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Abstract 

 A mathematical method has been developed to identify the sources of bias 

error in dynamical systems that can be represented by a set of coupled ordinary 

differential equations. The basic tenet is that the forecast bias can be represented 

by a first-order Taylor series in the elements of the control vector  — expressed in 

the form of sensitivity of model output to the initial condition and sensitivity of 

output to the parameters. Problem solution rests on a least squares formulation 

that accommodates over-determined/under-determined systems, i. e., systems 

where the number of observations is greater than/less than the number of 

unknown elements of the control vector. 

 A general framework is constructed and applied to the Lagrangian mixed-

layer model that is applicable to the cold-air outflow phase of return flow over 

the Gulf of Mexico. Observations for a particular return-flow case are used to 

establish the idealized control vector and forecast. Bias is then added to this 

control vector and numerical experiments are executed to test the viability of the 

methodology. Principal results of the experiments are: (1) in all experiments, the 

bias correction is of the correct sign and the magnitude is close to the ideal, (2) 

the accuracy of the bias estimates improve with iteration, and (3) in the rank 

deficient systems, regularization leads to meaningful solutions. 
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1. Introduction 

 From the earliest days of numerical weather prediction (NWP), we have 

been challenged to identify the sources of systematic (as opposed to random) 

errors in both models and observations. Not surprisingly, biased initial 

conditions in the presence of data void have often been cited as the culprit. In the 

1940s – 1960s when weather ships provided valuable information over the Pacific 

and Atlantic Oceans, the absence of upper-air observations from ship Papa 

(located approximately 400 miles south of Adak, Alaska) led to systematic errors 

of 200 - 300 m in the 500-mb geopotential over southern Canada (the errors could 

be systematically too high or too low depending on the synoptic-scale wave 

number for a given event) (Thompson 1987). But even in the presence of accurate 

initial conditions, systematic forecast error can arise in response to imprecise 

representation of physical processes or the absence of important processes in the 

model. The spurious and systematic retrogression of the very long hemispheric 

waves in barotropic models is a classic case of model deficiency [Wolff (1958), 

Cressman (1958); reviewed in Wiin-Nielsen (1991)]. 

 From a deterministic view of dynamical prediction, there is a set of 

elements that must be specified to obtain the forecast — elements of a control 

vector. These elements include the initial conditions, the boundary conditions, 

and the physical/empirical parameters. Under the assumption that the model is 

faithful to the phenomenon under consideration, systematic errors in these 

elements generally lead to systematic errors in the forecast. 
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 A starting point for locating the source of systematic error is calculation of 

model sensitivity, i. e., calculation of changes in model output with respect to 

changes in these control-vector elements. Ranking these derivatives in the order 

of their absolute values (from largest value to smallest) is a measure of the 

relative importance of a particular element on the model output or “aspect” of 

interest. Nevertheless, the concerted action of elements of low rank can produce 

the systematic error in the model output. Further, as shown by Lewis (2007) in 

his study of sensitivity of moisture forecast to elements of the control vector in 

return flow over the Gulf of Mexico, compensating/offsetting biases in the 

elements of the control vector can concertedly act to ameliorate the forecast bias, 

i. e., produce a forecast with little bias despite systematically erroneous 

parameters. In short, it is challenging to identify the source of a biased forecast. 

 A significant body of work related to handling bias in meteorological data 

assimilation has been amassed [For example, see Dee and DeSilva (1998), Derber 

and Wu (1998), Dee and Todling (2000), and Dee (2003)]. The errors can generally 

be traced back to the presence of systematic errors in both models and 

observations as briefly mentioned above. In his discussion of bias in data 

assimilation, Dee (2003) makes the following statement: “In this paper we 

consider methods for detecting, estimating, and correcting model bias during 

data assimilation. The techniques are strictly statistical and do not resolve the 

underlying cause of model bias. Naturally it is always preferable to remove the 

cause once it has been identified, but that is not an easy task.”  
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 We build a framework that searches for the source(s) of bias error rather 

than correction through the data assimilation phase of NWP. We assume that 

accurate observations assess the error of prediction. The difference between the 

forecast and the accurate observations serve as “forcing functions” in the analysis 

equations that link forecast errors to sensitivity functions. We must distinguish 

between several scenarios: (1) the determined problem where the number of 

observations is equal to the number of elements in the control vector, (2) the 

over-determined problem where the number of observations is greater than the 

number of elements in the control vector, (3) the under-determined problem 

where the number of observations is less than the number of elements in the 

control vector, and (4) a unified treatment where aspects of both the over- and 

under-determined problem are considered. 

 We test the methodology and framework on the low-order nonlinear 

mixed-layer model that has proved useful in the study of air mass 

transformation over the Gulf of Mexico (Liu et al. 1992). We review the 

dynamical equations governing the mixed-layer process and apply the 

framework to the Lagrangian form of the model. Several numerical experiments 

are conducted to evaluate the usefulness and merit of the method.  

2. A Framework 

 Let x(t) ∈Rn  denote the state of a dynamical system and let   α ∈R p  be the 

vector of parameters where   n  and  p  are positive integers. Let   f : RnxR pxR → R n  
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be a mapping where     f (x ,α , t) = (f1, f2, ..., fn)T  with   fi = fi (x ,α ,t )  for     1 ≤ i ≤ n  and 

where     (...)
T  denotes the transpose. The vector space  R

n  is called the model space. 

 Consider a dynamical system described by a system of ordinary nonlinear 

differential equations of the form  

 
  
dx
dt

= f (x ,α , t) , (1) 

where 
  
dx
dt

 is the vector of time derivatives of the components of     x(t ) , with 

    x(0) ∈R n  the given initial condition. It is tacitly assumed that the map of   f  in Eq. 

(1) is such that the solution     x(t ) = x(t ,x(0),α )  exists and is unique. It is further 

assumed that     x(t )  has a smooth dependence on   x(0)  and α  such that the first 

    k(≥ 1)  partial derivatives of     x(t )  with respect to the components of     x(0)  and α  

also exist. Given the operating point   (x
T (0),α T )T ∈RnxR p , the solution     x(t )  of Eq. 

(1) is known as the model forecast of the system state at time   t > 0 . The 

operating-point lies in   R nxRp  which is called the parameter space or the control 

space. 

 Let     h : R n → Rm  be the mapping from the model space  R
n  to the 

observation space   R m . The vector  z
M ∈Rm  given by  

   zt
M = h(x(t))   (2) 

is called the model predicted or model counterpart of the observation. The 

mapping     h(⋅)  is known as the forward operator.  
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 Let   zt ∈Rm  be the observation vector obtained from field measurements at 

time     t > 0 . Then 

  et = zt − zt
M  (3) 

denotes the difference or the error between the model predicted state and the 

observation. This error vector  et ∈Rm  is a measure of the forecast error at time  t . 

 For purposes of analysis in this paper, it is assumed that the model     f (⋅)  

and forward operator     h(⋅)  are exact, and that the observations  zt  are noise free. 

 Given these ideal conditions, a little reflection reveals that the only way in 

which forecast error   et  enters the picture is through the errors or biases in the 

initial conditions     x(0)  and/or in the parameters α . 

 

 

Statement of the problem: 

Given the maps     f (⋅)  and     h(⋅) , the initial condition vector   x(0) , the parameter 

vector α , and the observations  zt  at some time   t > 0 , find the correction vectors  

    δx(0)  and δα  such that the new model forecast starting from a new operation 

point specified by     (x(0) +δx(0))  and  (α +δα )  is such that the model counterpart 

to the observation   zt
M  “matches” the observation  zt  as closely as possible. 

 We start by quantifying the change  Δx  in the solution   x(t ) = x(t ,x(0),α )  

resulting from a change     δx(0)  in   x(0)  and δα  in α . Invoking the standard Taylor 

series expansion, we obtain 
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Δx = x(t, x(0) + δx(0),α +δα ) − x(t, x(0),α ) = δ jx

j
∑  (4) 

where   δ jx  is the   j
th  variation of   x(t ) , the fraction of the total change that can be 

accounted by the  k
th  partial derivatives of   x(t )  with respect to   x(0)  and α  and 

the perturbations     δx(0)  and δα . In practice, since the total number of correction 

terms on the right hand side of Eq. (4) must be finite, we often settle for an 

approximation of only   k  terms (usually   k = 2). Thus, in the first-order analysis, 

we approximate   Δx  by the first variation  δx  and in the second-order analysis  Δx  

is approximated by the sum     δx + δ 2x , the sum of the first- and second-order 

variations. 

 While first-order analysis may be adequate for systems where the 

dependence of     x(t )  on     x(0) , α , and the function   h(⋅) , are “mildly” nonlinear, 

second-order analysis would be necessary when dependence of     x(t )  on     x(0) , α , 

and the mapping   h(⋅)  are “strongly” nonlinear. For simplicity in exposition, we 

only describe the first-order analysis. For details on the second-order analysis, 

refer to the report by Lakshmivarahan and Lewis (2008). 

First-order analysis: 

From first principles and Eq. (4) we obtain  

     Δx ≈ δx = D x(0) (x )δx(0) + Dα (x)δα  (5) 

where     Dx (0) (x) ∈Rnxn  is the Jacobian of   x(t )  with  respect to   x(0)  given by 
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Dx (0) (x) = [
∂xi

∂x j (0)
] =

∂x1
∂x1(0)

∂x1
∂x2(0)

... ∂x1
∂xn(0)

∂x2

∂x1(0)
∂x2

∂x2(0)
...

∂x2

∂xn(0)
.
.
.

. . .

∂x n
∂x1(0)

∂xn
∂x2(0)

... ∂x n
∂xn(0)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 (6) 

    Dα(x) ∈Rnxp  is the Jacobian of   x(t )  with respect to α , given by  

 

    

Dα(x) = [
∂xi

∂α j
] =

∂x1

∂α1

∂x1

∂α 2
...

∂x1

∂α p
∂x 2

∂α1

∂x 2

∂α 2
...

∂x 2

∂α p
.
.
.

. . .

∂xn
∂α1

∂xn
∂α 2

... ∂xn
∂α p

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 (7) 

The matrices     Dx (0) (x)  and     Dα(x)  are known as the first-order sensitivity of the 

solution     x(t )  with respect to     x(0)  and α , respectively, and the elements of these 

matrices are called sensitivity functions. 

 Notice that the above sensitivity matrices can be readily computed if the 

solution     x(t )  of Eq. (1) is explicitly known. Since coupled nonlinear equations 

cannot be explicitly solved save for simple cases, numerical methods are usually 

required. Generally, one can derive the dynamics of the evolution of the 

sensitivity functions. A wide variety of solution techniques are also currently 

available for solving the dynamics of the sensitivity functions and the model as 

described by Eq. (1). Refer to the excellent paper by Rabitz et al. (1983), and the 
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books by Cacuci (2003), Cacuci et al. (2005), and Cruz (1979). A succinct 

summary of these techniques is contained in Lakshmivarahan and Lewis (2008). 

 The first variation   δx  in   x(t )  induces a variation  Δh  in   h(x(t)) . Again, 

approximating   Δh  by the first variation, we get 

   Δh ≈ δh = Dx (h)δx  (8) 

where     Dx (h) ∈Rmxn  is the Jacobian of   h(⋅)  with respect to  x  and is given by 

 

    

Dx (h) = [
∂hi

∂x j
] =

∂h1
∂x1

∂h1
∂x2

... ∂h1
∂xn

∂h2

∂x1

∂h2

∂x2
...

∂h2

∂xn
.
.
.

. . .

∂hm
∂x1

∂hm
∂x2

... ∂hm
∂xn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 (9) 

Combining Eq. (5) and Eq. (8), we obtain 

     δh = H1δx(0) +H2δα  (10) 

where     H1 = H1(t ) = Dx (h)Dx(0 )(x ) ∈R mxn  and   H2 = H2(t ) = Dx (h)Dα (x) ∈R mxp . Setting 

    H= [H1,H2 ] ∈Rm x(n +p )  and     ς = [ς1
T ,ς2

T ] ∈R n +p  where   ς1 = δx(0)  and   ς2 = δα , Eq. (10) 

becomes 

  δh = Hς . (11) 

Given the operating point     (x
T (0),α T )T ∈RnxR p , our goal is to find the 

perturbation     (δx T (0),δα T )T  such that the observation  

     zt = h(x(t, x(0) + δx(0),α +δα )) ≈ h(x(t )) +δh  (12) 
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Combining Eq. (12) with Eqs. (3), (8), and (11), it follows that the required 

perturbation   ς ∈R n+p  is obtained by solving the inverse problem 

  Hς = et  (13) 

where   H∈Rmx(n+p )  and   et ∈Rm . If we had sought the second-order 

approximations in Eq. (5) and in Eq. (8), the resulting analysis equation would be 

nonlinear. 

 The possible solutions to Eq. (13) critically depend on the relative values 

of m and (n+p) and on the rank of the matrix H which in turn depends on the 

properties of the Jacobian     Dx (h)  and the sensitivity matrices   Dx (0) (x)  and     Dα(x) . 

If m=(n+p) and H is of full rank, one can solve Eq. (13) for ς  using standard LU-

decomposition (Lewis et al. 2006). If   m ≠ (n + p) , the solution is found be recourse 

to least squares methodology. The functional to be minimized depends on the 

problem structure, i. e., whether the problem is over-determined [    m > (n + p)] or 

under-determined [    m < (n + p)]. In the development that follows, we refer the 

reader to Lewis et al. (2006, Ch. 5) for detailed derivations. 

 If     m > (n + p)  and H is of full rank, the solution is found by minimizing 

     g(ς) = Hς - et
2  (14) 

where ⋅  denotes the standard Euclidean norm. It can be verified that the ς  

that minimizes Eq. (14) is  

     ςLS = (HTH)-1HTet . (15) 
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 If     m < (n + p)  and H is of full rank, the problem is 

under-determined where there are infinitely many solutions. A unique solution 

is obtained by minimizing   δς 2  when ς  is subject to the linear equality 

constraint given by Eq. (13). This constrained minimization problem is solved by 

invoking the standard Lagrangian multiplier method. The solution in this case is 

given by 

      ςLS = HT(HHT)−1et . (16) 

 In cases when H is not of full rank (that is, H is singular or nearly 

singular), we use the standard Tikhonov regularization method where we find ς  

that minimizes 

 
    
g(ς) =

1
2

Hς - et
2 +

ν
2

ς 2  (17) 

for some real constant   ν > 0 . The minimizing solution is given by 

     ςLS = (HTH+ ν I)-1HTet  (18) 

  = HT(HHT +ν I)-1et  (19) 

where I  is the identity matrix. Equality of the right-hand sides of Eqs. (18) and 

(19) rests on a standard matrix identity. In the case when H is singular or nearly 

singular, one could also use the Moore-Penrose inverse, typically denoted by H+ , 

to recover ς . The standard matrix identity and the Moore-Penrose inverse are 

discussed in Lewis et al. (2006, Ch. 5). 
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 This framework can be readily extended to the case of observations at 

multiple time levels. Let     t1 < t2  and let   zt1  and   zt2  represent observations at     t1  

and     t2 , respectively. Then we get the two error vectors 

     eti = zti − h(x(ti)) , (20) 

where     x(ti )  is the solution of Eq. (1) at times   ti , i = 1, 2 . Define 

    H1(ti ) = Dx (ti ) (h)Dx( 0)(x(ti)) ∈Rm xn  and   H2(ti ) = Dx( ti )(h)Dα (x(ti )) ∈ Rmxp , 

then at time   ti , we have  

   H(ti )ς = eti  (21) 

where     H( ti ) = [H1(ti ),H2(ti )] ∈R mx(n+p ) , i = 1,2 . Now define a new matrix H and a 

vector   e  as  

 
    
H=

H(t1)
H(t2)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

∈R2 mx(n +p )  and 
  
e =

et1

et2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ ∈R2 m . (22) 

The two problems in Eq. (21) can now be combined into a single linear least 

squares problem as  

  Hς = e  (23) 

where H and   e  are defined in Eq. (22). This problem can be solved by the 

standard methods described above. 

 We demonstrate utility of the framework by recourse to a low-order 

model — the 3-variable nonlinear mixed layer model that possesses an analytic 

solution. This model is faithful to the evolution of the convective boundary layer 

during the outflow phase of return flow episodes (Liu et al. 1992). Further, the 
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operational dynamical prediction of return flow has a documented history of 

bias error and thus serves a viable model for this investigation (Lewis 2007). 

3. Mixed-layer model 

a. Variables and governing equations 

 A schematic diagram of the idealized mixed-layer model in the 

atmosphere is shown in Fig. 1. The model was developed in the 1960s to study 

lower-tropospheric mixing in the atmosphere and mixing in the top layer of the 

ocean (from the surface to the thermocline) — a mixing in response to 

penetrative convection as discussed in Ball (1960), Kraus and Turner (1967), and 

Lilly (1969). The adjective “penetrative” indicates that the advancing unstable 

layer has domes that penetrate small distances into the stable layer (Deardorff et 

al. 1969). This penetration is displayed as the “interfacial entrainment layer 

(overshoot)” in Fig. 1. The basic variables in the model are: 

     H : height of the mixed layer 

   θ : mixed-layer potential temperature 

 σ :  jump in potential temperature atop the mixed layer 

 θs : potential temperature of the sea surface 

 γ :  lapse of potential temperature above the mixed layer 

 κ :  entrainment parameter 

     θ ' w ' :  heat flux at lower boundary 

where the heat flux is parameterized by the zeroeth-order turbulent closure 

assumption, viz.: 



 15 

   θ ' w ' = cTV (θs −θ )  (24) 

where  cT : turbulent exchange coefficient 

 V :  surface wind speed 

 (θs −θ ) = δθ : sea/air temperature difference. 

 The mixed-layer problem is posed in a Lagrangian frame of reference 

where we assume that the column of air above the sea surface remains “intact”, i. 

e., it is not sheared apart as it moves over the ocean surface. This assumption is 

justified in the case of strong convective forcing — where δθ  is relatively large 

and positive. In such a case, the turbulent mixing due to buoyancy not only leads 

to constancy of θ  and atmospheric constituents like water vapor, but the 

horizontal momentum is mixed and this leads to a nearly constant speed and 

direction of the wind in the layer [See Lewis (2007)]. Thus, the columnar 

structure is maintained.  

 Not only does the heat transfer (and vapor transfer) take place at the 

sea/air interface, but it also occurs at the top of the mixed layer via turbulent 

entrainment. In modeling the mixed layer, it is generally assumed that the heat 

transfer at the top of the layer is a fraction of that at the lower boundary. The 

heat transfer at the top is given by 

  κθ ' w '  

where κ  typically ranges from 0.2 — 0.3  [Manton  (1980)], and the 

corresponding entrainment velocity  we (shown in Fig. 1) is given by 
    
κθ ' w '

σ
. 



 16 

 The governing equations for the mixed layer are given as follows: 

 
  
dH
dt

=
κ
σ

cT Vδθ  (25) 

 
    
H

dθ
dt

= (1+κ )cT Vδθ  (26) 

 
  
dσ
dt

= γ
dH
dt

−
dθ
dt

. (27) 

The third equation, forecast of the jump, is dependent on the height and 

temperature forecast. This connection is viewed geometrically in Fig. 2. As the 

mixed-layer temperature increases, the jump decreases, and as the mixed-layer 

height increases, the jump increases in response to the structure of the 

parameterized lapse rate γ . 

 The evolution of the height, temperature, and jump for a particular well-

observed return flow event is shown in Fig. 3. This event occurred during the 

period February 21 - 25, 1988, and the upper-air observations were collected 

aboard the U. S. Coast Guard ship Salvia. She was able to keep pace with the low-

level outflow winds in both speed (   ~ 10ms−1 ) and direction (north wind:     360D) for 

approximately 18 h (from 1138UTC, Feb 21 to 0530UTC, Feb 22). Upper-air 

observations from the ship at roughly 6 h intervals are shown in Fig. 3 (Profiles 1, 

2, 3, and 5). The profile labeled “4” was obtained from a dropsonde launched 

from a U. S. Air Force aircraft. 

b. Control vector 
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  The solution to the mixed layer equations [Eqs. (25) – (27)] is deterministic 

and dependent on the following elements of the control vector: 

H0 , θ0 ,σ0 : Initial Conditions 

   β = cT Vδθ : Boundary Condition 

 κ  and γ : Parameters 

  

We will refer to   β ,κ  and γ  as “parameters” to distinguish them from the initial 

conditions. In accord with our notation, n=3 and p=3. We combine these six 

elements and express them as components of the control vector C , given by 

     C = (H 0,θ0 ,σ0 ,β ,κ ,γ )T ∈R 3xR 3 . (28) 

Once these elements are specified, the forecasts of H , θ , and σ  are determined. 

In accord with conditions appropriate for the outflow phase of return flow over 

the Gulf of Mexico (Lewis 2007), the assumed true values of the initial conditions 

are 250  m ,   10 DC , and   1.5DC  for   H0 ,θ0 ,  and  σ0 , respectively. 

 Based on observations from the February 1988 case, an average sea/air 

temperature difference of       δθ = 4.0DC  is appropriate for the ~18 hours of outflow 

phase depicted in Fig. 3 (1138UTC/Feb21 — 0530UTC/Feb 22). Using this 

average, we will assume that the cumulative turbulent heat input to the 

atmosphere for times     0 ≤ t ≤ 18h  is given by 

     I(t ) = cT ⋅V ⋅δθ ⋅ t  (29) 

     I(t ) = β ⋅ t , (30) 
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where β  is now defined in terms of the average air/sea temperature difference, 

δθ , i. e.,   β = cT Vδθ . 

 Assuming   cT = 10−3 , V  = 10ms−1 , and     δθ = 4.0DC , we get 

  β = 4 ⋅10−2 ms−1(DC) . Based on the profiles of temperature from the February 1988 

case mentioned earlier, we take   γ = 3.3 ⋅10−3( DC)m−1  [~   3DC ⋅ km−1], and assume 

that   κ = 0.30  in accord with Manton (1980) and Tennekes and Driedonks (1981). 

Thus, 

       C = (250m ,10DC,1.5D C, 4.0 ⋅ 10−2 ⋅D Cms −1,0.30,3.3 ⋅10−3 ⋅D Ckm−1)T  (31) 

 
c. Analytic solution 

 Driedonks (1982) found an analytic solution to Eqs. (25) – (27) and we will 

use this solution in our investigation of bias error. The solution takes the 

following form: 

 1
2

γ
κ

(1+ 2κ )
H2 − (

H0

H
)

1
κ (H0σ0 −γ

κ
(1 + 2κ )

H0
2) =κ (I(t) − D0)  (32) 

where  D0 = H0σ0 −
1
2

γ ⋅ H0
2  (33) 

 θ =θ0 +σ 0 − γH0 + γ
1+κ
1+ 2κ

H − (
H0

H
)
1+κ

κ (σ0 −γ
κ

1 + 2κ
H0)  (34) 

 σ = γ
κ

1 + 2κ
H + (

H0

H
)

1+κ
κ (σ 0 − γ

κ
1+ 2κ

H0 ) . (35) 

The factor ( H0

H
)

1
κ  decays rapidly with time, such that terms in the analytic 

solution involving this term become small compared to the other terms after a 
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few hours of simulation. For example, when H reaches 1 km, ( H0

H
)

1
κ ~ 10−2 . 

Driedonks simplifies the analytic solution under the assumption that the terms 

involving ( H0

H
)

1
κ  can be neglected. The solution then becomes 

 1
2

γH 2 = (1 + 2κ )(I(t) − D0 )  (36) 

 θ =θ0 +σ 0 − γH0 + γ
1+κ
1+ 2κ

H  (37) 

 σ = γ
κ

1 + 2κ
H  (38) 

Note that the solution for H as found in Eqs. (32) and (36) is physically 

meaningful only when I(t) > D0  . For the parameters we have chosen, the 

solution is meaningful for times t >1h . 

d. Framework applied to mixed-layer model 

 As will become evident later, there is an advantage to express the dynamic 

variables and elements of the control vector in normalized non-dimensional 

form. Further, we adopt symbolism that is consistent with the development of 

the framework found in section 2. The non-dimensional variables and elements 

are defined as follows: 

 x1 =
H
H

(H =1000m)  
  
x2 =

θ
θ

(θ = 10DC)  
  
x3 =

σ
σ

(σ = 1DC)  

 
    
x1(0) =

H0

H0
(H 0 = 50m)  

    
x 2(0) =

θ0

θ0
(θ 0 = 5DC)  

    
x 3(0) =

σ 0

σ 0
(σ 0 = 0.5D C)  

 
      
α1 =

β
β

(β = 10−2 ms−1D
C)  

 
α2 =

κ
κ

(κ = 10−1)  
    
α3 =

γ
γ

(γ = 10−3 ⋅D Cm−1)  
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From these definitions, the elements of the Jacobian matrices   Dx (0) (x)  and     Dα(x)  

are listed in Tables 1 - 3. 

In our application, we assume that observations of the dynamic variables are 

made, i. e., we obviate the need for the   h[x(t ,x(0),α )]  function that appears in Eq. 

(2). Consequently, the sensitivity matrix H is simply given by 

     H = [Dx(0 )(x ),Dα(x)] ∈ Rnx(n + p) . (39) 

 Since the mixed-layer model is nonlinear while the governing analysis 

constraints are linear, exact recovery of the elements is unexpected. Nevertheless, 

the following stepwise/iterative approach will generally lead to improved 

estimates: 

 (1) The vectors     δx(0)  and δα  are found via solution to the 

appropriate analysis equation [Eq. (13), (15), (16), (18), or (19)]. 

 (2) From the new estimates of the control vector, another forecast is 

made that is generally expected to improve the forecast. 

(3) The improved forecast permits another calculation of the elements 

of H and a new forcing function (observation minus forecast). 

(4) New vectors     δx(0)  and δα  are found by solving the analysis 

equation. 

(5) The process continues until there is little or no change (within 

some pre-specified tolerance) in the model state from one iteration to 

the next. 
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4. Numerical Experiments 

 We consider three separate experiments: (I) error in initial conditions only, 

(II) errors in parameters only, and (III) errors in both initial conditions and 

parameters. In experiment (I) we explore results for the under-determined 

system. In experiment (II), results from both a determined and over-determined 

system are considered. In experiment (III), we handle the system that possesses a 

singular matrix. Further, in experiment (III) we find solution through an iterative 

process described above. 

 The biased control vector   ̂  C  is given by: 

      ̂  C = (300m ,11DC ,2.0DC ,5.4 ⋅10−2 ⋅D Cms−1,0.35, 4.0 ⋅10−3 ⋅D Ckm −1)T , (40) 

where each element has a positive bias: 50 m for the initial height,       1DC  for the 

initial mixed-layer temperature,     0.5DC  for the jump,     1.4 ⋅10−2 ⋅D Cms−1  for the 

air/sea temperature difference parameter β ,  0.05  for the entrainment parameter 

κ , and       0.7 ⋅ 10−3 ⋅D Cm −3  for the lapse rate γ . The magnitude of the error in β  is 

roughly based on a 10% error in each factor —   CT ,V , and δθ .  

 Consistent with the observation frequency for the return flow event 

described earlier, we assume that upper-air observations are available at 6 h 

intervals — at t=6 h, 12 h, and 18 h. At each time, observations of height, 

temperature, and jump are assumed to be available. 

 In all the experiments, the elements of the sensitivity matrix H are found 

from the biased forecast. This begs the question: Are the errors in the elements of 
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H sufficiently small to yield meaningful corrections to the initial condition vector 

and the parameter vector — or more to the point, do the new estimates of these 

vectors produce a forecast that is closer to the observations than the original 

biased vector. 

 a. Experiment I: Error in initial conditions only 

 Let us assume that we have observations at one time only,     t f = 6h  — 

observations of height, temperature and jump at this single time. From these 

observations and the model-state forecast at   t f = 6h , we obtain  e . We have three 

unknown parameters:     (x1(0),x2(0),x3(0))  and the three components of the error 

vector   e . At first sight it appears that we have a determined problem. However, 

the sensitivity matrix H is given by 

 

    

H =

∂x1

∂x1(0)
∂x2

∂x1(0)
∂x3

∂x1(0)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

∂x1

∂x2(0)
∂x2

∂x2(0)
∂x3

∂x2(0)

∂x1

∂x3(0)
∂x2

∂x3(0)
∂x3

∂x3(0)

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

. (41) 

Using entries from Tables 1 - 3, we get 
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and this matrix is not of full rank (=3), i. e., row 1 and row 3 are dependent. The 

dependence stems from the relation between σ  and  H  as found in Eq. (38). The 

jump σ  is a function of   κ ,γ  and  H . Under the assumption that κ  and γ  are 

known exactly, derivatives of  H  with respect to the initial conditions differ from 

the derivatives of σ  with respect to these same initial conditions by the constant 

factor 
  

κγ
(1+ 2κ )

 or 
    

κγ H
(1+ 2κ )σ

 in non-dimensional form. Accordingly, this 3x3 

matrix is of rank 2. 

The governing analysis equations reduce to 

 

    

Hδx(0) =

∂x1
∂x1(0)

∂x1
∂x2(0)

∂x1
∂x3(0)

∂x2

∂x1(0)
∂x2

∂x2(0)
∂x2

∂x3(0)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

⋅

δx1(0)
δx2(0)
δx3(0)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

=
z1(tf ) − x1(t f )

z 2(tf ) − x2(t f )

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ =

e1

e2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
, (42) 
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where     z1  and     z2  are the observations of   x1  and   x 2  (at  t = tf ), respectively,     x1(tf )  

and     x 2(tf )  are the forecasts, and the elements of H are found at   t = tf = 6h . 

 Since the under-determined solution satisfies the analysis constraints [Eq. 

(42)] while minimizing     δx(0) 2 , the value of normalization (and non-

dimensionalization) becomes clear. Without this scaling process, the squared 

terms     δH0
2

, δθ0
2
, and   δσ0

2  would appear in the functional, and not only are 

these terms dimensionally inconsistent but they differ in magnitude. The scaling 

serves as an “effective weighting” on each of these terms and the 

weighting/scaling we have chosen strives to give comparable weight to each of 

the dynamic variables. 

 The results of Experiment I are found in Table 4. The corrections are all 

found to be in the proper direction where the corrected states of   θ0  and   σ0  are 

close to ideal. Even though     H0  is further from the ideal state, the evolution of the 

dynamical system, shown in the lower portion of Table 4, gives a creditable 

result — the mixed-layer height improved by over 50 m at t=6 h, by nearly 1 km 

at t=12 h, and by 1.25 km at t= 18 h. The corrected evolution of θ  and σ  are 

nearly identical to the true state. 

b. Experiment II: Error in physical parameters only 

 In the presence of exact initial conditions, the sensitivity matrix H is of full 

rank. Thus, if data are available at one time only, the number of unknowns 
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  (α 1,α 2,α3 )  is equal to the number of observations   (m = p = 3)  which allows 

solution via Eq. (13). 

 In Table 5 we have displayed the sensitivity matrices   H(t = 6h) ,     H(t = 12h) , 

and     H(t = 18h) . As can be seen, the accuracy of the elements in these matrices is 

comparable, i. e., the accuracy does not diminish with time. And as expected 

under such conditions, the solutions for data at one time only exhibit little 

difference. In Table 6 we have presented results for the case when observations 

are available at t=18h. The bias error has been well corrected for each of the 

parameters as shown in the top portion of the table. The evolution of the 

corrected state is faithful to the true-state evolution as shown in the bottom 

portion of the table. 

 If observations are available at more than one time, the problem is cast in 

the form of least squares for an over-determined system and solved by recourse 

to Eq. (15). We have assembled results for the three cases of data available at two 

times and the single case for data available at all three times. The range of the 

solutions for these four cases follows: 

       β : [3.81 ⋅10−2 — 3.91 ⋅10−2]D Cms−1  

   κ :[0.309 — 0.324]  

       γ : [3.37 ⋅ 10−3 — 3.41 ⋅10−3]DCm −1  

When one considers that the biased estimates are given by

   (
ˆ β , ˆ κ , ˆ γ ) = (5.4 ⋅10−2 ,0.35, 4.0 ⋅10−3) , 
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while the true state is given by 

   (β ,κ ,γ ) = (4.0 ⋅10−2 ,0.30, 3.3 ⋅10−3) , 

the results indicate proper correction in both sense and magnitude. 

 

c. Experiment III: Error in initial conditions and parameters 

 In this experiment, we consider the situation where all 6 elements of the 

control vector are subject to error and where we have observations at all 3 times, 

viz., we have 9 observations and thus   (m = 9) > (n + p = 6) . For this over-

determined problem, we first attempt to use Eq. (15) as our method of solution. 

In Table 7 we show the last four rows of H for this experiment. Although the 

rows labeled     x 3(12)  and     x 3(18) , rows that contain the derivatives of     x 3  (the 

jump) with respect to each of the control elements at t=12h and t=18h are 

independent, the derivatives with respect to   x1(0),x 2(0),  and   x 3(0)  differ by a 

nearly constant factor of 1.2 – 1.3. With the limits on machine accuracy, this 

closeness to dependence leads to singularity of HTH , one of the terms in Eq. (15). 

 Thus, we seek solution through use of the Tikhonov regularization. The 

solution depends on the arbitrary choice of ν , the number multiplying the 

squared variance term in the functional. In our study, we have the luxury of 

knowing the idealized solution for   [δx(0),δα]  and can thus choose a value of ν  

that produces a solution close to the idealized state.  In our case, this value turns 

out to be   ν = 10−4 . In practice one seeks to find the smallest value of ν  that yields 
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a solution with “reasonable” values of control vector   [x(0),α] , i. e., within the 

intuitively expected ranges of values for the control vector elements. This is a 

challenging aspect of the problem. In the end, the key result that indicates a good 

choice for ν  is a forecast evolution that significantly improves the fit of model to 

observations. 

 In Table 8 we show the results for the case when  ν = 10−4 . As in 

experiments I and II, the correction to each element is in the correct direction and 

close to the correct magnitude as found in the upper portion of Table 8. The 

evolution of the dynamic states for true, erroneous, and corrected states is shown 

in the middle portion of the table. The lower portion of the table exhibits the 

evolutionary results for the iterative process outlined in section 4. Within two 

iterations, the corrected state is nearly identical to the true state. 

5. Discussion and Conclusions 

 Under the basic tenet that the dynamical forecast bias can be represented 

as a first-order Taylor series in the elements of the control vector, we have 

demonstrated a viable process for identifying the sources of bias. The framework 

presented applies to any set of dynamical constraints that can be represented as a 

set of coupled ordinary differential equations. 

 Figure 4 schematically presents the framework for this inverse problem. 

Along the vertical centerline, we depict the forecast evolution and denote specific 

times     (t1, t2 ,...,tN )  when observations are available. The model is assumed to be 

deterministic where the initial conditions and parameters are necessary inputs. 
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 To the left of the centerline in Fig. 4, we have indicated that the first-order 

sensitivity matrices are calculated from knowledge of the model output as a 

function of the control vectors   [x(0),α] . To the right of the centerline, we have the 

observations and model counterpart to observations whose difference 

determines the forecast error. The analysis equation, based on a least squares 

formulation of the problem in the presence of the forecast errors and the 

sensitivity matrices, identifies the sources of bias error in the control vectors. This 

analysis equation takes the form 

 

    

H1(t1)
H1(t2 )
⋅
⋅
⋅
H1(t N )

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

H2 (t1)
H2 (t2)
⋅
⋅
⋅
H2 (tN )

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

⋅
δx(0)
δα

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=

et1

et2

⋅
⋅
⋅
etN

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

where     H1(ti ) = Dx (h(x(ti ))Dx (0) (x(ti ))  and   H2(ti ) = D(h(x(ti))Dα(x(ti))  for     1 ≤ i ≤ N . 

 In our tests with a weakly nonlinear system, the mixed-layer equations 

applicable to cold-air outflow over the Gulf of Mexico in winter, we have 

succeeded in identifying the sources of bias for a variety of situations, viz., those 

with bias in the initial conditions alone, bias in the parameters alone, and the 

combination of errors in both sources. Specific comments about our numerical 

experiments follow: (1) in all experiments, the bias correction is of the correct 

sign and the magnitude is close to ideal, (2) the accuracy of the bias estimates are 
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improved via iteration, and (3) in the rank-deficient cases, regularization led to 

meaningful solutions. 

 Although the results for our weakly nonlinear system are creditable, we 

will face greater challenges in applying this framework to strongly nonlinear 

systems and stiff differential equation systems associated with chemical kinetics 

(Jacobson 1999). For these systems, we may have to use the second-order 

versions of this framework. And in dynamical systems that do not possess an 

analytical solution, forward methods [Rabitz et al. (1983)] or adjoint models 

[Lewis et al. (2006)] are likely to be required to calculate the derivatives in the 

sensitivity matrices. Further, the influence of errors in the observations and 

imperfect dynamical models need exploration since they will certainly affect the 

goodness of recovery/identification of sources of bias. All issues related to the 

recovery have not been considered, but we believe this framework holds promise 

for removal of bias from forecast models. 
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Table 1. Dimensional and non-dimensional forms of the derivatives of the 
mixed-layer height   H  — derivatives with respect to elements of the control 
vector. 
 
 
 

Derivatives of   H  
 (Dimensional Form) 

 Derivatives of   H  
(Non-dimensional Form) 

 

    

∂H
∂H0

=
    

(1+ 2κ )
γH

(γH 0 − σ0 )  

 

 

   

∂x1

∂x1(0)
=

H 0

H
∂H
∂H 0

 

 

    

∂H
∂θ0

=0 

 

 

  

∂x1

∂x2(0)
= 0  

 

    

∂H
∂σ0

=
      
−

(1 + 2κ )
γ

(
H 0

H
)  

 

 

   

∂x1

∂x3(0)
=

σ 0

H
∂H
∂σ0

 

 

  

∂H
∂β

=
    

(1+ 2κ )
γβH

I  

 

 

  

∂x1

∂α1
=

β
H

∂H
∂β

 

 

  
∂H
∂κ

=
    

H
(1+ 2κ )

 

 

 
∂x1

∂α2
=

κ
H

∂H
∂κ

 

 

  

∂H
∂γ

=
    
−

H
2γ

+ (1+ 2κ )
H 0

2

2γH
 

 

 

  

∂x1

∂α3
=

γ
H

∂H
∂γ
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Table 2. Dimensional and non-dimensional forms of the derivatives of the 
mixed-layer temperature θ  — derivatives with respect to elements of the control 
vector. 
 
 

Derivatives of θ  
 (Dimensional Form) 

Derivatives of θ  
 (Non-dimensional Form) 

 

    

∂θ
∂H 0

=
    
−γ [1+

(1+κ )(σ 0 − γH 0)
γH

] 

 

 

   

∂x2

∂x1(0)
=

H 0

θ
∂θ

∂H0
 

 
∂θ
∂θ0

=1.0  

 

 

  

∂x2

∂x2(0)
=

θ0

θ
∂θ
∂θ0

 

 
∂θ

∂σ0
=

    
[1 − (1 +κ )

H0

H
]  

 

 

  

∂x2

∂x3(0)
=

σ0

θ
∂θ

∂σ 0
 

 
∂θ
∂β

=
    
(1+κ )

I
βH

 

 

 

  

∂x 2

∂α1
=

β
θ

∂θ
∂β

 

 
∂θ
∂κ

=
    

γκH
(1+ 2κ )2  

 

 

  

∂x2

∂α2
=

κ
θ

∂θ
∂κ

 

 
∂θ
∂γ

=
    
(

1+κ
1+ 2κ

)
H
2

− H0  

 

 

  

∂x2

∂α3
=

γ
θ

∂θ
∂γ
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Table 3. Dimensional and non-dimensional forms of the derivatives of the 
mixed-layer jump σ  — derivatives with respect to the elements of the control 
vector. 
 
 

Derivatives of σ  
 (Dimensional Form) 

Derivatives of σ  
(Non-dimensional Form) 

 

    

∂σ
∂H 0

=
    
−

κ (σ0 − γH0 )
H

 

 

 

   

∂x3

∂x1(0)
=

H 0

σ
∂σ
∂H0

 

 
∂σ
∂θ0

= 0  

 

 

  

∂x3

∂x2(0)
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∂σ
∂σ0

=
    
−κ

H 0

H
 

 

 

  

∂x3

∂x3(0)
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σ 0

σ
∂σ
∂σ0

 

 
∂σ
∂β

=
  

κI
βH

 

 

 

  

∂x 3

∂α1
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β
σ

∂σ
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∂σ
∂κ
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γH
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κ
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∂σ
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γ
σ
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Table 4. Results for Experiment I — the special case when initial conditions 

erroneous but parameters exact. The values of true, erroneous, and corrected 

initial conditions are shown on the top level. The evolution of the system state for 

true, erroneous, and corrected initial conditions is shown on the lower level. 

 True Erroneous Corrected 
  h0(m)  250.0 300.0 284.0 

  θ0( DC)  10.0 11.0 10.10 

  σ0(D C)  1.50 2.00 1.51 
 
 

time (h) True Erroneous Corrected 
   h θ  σ   h θ  σ    h θ  σ  
6 758 12.7 0.47 797 14.3 0.66 742 12.7 0.47 
12 1188 13.9 0.74 1275 15.8 1.05 1178 13.9 0.73 
18 1500 14.7 0.93 1617 16.9 1.33 1492 14.7 0.93 
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Table 5. Sensitivity matrices for Experiment II — special case when initial 

conditions correct but parameters are in error. The elements in each cell 

represent 
  

∂xi

∂α j
 at the various observation times. For example, the elements in the 

cell at the intersection of row   x1(06)  and column  α1  represent the derivative 
  

∂x1

∂α1
 

at time = 6h. The incorrect elements are shown in the top position of each cell 

while correct elements are shown below (in parenthesis).  

 

Time t= 6h 

   α1    α2   α3  

    x1(06)  0.104 
(0.138) 

0.052 
(0.047) 

-0.095 
(-0.095) 

    x 2(06)  0.033 
(0.037) 

0.004 
(0.003) 

0.010 
(0.006) 

    x 3(06)  0.086 
(0.086) 

0.165 
(0.127) 

0.103 
(0.083) 

 

Time=12h 

 α1    α2   α3  

    x1(12)  0.138 
(0.176) 

0.078 
(0.074) 

-0.156 
(-0.167) 

    x 2(12)  0.044 
(0.047) 

0.006 
(0.005) 

0.028 
(0.023) 

    x 3(12)  0.114 
(0.109) 

0.249 
(0.199) 

0.145 
(0.119) 

 

Time=18h 

   α1    α2   α3  

    x1(18)  0.166 
(0.209) 

0.098 
(0.094) 

-0.200 
(-0.217) 

    x 2(18)  0.053 
(0.056) 

0.008 
(0.006) 

0.041 
(0.036) 
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    x 3(18)  0.136 
(0.130) 

0.311 
(0.251) 

0.178 
(0.147) 
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Table 6. Results for Experiment II — the special case when physical parameters 

are erroneous but initial conditions exact. The values of true, erroneous, and 

corrected parameters are shown on the top level. The evolution of the system 

state for true, erroneous, and corrected parameters is shown on the lower level. 

 True Erroneous Corrected 
    β (D Cms−1)  0.040 0.054 0.039 

κ  0.300 0.350 0.309 
  γ (D Cm−1)  0.0033 0.0040 0.0037 

 
 

time (h) True Erroneous Corrected 
   h θ  σ   h θ  σ    h θ  σ  
6 758 12.7 0.47 883 13.3 0.73 714 12.7 0.50 
12 1188 13.9 0.74 1331 14.7 1.10 1116 13.9 0.79 
18 1500 14.7 0.93 1662 15.8 1.37 1408 14.8 1.00 
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Table 7. The last four rows of the sensitivity matrix H for Experiment III are 

shown. H is the 9x6 matrix of derivatives 
  
[

∂x i

∂x j(0)
,
∂xi

∂α j
] . For example, the 

elements (both incorrect and true) in the cell at the intersection of row     x 3(12)  and 

column     x1(0)  are the sensitivities 
  

∂x3

∂x1(0)
 at t=12 h. The incorrect values are 

shown in the top position of each cell while the correct elements are shown 

below (in parenthesis).  

 

     x1(0)      x 2(0)    x 3(0)   α1   α2    α3  
... ... ... ... ... ... ... 

    x 3(12)  -0.011 
(-0.009) 

0.000 
(0.000) 

-0.041 
(-0.032) 

0.119 
(0.109) 

0.238 
(0.199) 

0.144 
(0.119) 

    x1(18)  -0.011 
(-0.011) 

0.000 
(0.000) 

-0.039 
(-0.040) 

0.170 
(0.209) 

0.095 
(0.094) 

-0.190 
(-0.217) 

    x 2(18)  -0.023 
(-0.019) 

0.500 
(0.500) 

0.037 
(0.039) 

0.054 
(0.056) 

0.008 
(0.006) 

0.034 
(0.036) 

    x 3(18)  -0.009 
(-0.007) 

0.000 
(0.000) 

-0.032 
(-0.025) 

0.140 
(0.130) 

0.302 
(0.251) 

0.176 
(0.147) 

 



 41 

Table 8. Results for the general case when initial conditions and physical 

parameters are erroneous. The values of the true, erroneous, and corrected initial 

conditions are shown on the top level. The evolution of the system state for true, 

erroneous, and corrected initial conditions is shown at the middle level. The 

iterative approach to the true state is shown on the lower level. 

 
 

 True Erroneous Corrected 
  h0(m)  250 300 286 

  θ0( DC)  10.0 11.0 10.0 

  σ0(D C)  1.50 2.00 1.5 

    β (D Cms−1)  0.040 0.054 0.042 
κ  0.300 0.350 0.292 

  γ (D Cm−1)  0.0033 0.0040 0.0035 
 
 

time (h) True Erroneous Corrected 
   h θ  σ   h θ  σ    h θ  σ  
6 758 12.7 0.47 797 14.3 0.66 752 12.6 0.48 
12 1188 13.9 0.74 1275 15.8 1.00 1181 13.8 0.75 
18 1500 14.7 0.93 1618 16.9 1.33 1491 14.7 0.95 

 
 

time (h) True Iteration 1 Iteration 2 
   h θ  σ   h θ  σ    h θ  σ  
6 758 12.7 0.47 752 12.6 0.48 757 12.7 0.47 
12 1188 13.9 0.74 1181 13.8 0.75 1189 13.9 0.74 
18 1500 14.7 0.93 1491 14.7 0.95 1501 14.7 0.93 
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Figure captions 
 
Fig. 1. Schematic diagram depicting the structure of the idealized mixed layer. 

 

Fig. 2. Visualization of the time dependence of the temperature jump (σ ) atop 

the mixed layer as a function of the evolution of temperature (θ ) and height (  H ). 

 

Fig. 3 (Top) The trajectory of surface air that began its track at ~ 1200 UTC, 21 

February 1988, near the mouth of the Mississippi River. This trajectory overlies 

the contours of sea surface temperature (  DC ). The dashed line is the continuation 

of the trajectory after the final upper-air observation was taken. (Bottom) Profiles 

of potential temperature obtained from upper-air observations along the 

trajectory shown in the top portion of this figure. The times of observation are: 

(1) 1138 UTC, 21 Feb, (2) 1728 UTC, 21 Feb, (3) 0005 UTC, 22 Feb, (4) 0300 UTC, 

22 Feb, and (5) 0530 UTC, 22 Feb. 

 

Fig. 4. Diagrammatic view of the temporal distribution of various quantities 

involved in the bias estimation. 
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Fig. 1. Schematic diagram depicting the structure of the idealized mixed layer. 
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Fig. 2. Visualization of the time dependence of the temperature jump (σ ) atop 

the mixed layer as a function of the evolution of temperature (θ ) and height (  H ). 
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Fig. 3 (Top) The trajectory of surface air that began its track at ~ 1200 UTC, 21 
February 1988, near the mouth of the Mississippi River. This trajectory overlies 
the contours of sea surface temperature ( CD ). The dashed line is the continuation 
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of the trajectory after the final upper-air observation was taken. (Bottom) Profiles 
of potential temperature obtained from upper-air observations along the 
trajectory shown in the top portion of this figure. The times of observation are: 
(1) 1138 UTC, 21 Feb, (2) 1728 UTC, 21 Feb, (3) 0005 UTC, 22 Feb, (4) 0300 UTC, 
22 Feb, and (5) 0530 UTC, 22 Feb. 
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Fig. 4. Diagrammatic view of the temporal distribution of various quantities 

involved in the bias estimation. 
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