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Evaluation (Not Validation) of 
Quantitative Models 
Naomi Oreskes* 
Gallatin School of Individualized Study, New York University, 
New York, New York 

The present regulatory climate has led to increasing demands for scientists to attest to the 
predictive reliability of numerical simulation models used to help set public policy, a process 
frequently referred to as model validation. But while model validation may reveal useful 
information, this paper argues that it is not possible to demonstrate the predictive reliability of any 
model of a complex natural system in advance of its actual use. All models embed uncertainties, 
and these uncertainties can and frequently do undermine predictive reliability. In the case of lead 
in the environment, we may categorize model uncertainties as theoretical, empirical, 
parametrical, and temporal. Theoretical uncertainties are aspects of the system that are not fully 
understood, such as the biokinetic pathways of lead metabolism. Empirical uncertainties are 
aspects of the system that are difficult (or impossible) to measure, such as actual lead ingestion 
by an individual child. Parametrical uncertainties arise when complexities in the system are 
simplified to provide manageable model input, such as representing longitudinal lead exposure by 
cross-sectional measurements. Temporal uncertainties arise from the assumption that systems 
are stable in time. A model may also be conceptually flawed. The Ptolemaic system of astronomy 
is a historical example of a model that was empirically adequate but based on a wrong 
conceptualization. Yet had it been computerized-and had the word then existed-its users 
would have had every right to call it validated. Thus, rather than talking about strategies for 
validation, we should be talking about means of evaluation. That is not to say that language alone 
will solve our problems or that the problems of model evaluation are primarily linguistic. The 
uncertainties inherent in large, complex models will not go away simply because we change the 
way we talk about them. But this is precisely the point: calling a model validated does not make it 
valid. Modelers and policymakers must continue to work toward finding effective ways to 
evaluate and judge the quality of their models, and to develop appropriate terminology to 
communicate these judgments to the public whose health and safety may be at stake. - Environ 
Health Perspect 106(Suppl 6):1453-1460 (1998). http://ehpnet1.niehs.nih.gov/docs/7998/ 
Suppl-6/1453-1460oreskes/abstracthtml 
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Long experience has taught me that 
with regard to intellectual matters, this 
is the status of mankind: the less people 
know and understand about such matters, 
the more positively they attempt to 
reason about them. 

-Galileo 

About lead in the environment, this much is 
certain: lead is bad. Human ingestion of 
lead is associated with a number of clinically 

well-documented afflictions, not least of 
which is the retardation of brain develop- 
ment in infants and children. Thus in the 
1970s, the U.S. government began to take 

steps to decrease human exposure to ambi- 
ent lead, most significantly by banning the 
use of lead additives in gasoline (1-4). 
Similar actions have been taken in other 
countries (5). Scientists working on the 

problem of assessing and regulating lead in 

the environment thus enjoy the benefit of 

widespread agreement about the basic 
harmfulness of the substance being regu- 
lated. (This is not to say that the consensus 
was not hardwon: In the 1920s and 1930s, 
most health professionals opposed banning 
lead in gasoline [1,2]). 

The political and scientific consensus 
on the harmfulness of lead stands in 
contrast to other recent debates in environ- 
mental health and safety-nuclear power, 
polyvinyl chloride, radon gas, to name a 
few-in which there have been heated and 
even bitter disagreements among govern- 
ment agencies, industrial organizations, 
labor unions, and citizens' groups as to the 

significance of the purported harms (6). In 
these cases, debates have arisen in part 
because of the difficulty of documenting 
exposure levels (thus proving harm) in 

nonoccupational settings. Such settings 
typically involve low-level exposures whose 
clinical effects may be difficult to discern 
and characteristically emerge only after 
considerable time. In addition, the harmful 
materials may not themselves reside in the 
body and therefore cannot be directly mea- 
sured. Under such circumstances, scientific 

uncertainty is inevitable. Low-level radia- 
tion is a case in point. Because radiation 
does not reside in the bloodstream, it is dif- 
ficult to document exposures in uncon- 
trolled settings, and impossible to prove 
that low-level exposure caused a particular 
affliction in a particular individual. Such 

proofs must rely on statistical regularities 
in longitudinal studies of populations. In 
contrast, it is relatively easy to document 
who has been affected by lead: blood lead 
levels are measurable and the clinical effects 
of toxicity are readily discernible (7-11). 
In principle, therefore, it should be a com- 
paratively straightforward task to set legal 
limits for lead in the environment. 

In practice, however, the problem of 

setting regulatory standards for lead has 
been complicated by the growing recog- 
nition that very low levels of lead exposure 
may not be safe as previously assumed 
(2,3,12-14). The problem of lead in the 
environment thus increasingly resembles 
other environmental health debates: the 
effects of low-level exposure-diminished 
school performance, attention disorders- 
may not be readily discernible and are 
difficult to diagnose. Even if accurately 
diagnosed, there is currently no safe medical 
treatment for low-level lead toxicity, and its 
most worrisome effects are irreversible. By 
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the time a child is diagnosed with lead 

poisoning, exposure has occurred and dam- 

age has been done. Thus there is a com- 

pelling need to understand the effects of 
low-level lead exposure in order to prevent 
lead poisoning. Toward this end, scientists 
have turned to numerical simulation models. 

Scientists at the U.S. Environmental 
Protection Agency (U.S. EPA) have been 

charged with the task of determining the 

relationship between environmental lead 

exposure and adverse health effects, with 
the goal of setting appropriate regulatory 
standards for lead in air, soil, and water in 
the United States. To address the numer- 
ous variables involved, the U.S. EPA has 

developed the integrated exposure uptake 
biokinetic (IEUBK) model, a software 

package consisting of several, linked com- 

puter programs that relate environmental 
lead exposure to blood lead levels in chil- 
dren (15-18). Model input consists of data 
on environmental lead exposures estimated 

by cross-sectional measurement of lead in 
air, soil, and water in children's homes. 
The data are fed into a biokinetic model 
that simulates the metabolism of lead in 
the children's bodies, and from this, esti- 
mates likely blood lead levels. In principle, 
the IEUBK model should be a powerful 
tool to help set nationwide regulatory stan- 
dards, to identify communities in which 
current ambient lead levels are cause for 
concern, and to assess the likely impact of 

possible remedial actions in particular situ- 
ations. In short, the goal of the IEUBK 
model is to prevent lead poisoning among 
American children, a goal that no right- 
minded person would dispute. But how do 
we know if the model is a good one? The 
demands of good science and the demands 
of democracy require evidence that the 
model is reliable (19-21). 

Much of this demand has been 

expressed in terms of the need for model 
validation. As computer models are being 
used increasingly by federal, state, and local 

governments as a basis for policy decisions, 
there has been a concomitant demand for 
scientific agencies to attest to the legitimacy 
and reliability of these models, and to 
ensure that claims made on behalf of mod- 
els are defensible. The safe level of lead 

exposure is a scientific question, but it 
comes to the fore within a social and politi- 
cal context. It was in this context that the 
U.S. EPA National Center for Environ- 
mental Assessment organized the October 
1996 workshop titled "Lead Model 
Validation" to explore possible responses to 
the demand for evidence of the reliability of 

the IEUBK model. Scientists involved in 
the construction and use of the IEUBK 
model wanted to discuss what it means-or 
should mean-to call their model valid or 
to speak of its valid application (22). The 
title of the workshop presupposed both the 

necessity and the possibility of validating 
the IEUBK model, but organizers were also 
concerned with the question of whether 
one can validate a numerical simulation 
model at all, i.e, whether one can demon- 
strate that a model is reliable in advance of 
its use. Also at stake was the question of 
how the language of validation, that is, how 
we talk about what we do, affects both the 

process itself and our perception of it. 
The purpose of this paper, emerging 

from that workshop, is to review the prob- 
lem of uncertainty in the information 
obtained from complex models of natural 

systems in the context of the regulatory 
environment. This paper does not seek to 
offer specific recommendations on how to 

develop quantitative measures of uncer- 

tainty in any particular model. Such rec- 
ommendations are best left to modelers 
themselves, and several recent papers offer 
such recommendations (23-28). More- 
over, the notion of uncertainty quantifica- 
tion itself requires qualification. There are 

many sources of uncertainty in numerical 
models. Commonly, only a few are easily 
quantified, many or most are quantified 
only with difficulty, and several may be not 
be quantifiable at all. If a model is concep- 
tually flawed, quantification of input 
uncertainty will not make the model reli- 
able. On the contrary, quantification may 
surround such a model with an aura of 

credibility that it does not deserve. Yet the 
demand for credibility is real enough. The 
current regulatory climate has led to a situ- 
ation in which scientists frequently feel 

pressed to argue the strength of their mod- 
els, often beyond the degree to which they 
feel entirely comfortable. It is one thing to 
ask that scientists discuss the pros and cons 
of a model but quite another to demand 
that they declare the model valid. Apart 
from the internal demands of the scientific 

community, the push for model validation 
is a response to the political exigencies of 
our times. How should scientists, in the 

capacity of scientists, respond? 

Working from a False Pretense: 
The Notion of aValidatable Model 

In recent years, scientists in various 
disciplines have developed the notion of 
model validation to refer to the process by 
which scientists attempt to demonstrate the 

reliability of a computer model. Hodges 
and Dewar (29), in a report for the RAND 

Corporation on computer models used by 
the military to evaluate the efficacy of 

weapons systems in battlefield scenarios, 
make the distinction between two kinds of 
models: those that can be validated and 
those that cannot. To be validatable, in 
their words, the situation being modeled 
must satisfy four criteria: a) it must be 
observable and measurable; b) it must 
exhibit constancy of structure in time; c) it 
must exhibit constancy across variations in 
conditions not specified in model; and d) it 
must permit the collection of ample data. 

Models in social and policy sciences 

generally fail to satisfy these criteria and 
therefore cannot be validated; that is, their 

reliability as a basis for prediction cannot be 
demonstrated. Because the systems are 

incompletely known and may change with 
time, a model that works well under one set 
of circumstances may fail under a different 
set of circumstances (29). In essence, such 
models are trying to "predict the unpre- 
dictable" (30). Bankes (30), also writing for 
RAND, concludes that the use of computer 
models for prediction in policy analysis is 
not only generally misleading but poten- 
tially dangerous, and in the case of battle- 
field scenarios, literally so. When used for 

prediction, these models provide only the 
illusion of certainty. At best, the result is a 
false sense of security, at worse, a dangerous 
hubris. Bankes advises that policy models 
should be used primarily in an explanatory 
mode, to explore the range and possible 
consequences of policy options, including 
worst-case scenarios. He notes that this nor- 

mally requires the development of multiple 
models. Models sometimes produce results 
that surprise their creators, and in doing so 
elucidate unknown implications of known 
information and overt implications of 
covert assumptions. Nonpredictive models 
can be informative but only as long as they 
are used in question-driven rather than 

answer-seeking frameworks (30,31). 
The RAND authors restrict their 

arguments to models in the policy domain 
and suggest that their caveats do not apply 
to the hard sciences in which model pre- 
dictions can be experimentally verified. But 
this is an arguable point; many of the diffi- 
culties encountered in the social world also 

apply in the physical world. Oreskes et al. 
and Oreskes (32,33), in a discussion of 
computer models in the earth sciences, 
note that the criteria outlined above-mea- 

surability, accessibility, and temporal and 
spatial invariance-are precisely those 

1454 Environmental Health Perspectives w Vol 106, Supplement 6 * December 1998 



EVALUATION (NOT VALIDATION) OF MODELS 

features typically lacking in the natural 

systems that scientists are increasingly 
exploring with computer models. The 
reason is evident: If a physical situation 
fully satisfied these criteria, there would be 
little need for a numerical simulation. It 
could be described, in most cases, with a 
small number of deterministic equations. 
Computer models are needed and have 
become increasingly common in the nat- 
ural sciences precisely because scientists are 

grappling with complex systems involving 
multiple interacting variables that are diffi- 
cult to access, hard to measure, and may 
change in space or time. Furthermore, the 

interrelationships between these variables 

may be indeterminate or at least not 
yet determined. 

There are, of course, computer models 
that predict singular deterministic events in 
the natural world. Celestial mechanics pro- 
vides an example: computer models are 

commonly used to predict the positions of 
celestial bodies. As the recent collision of 
Comet Shoemaker-Levy with Jupiter 
shows, models in this field are very success- 
ful. The location and timing of this colli- 
sion was predicted to a high degree of 

accuracy more than a year in advance. One 

might thus claim that such models can be 
validated by reference to actual events-and 
have been. But models in celestial mechan- 
ics represent relatively simple physical sys- 
tems in which the operative forces can be 
described by a small number of determinis- 
tic equations, and in which the variables 

(e.g., the mass of Jupiter) are measurable 
constants. Indeed, they are the exception 
that proves the rule because people have 
been predicting the positions of the celestial 

objects for millennia, long before the 
advent of digital computers. Computer 
models in celestial mechanics are a matter 
of convenience, not necessity. 

Most models in the natural sciences are 
different. They involve data that are indeed 
variable and difficult to measure. Consider 
lead in the environment. Lead exposure and 
uptake may depend on lead concentrations 
in soil, water, air, and household dust; the 
size and quantity of lead paint chips in a 
household; the amount of soil or number of 
paint chips that a child eats; the amount of 
time a child spends outdoors; whether she 
washes her hands before eating and, if so, 
for how long she scrubs; and so on. Each of 
these variables is difficult to quantify. 
Indeed, if one could quantify by monitor- 
ing the amount of paint a child ate, one 
would be morally compelled to intervene to 
prevent further ingestion. (In practice, 

measurement of household dust is used as a 

surrogate for ingestion level, but children in 
the same household will have different 
levels of ingestion due to different patterns 
of behavior.) The input variables may also 

change with time and with the seasons, e.g., 
if a child spends more or less time out of 
doors; as the child grows up and changes 
his habits or begins to attend school; or 

unpredictably, if the family moves or has a 

change in its economic or childcare situa- 
tion. Short-duration sampling of lead levels 
in a child's environment provides only an 
estimate of actual lead exposure, and this, 
in turn, delimits only the range of possi- 
bilities for actual lead uptake. Further- 
more, the meaning of these variables may 
not be invariant. There is some evidence 
that the same exposure levels may produce 
different effects in different people, per- 
haps because of inborn or developmental 
contrasts in susceptibilities, nutrition, or 

synergistic effects with other elements in 
the environment (34). 

We model systems like these precisely 
because of their complex nature, as a 
means for grappling with complex vari- 
ables, and toward the important social 

goal of preventing future cases of lead 

toxicity. But in the process of constructing 
the model, we embed uncertainty, and, as 
the examples given above indicate, only 
some of this uncertainty can be estimated, 
much less directly measured. The issue of 
inborn susceptibility differentials, for 

example, is very poorly understood. Future 
research may lead to a better understand- 

ing of why different individuals react dif- 

ferently to the same exposure, but for 
now, uncertainty remains. 

How does this embedded uncertainty 
affect the predictive reliability of the 
model? That is a question that cannot be 
established a priori. It can be established 
only through the actual use of the model. 
And this is why models of complex sys- 
tems, whether in the social or the physical 
and biologic sciences, cannot be validated 
in the sense that the RAND authors imply. 
There is no way to demonstrate the predic- 
tive reliability of such models. To imply 
otherwise by using the language of valida- 
tion is misleading. But if we cannot 
demonstrate the predictive reliability of the 
model in advance, then how should we be 
evaluating the merits and demerits of a 
complex numerical simulation model? One 
step in the process may be to realize that 
prediction is not as important as it is often 
thought to be, for predictive power is itself 
a fallible judge of scientific knowledge. 

Limits of Prediction 
The RAND authors cited above assume 
that models in the natural sciences can be 
validated because their predictions may be 
tested by observation in the natural world. 
In making this claim, they are implicitly 
invoking the hypothetico-deductive model 
of science, namely, that scientific theories 
can be thought of as statements that entail 

logically necessary deductive consequences: 
predictions. If the predictions of a theory 
come true, then we have warrant for faith 
in that theory. But this focus on prediction 
may be misplaced. 

A fundamental problem with the 

hypothetico-deductive model, as many 
philosophers have realized, is that it 
assumes closed systems. A statement of the 
form p entails q works if and only if the 
statement describes a closed system. But a 
closed system is a philosophical ideal, not a 
natural kind. Real-life systems are never 
closed, and experimental tests inevitably 
embed hidden assumptions (32,35,36). 
Because these embedded assumptions may 
be faulty, a true theory may fail its experi- 
mental test. A famous example of this is 
found in the history of astronomy. 
Scientists in the 16th century suggested 
that if the earth orbited the sun, as 

Copernicus proposed, then the angular 
position of a given star would change dur- 

ing the course of the year as the earth 
moved through its orbit. But when 
astronomers looked for this stellar parallax, 
they found none-and they rejected the 

Copernican theory (37,38). Implicitly, 
they were assuming that the earth's orbit 
was large relative to the distance of the 
stars and that their telescopes were power- 
ful enough to detect the changes that 
occurred. Both these assumptions turned 
out to be very wrong! 

In the case of Copernican astronomy, 
scientists rejected a theory that turned out 
to be true, but what about the reverse? 
Have scientists ever accepted a theory on 
the basis of successful predictions but later 
discovered that the theory was false? 
To be sure. The alternative to Copernican 
theory-the Ptolemaic system-was con- 
firmed by reams of observational evidence 
and scores of successful predictions of plan- 
etary events (37). Scientists in the 16th 
century had grounds for accepting the 
Ptolemaic system. Had it been computer- 
ized, its makers would have had every rea- 
son to call it validated (assuming that word 
had then existed). Yet, as we all know, the 
Ptolemaic system was fundamentally 
wrong. It was wrong not because it failed 
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its predictive tests but because the basic 
conceptualization of the universe that 
supported it was faulty. 

In light of historical examples like this 
one, the philosopher of science Karl 

Popper famously argued that no scientific 

theory or model can ever be proved right, 
only wrong (39,40). If our observations 
are inconsistent with theoretical predic- 
tion, then we know something is amiss, 
but if our observations satisfy theoretical 

prediction, all we know is that the theory 
has not yet been proven wrong. Whether 
the theory will continue to work in the 
future is an open question. The longer a 
theory has been around and the more exper- 
imental tests it has passed, the more likely it 
seems that the theory is right but only in a 

probabilistic, not a deterministic, sense. 
Scientists, of course, know this at least 

implicitly, and many modelers will argue 
that when they use the word validation 
they do not mean to imply that their 
model is literally true. They simply mean 
that it is not evidently false. The modelers 
have gone through a series of exercises to 
show that there are no major defects in the 
model and that they have done their "level 
best" (41). Validation, in this view, is a 

process of confidence building, of building 
a case for the model (25,42,43). A vali- 
dated model, therefore, although not true 
strictly speaking, may be provisionally 
accepted (44). These are reasonable claims, 
hardly likely to provoke profound epis- 
temic discontent, and they are certainly 
consistent with the first dictionary defini- 
tion of the word valid: without obvious 
flaws or defects (45). From this definition, 
validation should simply imply the process 
in which obvious flaws are corrected. 

But although these claims are 
reasonable, they are also problematic. One 
may remove obvious errors in a model 
while more subtle ones remain. If valida- 
tion were merely the process of removing 
obvious defects, this would scarcely be suf- 
ficient for regulatory purposes. Regulatory 
agencies and the public seek assurance not 
merely that a model is free of gross error 
but that it provides a reliable basis for deci- 
sion making (19,20,46). But to imply that 
the model provides a reliable basis for deci- 
sion making is to imply that the model 
provides an accurate and substantially 
complete representation of the natural 
world. This, of course, is how people out- 
side the modeling community interpret 
validation. In common usage, valid is 
taken as synonymous with correct, i.e., 
true, and elsewhere in the dictionary we 

find precisely that definition: "Valid 
implies being supported by objective truth" 
(45). The disclaimer that scientists know 
what they mean when they talk about vali- 
dation would work if the models under 
discussion were being used solely within 
the confines of the relevant scientific com- 
munities. But very often they are not. 
Numerical simulation models are increas- 

ingly being used, often commissioned, by 
public agencies whose constituents are not 

privy to local scientific consensus. 
Furthermore, individual scientists may 

claim that model validation does not imply 
an assertion about reality (47), but the 
official pronouncements of the regulatory 
agencies for whom they work frequently 
belie this claim. The Department of 

Energy, for example, has defined valida- 
tion as the determination that a "model 
indeed reflects the behavior of the real 
world" (48). The International Atomic 

Energy Agency (49) has defined a vali- 
dated model as one that provides a "good 
representation of the actual processes occur- 

ring in a real system." (The use of the word 
"actual" by the European agency is telling. 
In the 19th century, the French word 
actual was borrowed by both English and 
German scientists as a synonym for real and 
observable.) Protestations of scientists 

notwithstanding, it is evident why these 

regulatory agencies make these claims: 
Were they to describe validation only as a 

process of checking for gross error, it would 
be inadequate as a basis from which to 

forge political consensus (50). 
A recent court case underscores this 

point. In 1986, the U.S. EPA was sued for 

failing to demonstrate the accuracy of a 
computer model used to set emissions lim- 
its under the Clean Air Act for two electric 

power plants in the state of Ohio. The 
question at stake was how much pollution 
could be emitted from the power plants 
without causing local air pollution levels to 
exceed federal standards, and the U.S. EPA 
had used a computer model to determine 
the answer. But the model was not predic- 
tively reliable. The resulting pollution levels 
violated the Clean Air Act, and the state 

government of Ohio took the U.S. EPA to 
court. The Sixth Circuit of the U.S. Court 
of Appeals ruled in favor of Ohio, finding 
against the U.S. EPA because it had used 
the computer model "without adequately 
validating, monitoring, or testing its relia- 
bility" (51,52). The U.S. EPA, the court 
concluded, acted arbitrarily in failing to 
establish the accuracy or trustworthiness of 
the model prior to basing decisions upon it, 

and ordered the agency "to test and validate 
the model as an adequate forecasting tech- 

nique" (53). A notable feature of this case is 
that the utility companies that owned the 
plants were effectively shielded from liabil- 
ity for the pollution that their plants had 
caused because it was the U.S. EPA, not 

they, that had set the emission limits. 
One could, of course, read this decision 

as implying that had the U.S. EPA vali- 
dated the model, then the agency would 
have been blameless despite the model's 

predictive failure. After all, the action of 
the court was to order the U.S. EPA to val- 
idate the model! From this perspective, the 
more restricted notion of validation might 
at first sight appear adequate for regulatory 
purposes. But this is clearly not quite what 
the court intended. In the words of the 
decision, "In order to be useful, a model 
must accurately predict the 'behavior' of 

the...system being modeled." The argu- 
ment of the petitioners against U.S. EPA 
was that "the model's predictions are not 
accurate..." (53). In fact, the U.S. EPA 
had validated the computer model: it had 

compared model output to empirical out- 
comes at four other sites. What the U.S. 
EPA had not done was test the model at 
the particular site and subsequently moni- 
tor the emissions. The court recognized 
that testing and monitoring at every site 

may not be practical-indeed, this is a pri- 
mary reason for constructing simulation 
models in the first place-but it remains an 

open question as to how much site-specific 
testing and monitoring is required to sat- 
isfy legal and community standards. In this 
regard, scientists have an important role to 

play in openly discussing the problems and 
trade-offs involved. 

Regulation and legal liability are not 
the only issues at stake here, nor are they, 
from a scientific and moral perspective, the 
most important ones. It may be possible to 

satisfy the legal standard of acting in a man- 
ner that is not arbitrary but fail to satisfy 
the scientific standard of producing reliable 

knowledge. Ultimately, the purpose of air 

pollution controls is to safeguard human 
health and property and preserve ecosys- 
tems. The purpose of the IEUBK model is 
to prevent new cases of lead poisoning. 
From this perspective, the issue is not 
whether the courts will be content with 

good-faith efforts, the issue is whether the 
model gives accurate results. In issues of 
public health and safety, we all have a stake 
in knowing that decisions made upon the 
basis of numerical simulation models turn 
out to be right. 
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Are Validated Models Valid? 
Even if we were to set aside the conceptual 
issues raised by the example of celestial 
mechanics and accept the restricted defini- 
tion of validation, i.e., that a valid model is 
one without obvious flaws or defects, would 
it then be possible to say that a given model 
is valid? The simple answer is no, because 
even our best models have known flaws. 
Science motivated by social needs may suf- 
fer this problem to a greater extent than sci- 
ence based on questions arising within a 
disciplinary framework. In the lab, scien- 
tists may define a problem in such a way as 
to rely primarily on areas where databases 
and conceptual understandings are very 
rich, and from this core of understanding 
venture outward toward the less well 
known. Scientists often refer to this as the 

well-posed problem. Throughout their his- 

tory, scientists, both as individuals and as 

professional communities, have often set 
aside problems that could not be well posed. 

Problems arising from social needs 

typically are not well posed because the 
world does not wait for scientific under- 

standing. Where scientists have been asked 
to make models for use in policy domain, 
whether the issue is lead poisoning, global 
climate change, or the safe disposal of 
radioactive waste, our theoretical under- 

standing and empirical databases are never 
what we wish them to be. There are always 
known flaws and defects in large, complex, 
policy-driven models. 

We can think of these flaws as falling 
into four categories: theoretical, empirical, 
parametrical, and temporal. Theoretical 
flaws are the things we do not fully under- 
stand or do not have the mathematics to 
handle. In the case of lead toxicity, this 
would include, for example, the problem 
of differential susceptibility and the ques- 
tion of whether there is a safe threshold 
level of exposure. Empirical flaws are the 

things we cannot fully or precisely mea- 
sure. This includes the pragmatic problem 
of having limited resources with which to 
measure lead in the environment, and the 
difficulties of sampling bias and analytical 
uncertainty, particularly at the very low 
exposure levels where regulatory limits 
will be set. Parametrical flaws are the 
errors introduced when we reduce com- 

plex empirical phenomena to single or 
simply varying input parameters in a 
model. Lead exposures vary continuously 
with time, for example, but models 
require input of a single value or a finite 
set of values for each individual. Likewise, 
blood lead levels are a continuously varying 

function, but we necessarily measure them 
at singular points in time, hoping that the 

points are adequately representative. 
Temporal errors arise from the assump- 
tion that systems are stable in time when 

they are not. For example, when we para- 
meterize a lead model, we represent longi- 
tudinal lead exposure through cross- 
sectional lead measurements and assume, 
perhaps falsely, that these cross-sectional 
measurements are representative. Even if 

they are representative, it might be from a 

biologic standpoint that the highs and 
lows are as important as the means. Tem- 

poral variations may be important in ways 
that are neither fully understood nor even 

fully measured. 

Validation versus Evaluation 
Most scientists are aware of the limitations 
of their models, yet this private understand- 

ing contrasts the public use of affirmative 

language to describe model results. Pub- 
lished papers on validation are littered with 

positive terms: nouns like acceptance and 
substantiation, adjectives like satisfactory, 
adequate, and credible. The very word vali- 
dation implies an affirmative result, that the 

process of validation will somehow validate 
the model (32). But where are the negative 
terms? If the purpose of validation is to 
determine whether a model is working well, 
shouldn't one also see nouns like rejection 
and refutation, adjectives like unsatisfactory 
and inadequate? The exercise of comparing 
a model with observations in the natural 
world is a test like any other scientific test, 
and it must be possible for a model to fail 
that test. If the context of validation is such 
that only positive results emerge, then 

something is wrong. 
The conspicuous absence of negative 

language in the scientific literature of vali- 
dation should give us pause, for it raises the 
following question relevant to both scien- 
tific and regulatory perspectives: Is the 

computer model a vehicle to prove what 
we think we already know or is it an honest 

attempt to find answers that are not prede- 
termined? Put this way, it becomes clear 
that the goal of scientists working in a reg- 
ulatory context should be not validation 
but evaluation, and where necessary, modi- 
fication and even rejection. Evaluation 
implies an assessment in which both posi- 
tive and negative results are possible, and 
where the grounds on which a model is 
declared good enough are clearly articu- 
lated. Validation implies an exercise in 
legitimation, and this is precisely what the 
public fears. 

It is common to hear in regulatory and 
scientific circles that public fears are irra- 
tional, and there is substantial evidence 
that public fears are irrational if viewed 
from a statistical standpoint (54,55). But 
the language of validation does little to 

assuage such fears. Indeed, it exacerbates 
them because the public has learned (not 
without some justification) to be suspicious 
of reassurances (6,55). When citizens hear 

only positive claims, they start to doubt 
them, and they may sometimes be right: 
Some modelers have been guilty of exer- 
cises in legitimation of a predetermined 
result. A perhaps surprising example can be 
found in the work of the Club of Rome. 

The world model was developed by 
Meadows et al. (56) in the early 1970s for 
the Club of Rome, a group of European 
industrialists, statesmen, and scientists con- 
cerned about overuse of natural resources. 
The model, described in the widely read 
book The Limits to Growth, predicted 
widespread natural resource shortages, 
exponential price increases for raw materi- 
als, and possibly global economic collapse 
before end of the century (56). The end of 
the century is here and resource use contin- 
ues to grow, but proven reserves of natural 
materials are greater today than in 1972 
and real prices are down for virtually all 
commodities (57). 

One reason why the predictions of the 
world model have not come true is obvious 
in hindsight: the static way in which the 
model treated natural resources. Natural 
resources, such as copper, chromium, sil- 
ver, and gold, were treated in the model as 
fixed and finite masses whose volumes 
could only decrease as use increased. On 
one level, this view is indisputable; the 
mass of chromium in the earth is a fixed 
(albeit unknown) number. But on another 
level, this view is hopelessly inadequate 
because it ignores the fact that the resource 
of chromium is not the same as the mass 
of it in the earth. A resource is something 
that may be used by humans. This invol- 
ves a number of factors, including the 
price that people are willing to pay for it, 
the human and monetary capital available 
to look for it, the technology available for 
extracting it, and the cost of labor used to 
get it. A reserve is an even more constricted 
thing: reserves consist only of that portion 
of a resource that has been discovered, 
measured, and delineated. 

The world modelers made an elision 
between the known reserves of a metal and 
the total mass of that metal in the world as 
if they were the same thing. But they are 
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not. Whereas the total mass of a metal in 
the earth must decrease or stay the same 
over time, reserves can increase as a result 
of increased exploration, improved tech- 

nology, and/or decreased costs. Proven 
reserves of most metals have increased since 
1973, primarily because of more and more 
effective geologic exploration during the 

past two decades, and prices have fallen as 
a result (57,58). 

Why did the world modelers make what 
is in retrospect such an obvious mistake? 
One reason is revealed by the post hoc 
comments of Aurelio Peccei, one of the 
founders of the Club of Rome. The goal of 
the world model, Peccei explained in 
1977, was to "put a message across," to 
build a vehicle to move the hearts and 
minds of men (59,21). The answer was 

predetermined by the belief systems of the 
modelers. They believed that natural 
resources were being taxed beyond the 
earth's capacity and their goal was to alert 

people to this state of affairs. The result 
was established before the model was ever 
built. In their sequel, Beyond the Limits, 
Meadows et al. (60) explicitly state that 
their goal is not to pose questions about 
economic systems, not to use their model 
in a question-driven framework, but to 
demonstrate the necessity of social change. 
"The ideas of limits, sustainability [and] 
sufficiency," they write, "are guides to a 
new world." (60) 

One need not engage in an argument 
for or against social change to see the prob- 
lem with this kind of approach if applied 
in a regulatory framework. The purpose of 
scientific work is not to demonstrate the 
need for social change (no matter how 
needed such change may be) but to answer 

questions about the natural world. The 

purpose of modeling is to pose and delin- 
eate the range of likely answers to "What 

if?" questions. The purpose of lead models 

should not be to demonstrate how bad 
lead ingestion is or how good U.S. EPA 
standards are but to try to find out what is 
most likely to happen if given standards are 

applied. The language of validation under- 
mines this goal. It presupposes an affirma- 
tive result and implies that the model is on 
track. To outsiders, it raises the specter that 
the answer was preestablished. 

There are other ways to talk about the 

problem. As Hodges and Dewar (29) 
write, the quality of a model is not equiva- 
lent to "agreement of the model with real- 

ity." Quality can be evaluated in several 

ways: on the basis of the underlying scien- 
tific principles, on the basis of quantity and 

quality of input parameters, and on the 

ability of a model to reproduce indepen- 
dent empirical data. All of these things can 
be discussed, but none of them should be 
discussed in either/or terms. Scientists 
should resist the demand to describe any 
model, no matter how good, as validated. 
Rather than talking about strategies for val- 
idation, we should be talking about means 
of evaluation. 

That is not to say that language alone 
will solve our problems, or that the prob- 
lems of model evaluation are primarily lin- 

guistic. The uncertainties inherent in 

large, complex models will not go away 
simply because we change the way we talk 
about them. But that is precisely the 

point: calling a model validated doesn't 
make it valid. The language of validation 
buries uncertainty; as scientists, we should 
be doing the opposite. We have an obliga- 
tion to invite open discussion of uncer- 
tainties. And the more politically charged 
the issue at hand, the more essential it is 
that these uncertainties be articulated 

clearly, freely, and in language that anyone 
can understand. 

One hundred years ago, Lord Kelvin 

famously tried to eliminate uncertainty 

over the age of the earth. Based on the 

concept of uniformitarianism, the assump- 
tion that observable geologic processes are 

representative of earth history in general, 
geologists in the late 19th century con- 
cluded that the earth was probably a few 
billion years old. But they had no way to 

prove it, and efforts to calculate the earth's 

age precisely had produced numbers as low 
as 100 million and as high as several hun- 
dreds of billions. Kelvin, famous for his 

penchant for quantitative precision, 
applied Fourier's theorem of conductive 

cooling to the question. Assuming that the 
earth has solidified from an incandescent 

globe, he obtained a maximum time of 
98 million years for it to have cooled to its 

present surface temperature, and he 

promptly declared the entire science of 

geology invalid. Any conceptual scheme 
that implied a billion-year old earth 
was fundamentally flawed, he declared. 
Pursuing the same logic, he dismissed 
Darwin's theory of natural selection on 
the grounds of inadequate time for it to 

operate (61,62). 
For several decades, Kelvin's more 

certain result held sway and evolutionists 
were in nearly full retreat until the discov- 

ery of radiogenic heat proved that it was 
Kelvin rather than the geologists whose 

conceptualization was faulty. We know 
now, of course, that the earth is 4.5 billion 

years old, more than enough time for nat- 
ural selection to have operated as Darwin 

envisaged it. Kelvin's calculations, although 
theoretically valid and highly precise, pro- 
duced a result inaccurate by a factor of 50. 
In his desire for certainty, Lord Kelvin 
made one of the most colossal blunders in 
the history of modern science. As his infa- 
mous mistake clearly shows, the uncon- 
trolled desire for certainty may lead to 
fallacious quantification and a false sense 
of security. 
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