improvement in the new
HEPS system is for probability forecasts. HEPS shows a signi� cant gain in predictability
of 12–24 hours over EPS. In this section the HEPS probability forecasts are compared
with a number of alternative probability forecasting systems (Table 2). These alterna-
tives are examples of systems often referred to as ‘poor man’s ensembles’ because they
are less expensive to produce than a full EPS. Here the HEPS is compared with a poor-
man’s ensemble de� ned following Ziehmann’s (2000) approach, and in the next section
the HEPS is compared with poor-man’s ensembles de� ned following Atger (1999).

The poor-man’s ensemble of Ziehmann (2000) is based on independent determinis-
tic forecasts from different sources combined to generate a multi-centre ensemble. More
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Figure 7. Relative improvement index (RI) for 500 hPa height over the northern hemisphere for winter cases.
Bars show RI for HEPS (un� lled) and MCEPS (shaded), both relative to EPS, for (a) BSS, and value, V , for

cost–loss ratios (b) C=L D 0:05, (c) C=L D 0:1 and (d) C=L D 0:25. See text for details.

speci� cally, the single deterministic high-resolution forecasts of ECMWF (»60 km res-
olution), the UK Meteorological Of� ce (Met Of� ce, »60 km resolution) and Deutscher
Wetterdienst (DWD, »60 km resolution) are used, together with the lower-resolution
control forecasts available for ECMWF (»120 km resolution) and the Met Of� ce
(»90 km resolution), to construct a � ve-member ensemble of independent forecasts.
This will be referred to as the multi-centre EPS or MCEPS. Forecasts from MCEPS are
available for only 39 of the 57 winter cases, for forecast days 1 to 6, and for the 500 hPa
geopotential height � eld. Thus, in this section only predictions of 500 hPa height for 39
winter cases are considered (850 hPa temperature � elds were not available).

Figure 7 shows the RI for HEPS and MCEPS relative to EPS for 500 hPa geopoten-
tial height forecasts. The improvement for HEPS for 500 hPa height is similar to that al-
ready seen for 850 hPa temperature (Fig. 4), indicating that the same conclusions on the
impact of the resolution increase are valid for the two parameters. MCEPS outperforms
EPS up to forecast day 5 in terms of BSS and potential economic value for C=L D 0:25,
but MCEPS has less potential value than EPS for smaller C=L, not surprisingly given
the small size of the multi-centre ensemble. With only � ve members, it is not possible
to distinguish between low probabilities that are important for users with small C=L;
for these users the large size of EPS is important. One way of addressing the problem of
small ensemble size is considered in the next section.
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Considering the three systems EPS, HEPS and MCEPS, Fig. 7 shows that HEPS
has the highest BSS and provides the greatest value for all users.

5. COMPARISON OF HEPS WITH PARAMETRIZED POOR-MAN’S ENSEMBLES

Atger’s (1999) poor-man’s ensemble is based on probability forecasts de� ned by
a single deterministic control forecast and the distribution of errors for the control
forecast. A probabilistic prediction system de� ned following this approach will be
referred to as the high-resolution-control Gaussian (HCG).

In section 3 the control forecast was treated as a deterministic forecast: forecast
probabilities generated from the control were taken as delta functions centred at 1 or 0
depending on whether the event was predicted or not. A smoother probabilistic forecast
can be generated from the control forecasts by using information on the expected error
statistics of the control forecast. In theory, the control error statistics should be taken
from independent data but, unfortunately for the new HEPS and also for the MCEPS,
such independent error statistics are not available. Thus, the mean and variance of the
forecast error are calculated at each grid point using the set of 39 cases. Hence the
potential bene� ts of error correction are likely to be upper bounds for what could be
achieved in practice.

Consider the deterministic control forecast with mean error ¹c and error variance
¾ 2

c , and assume that the distribution of forecast errors is Gaussian. Then, if the 500 hPa
height predicted by the control forecast is fc, the PDF for the actual value will be
Gaussian with mean fc ¡ ¹c and variance ¾ 2

c . The probability that the actual value
will be above a given threshold T can be calculated by integrating the forecast PDF:

P .a > T / D
1

.2¼¾ 2
c /1=2

Z 1

T

exp

"

¡
1

2

»
.x ¡ .fc ¡ ¹c/

¾c

¼ 2
#

dx: (2)

A probability forecast system based on the HEPS control forecast and using
Gaussian error statistics will be referred to as HCG. Note that in the de� nition of this
system, the mean error ¹c is subtracted from the control forecast; in other words, the
forecast is corrected for mean bias. In comparing the HCG probability forecasts with
the HEPS, the effect of bias correction alone on the HEPS forecasts is also considered.

Figure 8 shows the RI for the HCG probability forecasts and for the bias-corrected
HEPS (HEPS-bias), computed using HEPS as reference. The inclusion of error infor-
mation in the HCG has some bene� t over HEPS for the � rst two or three days for both
BSS (Fig. 8(a)) and V (Figs. 8(b)–(d)). But this bene� t is almost completely removed
if the systematic error (bias) is removed from the HEPS forecasts. The improvement
due to bias-correction is substantial and increases throughout the forecast. The HCG
forecasts only outscore HEPS-bias at days two and three for the smaller values of C=L.
In this early forecast range the control forecast is generally more skilful than the ensem-
ble members, and the smoother probabilities from the parametrized PDF of the HCG
may have some advantage over the raw values from HEPS for the tails of the PDF
(low-probability thresholds). Beyond this early range, the performance of HCG rapidly
becomes worse than the performance of HEPS-bias.

A similar approach could be followed but based on the ensemble mean and with
a PDF parametrized using error statistics of the EPS (see below for details). This may
provide more reliable estimates of the tails of the forecast PDF that may not be well
sampled by the original EPS members. It also allows the probabilities to be corrected
for underestimation of ensemble spread. The greatest bene� ts of this approach may



INCREASED RESOLUTION ECMWF ENSEMBLE SYSTEM 1281

Forecast day

–200

–150

–100

–50

0

50

100

200

P
er

ce
nt

ag
e 

im
p

ro
ve

m
e

nt

a) BSS – NH Winter (39 cases)   

HEPS–bias
HCG

c) Value (C/L=0.1) – NH Winter (39 cases)  d) Value (C/L=0.25) – NH Winter (39 cases) 

b) Value (C/L=0.05) – NH Winter (39 cases)  

2 3 4 5 6 7 8 9 10
Forecast day

–200

–150

–100

–50

0

50

100

200

P
er

ce
nt

ag
e 

im
p

ro
ve

m
e

nt

 

2 3 4 5 6 7 8 9 10

Forecast day

–200

–150

–100

–50

0

50

100

200
P

er
ce

nt
ag

e
 im

pr
ov

em
en

t
 

2 3 4 5 6 7 8 9 10
Forecast day

–200

–150

–100

–50

0

50

100

200

150 150

150150

P
er

ce
nt

ag
e

 im
pr

ov
em

en
t

 

2 3 4 5 6 7 8 9 10

Figure 8. Relative improvement index (RI) for 500 hPa height over the northern hemisphere for winter cases,
computed using HEPS as reference. Bars show RI for HEPS-bias (un� lled) and HCG (shaded), for (a) BSS, and

value, V , for cost–loss ratios (b) C=L D 0:05, (c) C=L D 0:1 and (d) C=L D 0:25. See text for details.

be expected for the prediction of low probabilities, and for small ensembles where a
limited number of members may give a poor approximation of the distribution. Hence
the MCEPS may be expected to bene� t more from the approach than the larger HEPS.
However, the success of this approach depends on the suitability of the parametrized
PDF (here the ensemble members are assumed to be distributed normally about the
ensemble mean). Fitting a parametrized PDF to the ensemble members may actually
remove information from the forecast if the ensemble distribution does not � t the
assumed form.

Consider an EPS forecast with ensemble mean fm and spread (variance about the
ensemble mean) s2. Let the mean error and error variance of the ensemble mean be ¹m
and ¾ 2

m respectively and let the average spread over a large number of cases be hs2i.
Then a parametrized forecast PDF can be constructed as Gaussian with mean fm ¡ ¹m
and variance ¾ 2

f where

¾ 2
f D

s2

hs2i
¾ 2

m: (3)

This ensures that on average the forecast variance matches the ensemble mean error
variance, while allowing the forecast variance to vary from case to case depending on
the ensemble spread.
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Figure 9. Relative improvement index (RI) for 500 hPa height over the northern hemisphere for winter cases,
computed using HEPS-bias (the bias-corrected HEPS) as reference. Bars show RI for parametrized ensembles
HEPSG (un� lled) and MCEPSG (shaded), for (a) BSS, and value (V / for cost–loss ratios (b) C=L D 0:05,

(c) C=L D 0:1 and (d) C=L D 0:25. See text for details.

Parametrized probability forecasts based on HEPS and MCEPS systems will be
referred to as HEPSG and MCEPSG. Since these forecasts are both corrected for model
bias, they are compared to HEPS-bias probabilities to explore the additional bene� t to
be obtained from the parametrization.

Figure 9 shows the relative improvement for MCEPSG and HEPSG computed using
HEPS-bias as reference. The effect of the parametrization on the HEPS forecasts is
positive throughout the forecast, although substantial improvements are found mostly
later in the forecast and for smaller C=Ls. Although the parametrization of the PDFs
reduces the explicit dependence of the forecasts on ensemble size, the multi-centre
MCEPSG is still not as skilful as HEPSG. The greater number of members in HEPSG
is still bene� cial in providing better estimates of the parameters of the Gaussian PDF.

It should be emphasized that the parametrization approach followed here is only
appropriate for basic single-parameter events where the forecast probabilities can be
represented by a simple PDF. A major advantage of the ECMWF ensembles is that
probabilities for any multivariate combination of (time-lagged and spatially separated)
weather parameters can easily be extracted. Equally easily, data for each ECMWF
ensemble member can be input directly into a user’s application model to provide a PDF
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of a user-speci� c parameter. Examples of such use of the ECMWF ensemble systems are
ship routing (Hoffschildt et al. 1999), ice prediction (Mureau et al. 1997) and electricity
demand (Taylor and Buizza 2003).

6. THE IMPACT OF MODEL RESOLUTION ON DETERMINISTIC AND PROBABILISTIC
SCORES

Comparison of the EPS and HEPS systems showed a greater relative improvement
in probability scores (between 12 and 24 hours) than in the deterministic scores (between
3 and 12 hours). The difference between the control and ensemble RI increases through
the forecast range. The parametric approach of the previous section is used to investigate
these differences, including the effects of model bias and spread underestimation.

The HEPSG probabilities of the previous section were constructed using Gaussian
PDFs centred on the bias-corrected ensemble mean and with variance based on the
ensemble spread but corrected to match, on average, the ensemble mean error variance
(3). Equivalent probability forecasts, EPSG, can be constructed from the low-resolution
EPS using the appropriate bias and corrected spread. Comparison of the HEPSG and
EPSG (Fig. 10) shows the relative improvement once the mean model bias and spread
have been corrected. Remaining differences are then due to day-to-day variations in
spread and the ensemble mean. Figure 10 shows the relative improvement of HEPSG
relative to EPSG for the set of 39 winter cases discussed in the previous section. The
consistent improvement, increasing with forecast day, is apparent for both BSS and V
and compares well with the corresponding improvements seen for the uncorrected model
output (Fig. 7; note that the vertical scales in Fig. 7 and 10 are different).

The substantial improvement of the ensemble probability forecasts in the HEPS
con� guration is not simply a re� ection of improved mean bias or a better average level
of spread; rather, it represents an improvement of the capability of the ensemble to
represent the day-to-day variability of the (unknown) underlying PDF of uncertainty.
The BSS can be used to measure this improvement.

An idealized, perfectly speci� ed EPS would consist of an effectively in� nite num-
ber of forecasts, all equally likely and together representing the full uncertainty of analy-
sis and model errors. The EPS control forecast can be considered as a single representa-
tive member of such an ideal ensemble, and the BSS of the control, BSSC, can be used to
estimate the BSS of this hypothetical perfect ensemble and of a � nite sized, M-member
ensemble drawn from this perfect distribution (Richardson 2001):

BSSperf
M D

.M C 1/BSSC C M ¡ 1

2M
: (4)

This estimate can be compared with the actual EPS BSS to give a measure of how
well the EPS meets the expectation of a perfectly representative ensemble system. The
results for the 39 winter cases are shown in Fig. 11. This shows the actual BSS for
the EPS as a fraction of BSSperf

M . The improvement for the new HEPS is consistent and
increases throughout the forecast. This matches the difference in RI between the control
and the EPS. Figure 11 shows that the HEPS performance is substantially closer to the
ideal level than the previous EPS.

Equation (4) can also be used to quantify the expected gain in the BSS for the
ensemble probability forecasts, for a given improvement of the deterministic forecast.
So, given BSSC for EPS and HEPS, the expected improvement for ensemble probability
forecasts is fBSSperf

M
.HEPS/ ¡ BSSperf

M
.EPS/g. Figure 12 compares this expected gain
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Figure 10. Relative improvement index (RI) for 500 hPa height over the northern hemisphere for winter cases,
relative to EPSG (the parametrized EPS). Bars show RI for parametrized ensembles HEPSG, for (a) BSS, and

value (V / for cost–loss ratios (b) C=L D 0:05, (c) C=L D 0:1 and (d) C=L D 0:25. See text for details.
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Figure 12. Actual increase in BSS for HEPS over EPS, expressed as a fraction of the increase expected from the
deterministic improvement. Results for 500 hPa height over the northern hemisphere for 39 winter cases. See text

for details.

with the actual improvement in BSS for the ensemble using the ratio I where:

I D
BSSM .HEPS/ ¡ BSSM .EPS/

BSSperf
M

.HEPS/ ¡ BSSperf
M

.EPS/
: (5)

The improvement, I , found for HEPS is in general two to three times greater than
could be expected as a direct result of the improvement of the deterministic model.
As previously shown in Fig. 10, this improvement remains once effects of bias and
spread have been removed, and it is presumed that the bene� t is due to the new HEPS
con� guration being able to capture in a better way the daily variation of the forecast
uncertainty.

Another possible explanation proposed by Toth et al. (2002) is that, at increased
resolution, the forecast model is resolving details that may deteriorate the skill of a
deterministic forecast but improve the skill of a probabilistic forecast. Toth et al. (2002)
found that for single deterministic forecasts using a higher resolution can reduce the
forecast error during the � rst few days, because it gives a better description of both large
and small scales, but it has a detrimental effect afterwards. They argued that this is due to
a combination of a progressive loss of correspondence between predicted and observed
small scales, and the fact that the small scales can act as a source of random noise
that affects the accuracy of the large-scale features. They pointed out that this happens
despite the fact that a low-resolution forecast gives a less realistic view of reality. By
contrast, using a higher resolution can lead to better skill for an ensemble system because
each single member of the ensemble gives a more realistic representation of reality. In
other words, the fact that a higher-resolution model gives a more realistic representation
of reality guarantees a forecast improvement when used in an ensemble con� guration.

In contrast with Toth et al. (2002), the results discussed in this paper indicate that
using a higher resolution improves the skill of both single deterministic and ensemble-
based probabilistic forecasts for the whole 10-day forecast range, the difference being
that the improvement is more substantial for ensemble-based, probabilistic forecasts.
It is not clear at this stage whether the argument of Toth et al. (2002) can be used to
explain such a difference.
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7. CONCLUSIONS

The 80 km High-Resolution Ensemble Prediction System (HEPS) gives a better
estimate of the PDF of 850 hPa temperature and 500 hPa geopotential height forecast
states than the EPS. Average results (over 57 winter and 30 summer cases) based on
BSS of probabilistic predictions of moderate 850hPa temperature anomalies for NH
have indicated that the operational implementation of the new HEPS system has resulted
in gains in predictability of about 12 hours. Consideration of economic value supports
this overall level of improvement, and also indicates substantially larger bene� ts for
users with low C=Ls. This positive impact of the resolution increase on single cases of
extreme weather prediction has been documented by Buizza and Hollingsworth (2002).

The performance of the HEPS has been compared with the performance of different
variants of poor-man’s ensemble systems (Table 2) based on a small number of forecasts
from different centres (ECMWF, Met Of� ce and DWD). Following Ziehmann (2000) a
� ve-member multi-centre poor-man’s ensemble has been considered (MCEPS). Average
results (over 39 winter cases) based on potential economic value have indicated that
raw HEPS forecasts perform better than the MCEPS. The larger HEPS membership (51
versus 5) is one of the reasons for the better performance. Then, following Atger (1999),
an ensemble based on a parametrized distribution function centred on the ECMWF
high-resolution forecast, with standard deviation de� ned by the control error standard
deviation, has been considered (HCG). HEPS has been shown to perform worse than
HCG for forecast steps up to day 5 and better thereafter. This result has been related to
the fact that the HCG PDF has been bias corrected, while the HEPS has not. Results
have shown that a bias-corrected HEPS (HEPS-bias) outperforms HCG for all forecast
steps.

Finally, the raw EPS, HEPS and MCEPS forecasts have been transformed into
parametrized Gaussian distribution functions centred on the bias-corrected ensemble
mean and with re-scaled standard deviation, speci� cally, into EPSG, HEPSG and
MCEPSG. Results of this comparison have shown that HEPSG outperforms all other
con� gurations for every forecast step.

One of the most striking results from the comparison of EPS and HEPS has been
that the accuracy of probabilistic forecasts has been improved more than the accuracy
of deterministic forecasts. Parametrized probability forecasts have been used to identify
potential reasons for this different impact of resolution increase. Results suggest that the
different impact on the skill is related to the fact that the HEPS represents in a better way
the daily variation of forecast uncertainty, and it is not a simple re� ection of improved
mean bias or of a better level of spread. This may also be related to the fact that at
increased resolution the forecast model is resolving details that may deteriorate the skill
of a deterministic forecast but improve the skill of a probabilistic forecast (Toth et al.
2002).

On 21 November 2000, HEPS became the ECMWF operational ensemble con� gu-
ration.
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