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ABSTRACT

A minimum spanning tree (MST) rank histogram (RH) is a multidimensional ensemble reliability veri-
fication tool. The construction of debiased, decorrelated, and covariance-homogenized MST RHs is de-
scribed. Experiments using Euclidean L,, variance, and Mahalanobis norms imply that, unless the number
of ensemble members is less than or equal to the number of dimensions being verified, the Mahalanobis
norm transforms the problem into a space where ensemble imperfections are most readily identified.
Short-Range Ensemble Forecast Mahalanobis-normed MST RHs for a cluster of northeastern U.S. cities
show that forecasts of the temperature-humidity index are the most reliable of those considered, followed
by mean sea level pressure, 2-m temperature, and 10-m wind speed forecasts. MST RHs of a Southwest city
cluster illustrate that 2-m temperature forecasts are the most reliable weather component in this region,
followed by mean sea level pressure, 10-m wind speed, and the temperature-humidity index. Forecast
reliabilities of the Southwest city cluster are generally less reliable than those of the Northeast cluster.

1. Introduction

The sensitive dependence of atmospheric dynamics
to initial conditions limits the utility of deterministic
forecasts (Lorenz 1963). This sensitivity motivates an
ensemble approach to forecasting that discretely ap-
proximates the time evolution of probability distribu-
tion functions (PDFs; Epstein 1969). The intrinsic
probabilistic nature of ensemble forecasts necessitates
changes in forecast verification. It is imperative to de-
rive and implement systematic ensemble verification
techniques in order to identify weaknesses of and ex-
pedite improvements of predictions and models.

The identification of ideal verification techniques re-
quires an understanding of the nature of goodness in
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weather forecasting. Weather forecast goodness is typi-
cally defined in terms of a forecast’s consistency, value,
and quality (Murphy 1993), which is further subdivided
into components that include sharpness, resolution, and
reliability (Murphy 1993). Since no known verification
measure satisfactorily addresses all aspects of goodness,
it is necessary for a verification tool to address an in-
dividual aspect. This paper focuses on the assessment of
ensemble reliability, which is defined as the correspon-
dence between the mean of the observations associated
with a particular forecast and that forecast, averaged
over all forecasts. A perfectly reliable 30% chance pre-
cipitation forecast, for example, verifies exactly 30% of
the time (Murphy 1993). It is important to reiterate
that, although they are extremely important measures
of forecast goodness, this paper is not concerned with
the assessment of forecast sharpness and resolution.
Reliability can be measured by the degree to which
the ensemble forecast members and truth are random
samples from the same PDF. For scalar forecasts, this
degree can be assessed by the shape of a rank histogram
(RH), or Talagrand diagram (Anderson 1996; Tala-
grand et al. 1997). The scalar RH is simply a histogram
of the N verification ranks over N independent forecast
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FI1G. 1. An illustration of the CDF as a transfer function from a PDF to a uniform distribution. See text for details.

occasions. Each verification rank is defined as the rank
of the verification entry in a forecast’s n.,, + 1 member
vector composing an individual forecast’s ., ensemble
entries and the corresponding verification entry, sorted
in ascending order. Therefore, the histogram’s shape
depends on the population of the n.,; + 1 bins, as de-
termined by the N ranks of the verification entries in
the N vectors.

An equal representation of ranks, as indicated by a
flat histogram, implies that the members of the en-
semble forecast and the verification are random draws
from the same PDF: they are statistically indistinguish-
able. This is easily conceptualized by thinking of the
forecast cumulative distribution function (CDF) as a
transfer function between the forecast PDF and a uni-
form distribution. Figure 1 shows a continuous sche-
matic of this idea. The forecast PDF is shown in Fig. 1c
(upside down for convenience), the associated CDF in
Fig. 1b, and the uniform distribution that results from

using the CDF to transform random draws from the
PDF in Fig. 1la. The circles in Fig. 1c represent the
boundaries between areas of equal probability; the in-
tegral of the PDF between each circle is the same. Note
that the functional form of the PDF (which is arbitrary)
results in unequal spacing between the circles. When
these points are transformed by the CDF in Fig. 1b
(dashed lines guide the eye), they result in the uniform
distribution in Fig. 1a. In the construction of an RH, the
circles in Fig. 1 are defined by the forecast ensemble,
their rank ordering approximates the forecast CDF,
and verification populates the bins of the transformed
distribution.

Traditional RHs are used to assess one-dimensional
forecasts. The atmosphere, however, is far from one-
dimensional. Because of the covariance between di-
mensions, averaging univariate RHs to assess the mul-
tidimensional reliability can give misleading informa-
tion (Smith and Hansen 2004). Therefore, in order to
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b. Three Dimensional Example of an MST
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Fi1G. 2. Illustrations of (a) two- and (b) three-dimensional MSTs for a 24-h forecast. The dimensions are represented by the cities and

the norm is 2-m temperature on 21 Aug 2004. Circles represent the n

= 15 points that could comprise either the ensemble only, or

ens

the union of n_,; — 1 ensemble members and the verification. The sum of the line segments represents the MST distance.

accurately assess the reliability of multidimensional
fields, it is desirable to formulate a multidimensional
extension of the RH that accounts for this covariance.

One such extension is the minimum spanning tree
(MST) RH. Consider a K-dimensional space, where
each dimension could correspond to one of K indi-
vidual weather components, such as temperature or
pressure, to the same component in one of K different
locations, or to a combination of components and lo-
cations. Let each point, x;;,, in this K-dimensional
space correspond to the value of the kth element of the
jth ensemble member on the ith forecast occasion,
wherei=1,...,N,j=1,...,ng,c.andk=1,..., K.
The MST of this set of points is defined by the sum of
the lengths (under a chosen norm) of the n.,, — 1 line
segments that connect these points, subject to the re-
strictions that the resulting network has no closed loops
and that the distance is minimized (Smith and Hansen
2004; Wilks 2004). Figure 2a shows an example of a
two-dimensional MST with n_,, = 15 and 24-h lead
time, where one dimension corresponds to the forecast
temperature in Bangor, Maine, and the other to the
forecast temperature in Portland, Maine, on 21 August
2004. Each circle represents x;;, and the sum of the
n.,s — 1 line segments represents the MST. Figure 2b
shows a three-dimensional example of an MST, where
the third dimension corresponds to the forecast tem-
perature in Albany, New York.

The calculation of each increment of an MST RH
requires the computation of n.,; MST lengths. The first
of these lengths is the MST distance of the n., en-
semble points alone. The other n., lengths are the
MST distances of the n,,, points consisting of the union
of n.,, — 1 ensemble points and the verification. The
verification replaces a different ensemble member for
each of these n,,, lengths. If the ensemble members and
the verification are random draws from the same PDF,
the MST length of the ensemble-only points should be
statistically indistinguishable from the n.,, MST lengths
that include the verification. Analogous to a traditional
scalar RH being a plot of the rank of the verification
within the n.,; + 1 member vector over N one-
dimensional forecasts, the MST RH is a plot of the rank
of the ensemble-only MST length within the n.,, + 1
member MST length vector.

The degree to which the ensemble and verification
points are statistically indistinguishable can be quanti-
fied using the Cramér-von Mises (CvM) goodness-of-
fit test for a uniform distribution. The CvM test statis-
tic, W2, is given by

ens

Nenst1

W2=N"1 21 Z2m,, 1)
P

where m,, is the probability of an observation landing in
the gth bin, O, and E, are the observed and expected
number of counts in the gth bin, respectively, and
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z,= E (0, - E,). 2)

Given the independence of each of the N forecast oc-
casions, a histogram will be considered flat if this test
statistic is less than the CvM critical value with n,
degrees of freedom.! Note that the CvM statistic was
chosen to assess flatness because, unlike the x? statistic,
it is sensitive to rank ordering and gives a more pow-
erful goodness-of-fit assessment for small sample sizes
(Elmore 2005). The CvM statistic is particularly sensi-
tive to skewed histograms (Elmore 2005) and is there-
fore appropriate for the assessment of debiased MST
RHs, which are characteristically right skewed for un-
derdispersed ensembles and left skewed for overdis-
persed ensembles (Wilks 2004).

This paper addresses both theory and applications of
the MST RH. Section 2 details MST distance norms and
how the improper use of such norms causes misleading
MST RH shapes. Section 3 describes the data used to
construct the MSTs used in the application section of
this paper. Section 4 is an analysis of separate MST
RHs that were constructed by using a common city
cluster, but different weather component norms. This
section also compares the MST RHs from a southwest-
ern U.S. city cluster and a northeastern U.S. city cluster.
Section 5 presents the conclusions.

2. MST distance norms

A multidimensional ensemble reliability assessment
determines the statistical similarities of the ensemble
forecast distribution and the verification distribution.
Because the MST RH determines this likeness using
the ranks of MST distances, it is crucial to choose a
norm for these distances that most accurately measures
this statistical similarity.

The three choices of the norm considered in this pa-
per are the Euclidean L,, variance, and Mahalanobis
norms. Each will be described below. Other than the
circumstance using the Mahalanobis norm when n.,, =
K described below, in the limit of large numbers of
realizations, the use of each of these norms in the con-
struction of MST RHs will qualitatively yield the same
determination of whether or not the two distributions
are alike. However, as the number of realizations de-
creases, the choice of norm can potentially influence
the CvM statistic’s evaluation of population histogram
flatness, motivating the use of the most sensitive and
justifiable norm. The following describes how each of

! The CvM critical values can be found in Table 1 of Elmore
(2005).
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these norms can give misleading measurements about the
degree of reliability of an ensemble forecast and outlines
circumstances when certain norms should not be used.

a. L, norm

The familiar Euclidean L, norm is the most intuitive
and straightforward norm to use when constructing
MST RHs. However, because it does not homogenize
the variances of the data, the L, norm yields a mislead-
ing MST RH when the standard deviation of the data in
each of the K dimensions is not the same. Consider the
K =8, n.,s =15, and N = 140 L, MST RH depicted in
Fig. 3a. For this contrived example, each of the K = 8
dimensions represents the 2-m temperature in an indi-
vidual city, and suppose that the true distribution is
known. Assume that the true standard deviations of the
temperatures in the first four cities are 5 K and that the
forecasts for these cities are perfectly reliable, with
standard deviations also equal to 5 K. Also assume that
the true standard deviations in the other four cities are
1 K but that the forecasts for these cities are underdis-
persed, with standard deviations of only 0.1 K. Despite
the underdispersion of half of the forecasts, the L, MST
is relatively flat. Because it does not homogenize vari-
ances, the L, MST distances are dominated by the dis-
tances associated with the high standard deviation di-
mensions; the incorrect, but small, distances associated
with the low variance cities are “lost in the noise.” Of
course, with a large enough number of samples, the L,
MST RHs would correctly indicate that the ensembles
are drawn from the incorrect K = 8 distribution.

b. Variance norm

The variance norm transforms each entry, X7, of
X3 into x;7 such that

var __ %
Xijk = xi,j,k/o'i,k, 3)

where o is the standard deviation of the data in the
kth dimension and X} is an (n.,, + 1) X K matrix
formed by the union of the verification vector, 0;, and
Nens €nsemble row vectors of length K, xj. (The star
superscript indicates that the ensemble has been debi-
ased. The bias transformation procedure will be ex-
plained in the following section.) The MST distance is
then formed using the transformed x;7) entries.

A variance norm MST RH will equally weight the
ensemble and verification dispersion differences in the
unit directions of the cities. After each data point is
divided by the standard deviation of its respective di-
mension, the data in each transformed dimension has
unit variance. Therefore, from the previous example, a
distance of 1 K in the low standard deviation tempera-
ture axis and a distance of 5 K in the high standard
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FI1G. 3. (a) The L, MST RH is nearly flat, even though four of the eight ensembles are highly underdispersed. However, since it
homogenizes variances and thereby equally weights all dimensions, (b) the variance norm MST RH is underdispersed. The solid line
represents the expected number of counts in each bin, p, given a perfectly flat histogram. Dotted lines represent a one standard
deviation bound of this expectation, (l/\/ﬁ) Vp(1 — p) (Smith and Hansen 2004).

deviation temperature axis will be weighted equally un-
der the variance norm, thereby enabling the MST dis-
tance to equitably account for each dimension in the
reliability assessment.

Figure 3b shows the variance norm MST of the same
K =8, n., =15, and N = 140 temperature data as used
in the L, example above. As portrayed by its right
skewed shape, the variance-norm MST RH properly
shows the underdispersed relationship between the en-
semble and verification. By homogenizing the variances
of all dimensions, the variance norm equally weights all
dimensions when computing MST distances and there-
fore is able to capture the extreme underdispersion of
the low standard deviation elements.

Although it averts the problems presented in the pre-
vious example, the variance norm is not ideal when the

ensemble dimensions covary. Consider a two-
dimensional linear cluster of highly correlated en-
semble points and two hypothetical verification points
portrayed in Fig. 4a. The x dimension has a standard
deviation of 0.1 and the y dimension has a standard
deviation of 10. Verification point B has a short Euclid-
ean distance but a large statistical distance from the
mean of the cluster of points measured in terms of stan-
dard deviation units of the associated two-dimensional
PDF. Verification point A has a relatively large Euclid-
ean distance but a short statistical distance from the
mean of the cluster of points compared to point B.
Because it is farther than A from the mean in terms of
standard deviation units, point B is significantly less
statistically similar to the ensemble than is point A.
Figures 4a,b show how these ensemble and verifica-
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FIG. 4. A comparison of the behavior of ensemble and verification points under the L,, variance, and Mahalanobis norms. See text
for details.

tion points behave under the L, and variance norms,
respectively. Since it has undergone no transformations
of variance or covariance, the L, norm simply reflects
the case described above. The collection of points in the
variance norm space portrays a similar structure as the
L, norm, with the notable difference that the x and y
dimensions have been homogenized. However, since it
has not accounted for the covariance of the data, the
variance norm improperly implies that point A is less
similar to the ensemble than is point B, as seen by its
greater Euclidean distance (in variance-normed space)
from the ensemble PDF. Therefore, a variance-normed
MST RH systematically using points similar to verifi-
cation point A for all forecast occasions will be signifi-
cantly less flat than one using points similar to point B,
even though each B point is less likely to be a random

draw from the same distribution that forms the respec-
tive ensemble.
¢. Mahalanobis norm

The Mahalanobis transformation is a conversion of
the verification vector and ensemble vectors to the mul-
tivariate counterparts of the z score:

z;, =C; (0, —X}) and 4)
z,;=C; (x} —

X) (Wilks 2004). (5)

Here X is the length K vector whose entries are the
averages of the columns of X# (as defined above), C; is
the covariance matrix of X#, and

c;l/Z — EiD;l/ZE;F, (6)
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where the columns of E; are the eigenvectors of C; and
the entries of the diagonal matrix D, are the corre-
sponding eigenvalues of C,. Mahalanobis-normed
MSTs are computed in the same way as are L,-normed
MSTs, except that z; is substituted, in turn, for one of
the z;;, instead of the L, verification vector being sub-
stituted, in turn, for one of the L, ensemble vectors
(Wilks 2004; Mardia et al. 1979). Note that this forecast
error covariance norm, C~ 2, performs the same func-
tion as the analysis error covariance norm used to trans-
form nonisotropic initial uncertainty into isotropic ini-
tial uncertainty in singular vector computations. In each
case, this operation simply defines the mean of the mul-
tivariate distribution to be zero and the covariance to
be the identity matrix.

The Mahalanobis transformation homogenizes the
variances and decorrelates the points that form the
MST by operating on the ensemble and verification
points with the covariance matrix, thereby eliminating
the problems associated with the L, and variance
norms. This operation effectively alters the Euclidean
distances (in Mahalanobis-normed space) so that they
properly reflect the statistical “closeness” of points
from the mean (Wilks 2004; Mardia et al. 1979). There-
fore, as depicted in Fig. 4c, the Mahalanobis transfor-
mation decreases the Euclidean distance (in Mahalano-
bis-normed space) of point A from the mean of the
cluster and increases the Euclidean distance (in Mahal-
anobis-normed space) of point B from the mean of the
cluster.

Although it effectively accounts for covariance infor-
mation, the Mahalanobis norm gives misleading results
when R — 1 = K, where R is the number of samples
used to compute the covariance. (In the case of the
Mahalanobis-normed MST RH, R was previously de-
fined to be ng,s + 1, the number of rows of X#.) This
circumstance results in a symmetric configuration of the
Mahalanobis-normed points in which every pair of
points in the transformed space is separated by a dis-
tance of exactly \/2(R — 1). These points form a per-
fect R hedron, analogous to a two-dimensional equilat-
eral triangle or three-dimensional tetrahedron. Figure 5
shows nine examples of a K = 2 and R = 3 set of
random points with zero mean and unit variance. The
times signs and circles represent these same points un-
der the L, and Mahalanobis norm, respectively. The
line segments connecting the circles are shown to indi-
cate the shapes of the triangles formed by the three
points; they are not the MST, but they do indicate the
problem encountered by the MST RH. For R — 1 = K,
all MST distances are exactly the same, rendering the
Mahalanobis-normed MST RH useless. Note that the
implication of R — 1 = K is that the ensemble is span-
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ning a rank deficient space, and the Mahalanobis norm
always chooses R hedrons as the most efficient way to
isotropically span that space.

Figure 6 presents six Mahalanobis-normed MST RHs
in which the verification and the ensembles are random
draws from the same distribution. The only difference
between the panels is the number of dimensions used to
calculate the MST distances. Given that the ensembles
and the verification are random draws from the same
distribution, the MST RHs should be flat. However,
when n.,, = K (Figs. 6d,e,f), the Mahalanobis-normed
MST RHs appear to indicate an underdispersed en-
semble. In reality, all MST distances are exactly the
same (to within machine precision) and the verifying
MST distance satisfies the condition for populating the
leading bin. The fact that bins other than the leading
bin are populated is an artifact of round-off error cre-
ating differences in MST distances at the level of ma-
chine precision. Note that when n_, = K, it is necessary
to calculate C; '? using truncations of E, and D,. The E,
comprises the n.,, columns corresponding to the non-
zero eigenvalues of C; and the entries of the diagonal
Nens X Hepns Matrix D, are the nonzero eigenvalues of C;
(Wilks 2004).

Researchers familiar with the ensemble-based data
assimilation literature will likely be concerned about
spurious correlations due to sampling errors. While
sampling errors will certainly exist for small ensemble
sizes, since each increment to a Mahalanobis-normed
MST RH uses a common covariance matrix, each of the
Nens T 1 MST distances are subject to the same errors.
The sampling errors may increase the number of fore-
cast occasions needed to discern that a Mahalanobis-
normed MST RH is nonflat, but they will not make flat
histograms appear nonflat.

3. Description of data

The following section applies the MST rank histo-
gram to assess multidimensional ensemble reliability
using the National Centers for Environmental Predic-
tion (NCEP) Short-Range Ensemble Forecast (SREF)
datasets. SREF consists of 15 ensemble members, 5 of
which come from the Eta model with a Betts—Miller—
Janjic (BMJ) convective scheme, 5 of which come from
the same Eta model but with a Kain-Fritch convective
scheme, and 5 of which come from the Regional Spec-
tral Model (RSM) with a simplified Arakawa—Schubert
(SAS) convective scheme. All 15 SREF ensembles are
perturbed in their initial conditions. For a description
of this system, the reader is referred to Du et al. (2003).

Two separate SREF datasets are used to construct
the MST rank histograms in this work. Aiming to im-
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FIG. 5. The three times signs represent three randomly chosen points with zero mean and unit variance. Line segments connect the
times signs in order to show the shape of the triangle formed by the three points. These lines do not represent the MST. The three circles
indicate these same points under the Mahalanobis norm. Notice that in each of the nine randomly chosen examples, the Mahalanobis-
normed points form an equilateral triangle with sides of length 2. When R — 1 =< K, the Mahalanobis-normed points form an R hedron
with equally spaced points separated by a distance of exactly V2(R — 1).

prove ensemble diversity and forecast spread, SREF
physics diversity was modified by increasing the num-
ber of convective schemes (from three to six) and cloud
microphysics parameterizations (Du et al. 2004; Mc-
Queen et al. 2005). This upgrade, which occurred on 17
August 2004, also included an increase in the model
resolution; the 10 ETA members have 60 levels and a
32-km horizontal resolution and the 5 RSM members

have 28 levels and a 40-km horizontal resolution. The
first dataset, which will be referred to as SREF1, com-
prises these upgraded ensemble forecasts from 18 Au-
gust 2004 to 13 May 2005. The second set, which will be
referred to as SREF2, is an older ensemble prediction
system with slightly less ensemble diversity and de-
creased model resolution; the 10 ETA members have
45 levels and a 48-km resolution and the 5 RSM mem-
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= 10 and varying dimensions. Since both the ensemble and the verification are

random draws from a random Gaussian distribution with zero mean and unit variance, all RHs should be flat. However, when n.,, =
K, the Mahalanobis-normed MST RHs spuriously indicate an underdispersed ensemble. The solid line represents the expected number
of counts in each bin, p, given a perfectly flat histogram. Dotted lines represent a one standard deviation bound of this expectation,

(1/VN)Vp(1 — p) (Smith and Hansen 2004).

bers have 28 levels and a 48-km horizontal resolution.
This set uses data from 3 June to 17 August 2004.

The SREF forecasts were verified using two separate
verification datasets. The first verification was obtained
by randomly selecting between the two Eta analysis
controls and the one RSM analysis control. These con-
trols were not averaged because averaging significantly
reduced the variance of the verification. The second
verification consisted of station observations obtained
from the National Climate Data Center that undergo
extensive automated quality control. Ensemble forecast
values were linearly interpolated to the station loca-
tions.

4. Analysis of the multidimensional reliability of
weather components

This section uses MST RHs to compare the multi-
variate reliabilities of forecast components for various
cities clusters, forecast components, and lead times. For
all of the following examples, K = 7 (7 different cities)
and n.,, = 15 (the 10 Eta forecasts and the 5 RSM
forecasts). Because of unlike variances of the data in
the different dimensions, significant covariance be-
tween dimensions, and n.,, > K, the Mahalanobis norm
has been used to calculate MST distances. Note that for
the cases considered, L,-normed MST RHs give quali-
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F1G. 7. Locations of the K = 7 city (a) Southwest cluster the (b) Northeast cluster.

tatively similar results to the Mahalanobis-normed
MST RHs, but the Mahalanobis-normed MST RHs are
significantly less flat.

Mahalanobis-normed MST RHs were separately
computed for two clusters of K = 7 cities. The first
cluster comprises the northeastern U.S. cities shown in
Fig. 7a: Boston, Massachusetts; New York, New York;
Philadelphia, Pennsylvania; Washington, D.C.; Albany,
New York; Portland and Bangor; the second cluster
comprises the southwest U.S. cities shown in Fig. 7b:
San Diego, Los Angeles, San Francisco, Sacramento,
and Fresno, California; Reno, and Las Vegas, Nevada.?
Each MST RH uses all seven cities to separately assess
the ensemble forecast reliability of one of four different
weather components: mean sea level pressure (Pyg;),

2 The northeastern and southwestern city clusters were chosen
because they are the most populous regions in the United States.
The reader should be aware that the SREF reliabilities depicted
by the MST RHs in this paper may be significantly different than
the SREEF reliabilities for other regions.

2-m temperature (75,,), 10-m wind speed (u¢,,), and
the temperature-humidity index (THI). SREF1 was
used to compute the Py, 1o, and iy, MST RHs and
SREF2 was used to compute the THI MST RHs.
SREF1 was not used to compute the THI MST RHs
because necessary dewpoint temperature information
was not available as part of the SREF1 dataset. Also
note that the analysis THI MST RHs were verified us-
ing the SREF2 analyses.

The choice of Pys1, Tom, and u;,,, was motivated by
their obvious importance in typical weather forecasts.
The THI, as defined by

THI(°F) = 0.55 X T,,,(°F) + 0.2 X T, (°F)
+ 17.5 (Glockman 2000), (7)

where T, is the 2-m dewpoint temperature, was cho-
sen because of its importance in energy markets. This
index is an indicator of the sultriness due to the com-
bined effects of temperature and humidity. Therefore,
the accurate prediction of the THI is crucial for markets

TABLE 1. Averaged 7-day running biases for the Northeast cluster cities from Fig. 8.

Bangor Portland Albany Boston New York Philadelphia Washington
Pyis1. (mb) —0.63 -0.39 -0.51 -0.27 -0.50 —0.63 -0.76
T, (°C) —0.08 —0.41 -0.37 —0.81 -0.77 —0.26 -0.19
Uyom (M s™1) 2.46 3.30 2.46 3.32 2.53 2.49 2.80
THI (°F) 0.64 -0.59 —0.50 -1.03 —0.62 -0.30 -0.33
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TABLE 2. Same as in Table 1, except that the observations are used as the verification.
Bangor Portland Albany Boston New York Philadelphia Washington
Pys1. (mb) -0.59 -0.52 —0.81 -0.33 -0.17 —0.60 —0.64
Ty (°C) —0.46 0.54 —1.30 —2.13 -2.93 —1.86 —2.20
Uy (ms™h) -1.95 -0.92 —1.67 —4.52 —4.64 -3.83 -2.19
THI (°F) -0.82 -0.33 -1.95 —2.18 —3.38 —1.61 —2.61

that are sensitive to supply and demand fluctuations
induced by air conditioner energy usage. Because en-
ergy companies are particularly interested in regional
forecasts, a multivariate reliability assessment of the
THI is especially important. As it is an indicator of
sultriness, the THI RHs were computed using only
summer data.

Following Stensrud and Skindlov (1996), 7-day run-
ning mean biases have been removed from all MST
RHs in this section. Define x¥;, to be

7 nens
E Z (xifm,j,k = O0i_mi) |

ens m=1 j=1

y 1
Yijwe = Xijwe = [ 7,

®)

where o, is an individual verification data point in the
kth dimension. This transformation simply subtracts
the average bias of each dimension, for the 7-day pe-
riod prior to the ith day, from each ensemble data point
of the corresponding dimension on the ith day. All
MST RHs in the application sections of this paper have
been computed using the debiased x¥; . points. The bi-
ases reported in Tables 1-4 are the averages of these
7-day running mean biases for each city and weather
component.

Figures 8-11 show Mahalanobis-normed MST histo-
grams for 24-h forecasts valid at 0900 UTC, the associ-
ated CvM test statistic, and a histogram flatness assess-
ment at the 1% significance level. The verification for
each increment in Figs. 8 and 10 is a random selection
of one of the three SREF control analyses for the cor-
responding day; the verification for each increment in
Figs. 9 and 11 is the actual observation for the corre-
sponding day, with forecast values interpolated to the
location of the observing station. Figures 8 and 9 are for
the Northeast cluster of cities and Figs. 10 and 11 are

for the Southwest cluster. Note that the number of
counts in each bin has been divided by N = 81 for the
Pyists Tom, and u,,, histograms and by N = 21 for the
THI histogram to yield relative frequency histograms.
The solid line represents the expected number of
counts in each bin, p, given a perfectly flat histo-
gram. To give an indication of the effects of the small
sample size on the flatness, dotted lines representing
a one standard deviation bound of this expectation,
(1N\/N)\/p(1 — p), have also been included (Smith
and Hansen 2004). Also note that, because the proper
interpretation of an MST RH requires that each incre-
ment be statistically independent of others, the MST
RHs are constructed using data from every third day,
the lag at which bin population autocorrelations were
found to be relatively negligible.

Regardless of the verification type, city cluster loca-
tion, or weather component, multidimensional SREF
forecasts are underdispersed, as indicated by the right-
skewed MST RHs in Figs. 8-11. Despite recent at-
tempts by NCEP to increase ensemble diversity, short-
range ensembles members lack sufficient differences to
capture the PDF of the verification. Further initial con-
dition, physics, and/or parameterization diversifications
are needed. Although all RHs are right skewed, the
degree of underdispersion depends on the choice of the
verification, city cluster location, and weather compo-
nent. Figures 8 and 9 indicate that forecasts for the THI
are the most reliable (or more accurately, the least un-
reliable) for 24-h lead times in the Northeast cluster,
followed by Pysi, Toms and u,,,. This bodes well for
those that rely on THI forecasts in the energy markets.
Note, however, that the small sample sizes for these and
all MST RHs in this section limits the significance of the
differences between the CvM statistics. Although it is
clear that the forecasts for these weather components

TABLE 3. Same as in Table 1, but for the Southwest cluster.

Los Angeles San Francisco San Diego Fresno Las Vegas Sacramento Reno
Pyis1. (mb) 0.06 0.08 0.01 0.11 0.61 0.19 0.82
T, (°C) —0.63 —0.15 -0.79 —0.25 —0.95 0.45 —0.69
Uyom (M s™1) 1.13 1.31 1.78 1.73 1.53 1.45 1.76
THI (°F) —4.03 3.85 —0.08 9.63 5.25 1.49 3.80
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TABLE 4. Same as in Table 2, but for the Southwest cluster.

Los Angeles San Francisco San Diego Fresno Las Vegas Sacramento Reno

Pysp (mb) 0.49 0.39 -0.28 0.04 1.58 0.53 2.20

Ty (°C) —2.00 -1.41 -291 -2.17 —4.43 -0.87 -3.13

Uiom (Ms™h) —3.08 —4.18 —0.70 —2.00 —3.38 -2.32 —1.08

THI (°F) —6.24 0.02 —5.39 —4.47 —6.78 2.98 391

are underdispersed, the relative reliability may change
with increased sample sizes.

Differences between Figs. 8 and 9 can be attributed
to differences between and limitations of the two
choices of verification. Using observations as the veri-
fication introduces representativeness errors that re-
flect the fact that the observations resolve scales that
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the model does not; a simple interpolation of low-
resolution forecast fields to an observation station lo-
cation is a particularly crude form of downscaling. Geo-
graphic areas that tend to generate steep gradients in
the forecast component are particularly prone to such
representativeness errors. A more fair comparison
would be to compare station observations with forecast

b. 2m Temperature
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F1G. 8. Mahalanobis-normed and debiased MST RHs for the Northeast cluster for 24-h lead time valid at 0900 UTC. The verification
for each increment is taken as a random selection of one of the three SREF control analyses. The dotted lines represent a one standard
deviation bound on this expectation. CvM statistics are also included, as well as an assessment of flatness at the 1% significance level.
A rejection implies that the histogram is not flat, whereas an acceptance indicates that the histogram is flat.



1502

a. Mean Sea Level Pressure

0.9 CvM=18
0.8 Reject at 1%

MONTHLY WEATHER REVIEW

2 4 6 8 10 12 14 16

c. 10m Wind Speed

0.9 CvM=26

0.8 Reject at 1%
0.7

0.6

0.5

0.4

0.3

0.2

[l s s iy iy Ay

VOLUME 135

b. 2m Temperature
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FIG. 9. Same as in Fig. 8, except that the observations are used as the verification.

values that have been mapped from model space into
observation space via model output statistics (MOS) or
some other form of calibration. Such a comparison is
beyond the scope of this work.

Although they mitigate representativeness errors,
RHs using the analysis as the verification are subject to
forecast dependence errors. Because the control analy-
sis is a weighted combination of a short-term forecast
and observations, the analysis and forecast are incestu-
ously dependent, especially at short lead times. For ex-
ample, by construction, the ensemble control analysis is
not an outlier of the ensemble forecast at analysis time;
all other ensemble members are perturbations around
this control analysis. Therefore, a sufficient lead time is
required to ensure that the ensemble can evolve such
that the verifying analysis is different from the median
of the forecast ensemble (Saetra et al. 2004). Addition-
ally, because analyses are in model space, not observa-

tion space, one expects model forecasts to be in some
sense “closer” to analyses than to observations, which
lie in a completely different space.

Because of the incestuous relationship between en-
semble forecasts and the analysis at short lead times,
the 24-h Northeast cluster analysis RHs in Fig. 8 are
susceptible to forecast dependence errors. However,
the observation RHs in Fig. 9 of weather components
that can support relatively steep spatial gradients, such
as T5,,, THI, and particularly u,,,, are highly prone to
representativeness errors. Therefore, it is difficult to
determine which figures’ histograms measure the en-
semble reliability most accurately. It is the view of the
authors that verification in observation space is pre-
ferred. Note, however, that the relative similarities of
the two Py histograms (Figs. 8a and 9a), which are
not prone to high representativeness errors, may indi-
cate that representativeness errors have a larger impact



APRIL 2007

a. Mean Sea Level Pressure

CvM=22
Reject at 1%

c. 10m Wind Speed

CvM=21
Reject at 1%

8 10 12 14 16

GOMBOS ET AL.

1503

b. 2m Temperature

CvM=18
Reject at 1%

2 4 6 8 10 12 14 16

d. Temperature Humidity Index

1

CvM=8
Reject at 1%

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

o N - - - - - — — — — — — — — o _

0 . . | . \ . .

F1G. 10. Same as in Fig. 8, but for the Southwest cluster.

than dependence errors, even at 24-h lead times. Again,
the authors reiterate that the preferred method of fore-
cast assessment is to project forecast ensemble mem-
bers into observation space using some form of calibra-
tion and to verify them using station observations.

As can be seen from Figs. 10 and 11, the reliabilities
of weather components in the Southwest cluster at 24-h
lead times also depend on the type of verification. THI
reliability is consistently poor, whereas the poorness of
the 15, U, and Py, reliabilities differs. Because of
the greater topographic changes in the Southwest than
in the Northeast, we speculate that representativeness
errors are more influential in the Southwest cluster
RHs than in the Northeast cluster RHs. Topographic
channeling effects and valley inversion layers induce
high mesoscale wind speed and temperature variability.
Because mesoscale Py gradients are primarily ther-
mally driven in this region (Zhong et al. 2004), even

Pysr. histograms are prone to representativeness er-
rors. Therefore, to a greater extent than for the North-
east cluster RHs, the Southwest analysis RHs are likely
to be more accurate than the Southwest observation
RHs.

Comparing Fig. 10 with Figs. 8 and 9, forecast reli-
ability is generally worse in the Southwest than in the
Northeast. This is especially true for the THI, which is
particularly foreboding considering the heavy air con-
ditioner usage in this region. Note, however, that the
observation RHs of these two clusters are extremely
similar, other than that of the THI.

5. Conclusions

The MST RH is an effective multidimensional en-
semble reliability assessment tool. After eliminating bi-
ases, spatial and temporal correlations, and variance



1504

a. Mean Sea Level Pressure

CvM=20
Reject at 1%

MONTHLY WEATHER REVIEW

c. 10m Wind Speed

0.9 CvM=26

0.8 Reject at 1%
0.7

0.6

0.5

0.4

0.3

0.2

o1 — — — — — — — — - —

VOLUME 135

b. 2m Temperature

CvM=22

08 Reject at 1%

0.7
0.6
0.5
0.4
0.3
0.2

ol - - - - - - -

d. Temperature Humidity Index

0.9 CVM=8
0.8 Reject at 1%

FIG. 11. Same as in Fig. 9, but for the Southwest cluster.

inconsistencies among the K dimensions, the shape of
an MST RH can be used to diagnose the relationship
between the distribution of the ensemble and of the
verification. This information can ultimately help im-
prove forecast reliability through the modification of
the ensemble prediction system.

The Mahalanobis norm transforms the forecast data
in the most meaningful and interpretable way when the
number of ensemble members is greater than the num-
ber of forecast locations and/or weather components;
this paper advocates the use of the Mahalanobis norm
under this circumstance. However, given the misleading
results when n.,, = K, this paper suggests that the vari-
ance norm be used when n.,; = K and the variances in
all dimensions are not identical. The L, norm should
only be used when the covariance matrix is a scalar
multiple of the identity matrix.

Although results are somewhat obscured by verifica-

tion errors, the analysis of Mahalanobis-normed MST
RHs has revealed several important characteristics of
the SREF ensemble forecast system. For the compo-
nents and city clusters analyzed, the right-skewed RHs
imply that SREF ensembles are underdispersed at a
24-h lead time. For the Northeast cluster, THI forecasts
are the least underdispersed, followed by Py, and
Uy0m forecasts. Depending on the type of verification
used, the most reliable weather component forecasts in
the Southwest cluster are for T,,,, followed by Py,
U10m, and the THI. Reliability in the Northeast cluster is
generally greater than Southwest cluster reliability, es-
pecially when the analysis is used as the verification.
It is important to note that absolute uniformity of a
reliable RH requires that initial ensemble distributions
are correct, and that ensembles be evolved under a
perfect forecast model. Since no models of the atmo-
sphere are perfect, RH interpreters must realize that
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both model error and initial distribution error will im-
pact the histograms (Smith and Hansen 2004), and that
it is not clear how to disentangle these two types of
inadequacies.

This paper has presented some preliminary applica-
tions of the MST RH. Subsequent studies of the de-
tailed effects of imperfect model scenarios, variable
sample sizes, ensemble sizes, dimension sizes, and norm
definitions, among others, are needed. Given the mul-
tidimensionality of the atmosphere and the need to
jointly assess the reliability of these dimensions, the
authors feel that the MST RH will evolve into a stan-
dard ensemble reliability assessment tool that is avail-
able in the toolbox of all ensemble forecasting practi-
tioners.
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