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EVALUATING PROBABILITY FORECASTS FOR GDP DECLINES 
 

 

1. INTRODUCTION 

 

Forecasting rare or relatively uncommon business events such as recessions or financial 

crises has long been a challenging issue in business and economics. As witnessed during 

past few decades, the track record of large scale structural macro and VAR models, or 

real GDP forecasts that are obtained from professional surveys (e.g., Blue Chip, Survey 

of Professional Forecasters, OECD, etc.), in predicting or even timely recognizing 

postwar recessions has not been impressive. Even for probability forecasts based on 

modern time series models, the improvement in forecast performance has been limited.1  

 

In this paper we will study the usefulness of the subjective probability forecasts that are 

obtained from the Survey of Professional Forecasters (SPF) as predictors of GDP 

downturns using several distinct evaluation methodologies. Even though these forecasts 

are available since 1968, and have drawn media attention, very little systematic analysis 

has been conducted to look into their usefulness as possible business cycle indicators.2  

The traditional and the most popular way of evaluating probability forecasts is the Mean 

Square Error (MSE) type of measure such as Brier’s Quadratic Probability Score (QPS), 

which evaluates the external correspondence between the probability forecasts and the 

realization of the event. This approach, however, can fail to identify the ability of a 

forecasting system to evaluate the odds of the occurrence of an event against its non-

occurrence, which is a very important characteristic to the users of forecasts. A high 

performance score can be achieved by totally unskilled forecasts having little information 

value. Thus, the traditional approach can be inadequate in evaluating the usefulness of 

                                                 
1 Forecasting failures have been documented extensively in the literature, see, for instance, McNees (1991), 
Zarnowitz and Moore (1991), Filardo (1999, 2004), Fildes and Stekler (2002), Juhn and Loungani (2002), 
and Krane (2003). For models generating probability forecasts, see Neftci (1984), Kling (1987), Hamilton 
(1989), Zellner et al. (1991), Stock and Watson (1991, 1993), and Fair (1993).  
2 Notable exceptions include Braun and Yaniv (1992), Graham (1996), Stock and Watson (2003), Lahiri 
and Wang (2006), and Clements (2006a, 2006b).  

 2



probability forecasts, particularly for rare events.3 We will try to pinpoint the importance 

of alternative evaluation approaches and emphasize the more important characteristics of 

a set of forecasts from the standpoint of end-users.  

 

Granger and Pesaran (2000a, 2000b) have developed the methodology of using 

probability forecasts in a decision theoretic framework. They have argued that due to 

economists’ preoccupation with point forecasts, the generated probabilities from Logit, 

Probit or other limited dependent variable models are seldom subjected to diagnostic 

verifications developed in other disciplines. Often the conventional goodness-of-fit 

statistics like the pseudo R-square, fraction correctly predicted, etc. fail to identify the 

type I and type II errors in predicting the event of interest.  Since survey probabilities 

embody important additional information over point forecasts, an analysis of the 

probability forecasts can provide us with an opportunity to understand the reasons for 

forecast failures, and can possibly help define limits to the current capability of macro 

economic forecasts, cf. Granger (1996). 

 

The plan of this paper is as follows: In section 2, we will introduce the data, and explain 

the set up. In section 3, we will evaluate the probability forecasts using the traditionally 

popular calibration approach with statistical tests. In section 4, we will explore the multi-

dimension nature of the probability forecasts using alternative methodologies. In section 

5, we will suggest some effective ways to evaluate the performance of the probability 

forecasts of rare business events in terms of odds ratio and ROC curve. Finally, 

concluding remarks will be summarized in section 6.  

 

2. SPF PROBABILITY FORECASTS OF REAL GDP DECLINE 

 

The Survey of Professional Forecasters (SPF)4 has been collecting subjective probability 

forecasts of real GDP/GNP declines during the current and four subsequent quarters since 

                                                 
3 See Doswell et al. (1990), Murphy (1991) and Stephenson (2000) for more discussion on this issue.  
4 Formerly the surveys were carried out under the auspices of the American Statistical Association and the 
National Bureau of Economic Research (ASA-NBER). Since June 1990, the Federal Reserve Bank of 
Philadelphia has conducted the survey. See Croushore (1993) for an introduction to SPF.  
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its inception in 1968. At the end of the first month of each quarter, the individual 

forecasters in SPF form their forecasts. The survey collects probability assessments for a 

decline in real GDP in the current quarter, and in each of the next four quarters 

conditional on the growth in the current period. The number of respondents has varied 

between 15 and 60 over the quarters. Since our aim in this study is to evaluate the SPF 

probability forecasts at the macro level, we use forecasts averaged over individuals.5 

Using the July revisions, during our sample period from 1968:4 to 2004:2, there were 20 

quarters of negative GDP growth -- those beginning 1969:4, 1973:4, 1980:1, 1981:3, 

1990:3 and 2001:1 -- which consist of six separate episodes of real GDP declines. Thus, 

only about 14% in the entire sample of 143 quarters exhibited negative GDP growth.  The 

annualized real time real GDP growth issued every July is used as the forecasting target, 

against which the forecasting performance of the SPF forecasts will be evaluated.6 The 

SPF probabilities for real GDP declines during the current and next four quarters are 

depicted against the real time real GDP growth in Figures 1a -1e. The shaded bars 

represent the NBER defined recessions.  

 

From Figures 1a-1e, several notable patterns can be observed. First, the mean 

probabilities generated by the professional forecasters fluctuate over time, varying from 

as high as 80% to as low as less than 5%. Second, the fluctuations in the probabilities 

seem to be roughly coincident with those real GDP growth and the NBER defined peaks 

and troughs. Third, for different forecasting horizons, the probabilities either precede or 

follow the cyclical movement of the real GDP with different leads or lags. Finally, the 

high end of the mean probability tends to decrease as the forecasting horizon increases. 

As shown in the figures, the high-end probability decreases steadily from about 80% for 

the current quarter to only about 30% for three and four-quarter-ahead forecasts. All these 

observations suggest that the information content, hence the value, of the SPF probability 

forecasts may be horizon-dependent.  

                                                 
5 In future we would like to consider the optimum combination of the individual probability forecasts.  
Based on nine selected forecasters, Graham (1996) found that pooling techniques that allow for correlation 
between forecasts performed better than the simple average of forecasts.  
6 We also conducted our analysis with the 30-day announcements as the real time data. Results were 
virtually unchanged.  All real time data were downloaded from the Federal Reserve Bank of Philadelphia 
web site.  
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3. CALIBRATION OF SPF PROBABILITY FORECASTS 

 

The traditional way of evaluating probability forecasts for the occurrence of a binary 

event is to assess the calibration of the forecasts against realizations, that is, to assess the 

external correspondence between the probability forecasts and the actual occurrence of 

the event.  

 

3.1. Brier’s Quadratic Probability Score  

A measure-oriented approach simply compares the forecast probability with the 

realization of a binary event that is represented by a dummy variable taking value 1 or 0 

depending upon the occurrence of the event. A most commonly used measure is Brier’s 

Quadratic Probability Score (QPS), a probability analog of mean squared error, i.e.: 

          (1) 2

1
)(/1 t

T

t
t xfTQPS −= ∑

=

where  is the forecast probability made at time t,  is the realization of the event (1 if 

the event occurs and 0 otherwise) at time t. T is the total number of the observations or 

forecasting quarters in our case.  

tf tx

 

The QPS ranges from 0 to 1 with a score of 0 corresponding to perfect accuracy, and is a 

function only of the difference between the assessed probabilities and realizations. The 

calculated QPS for each forecasting horizon from the current quarter (Q0) to the next four 

quarters (Q1, Q2, Q3, and Q4) are calculated to be 0.077, 0.098, 0.103, 0.124, and 0.127, 

respectively. Thus, even though these scores deteriorate as the forecast horizon increases, 

all seem to suggest good calibration and are close to zero. It may be noted that QPS 

figures are seldom reported with their associated standard errors. In next section, we will 

show that these figures, indeed, are not significantly different from their respective 

expectations under the hypothesis of perfect forecast validity.  

  

3.2 Prequential Test for Calibration 
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Dawid (1984) and Seillier-Moiseiwitsch and Dawid (1993) (henceforward SM-D) 

suggested a test for calibration-in-the-small when a sequence of T probability forecasts is 

grouped in probability intervals, e.g., as in Table 1. Let us denote (j = 1, …J) 

as the actual number of times the event actually occurred when the number of issued 

probabilities belonging to the probability group j (with midpoint ) is  ( ), 

and is the binary outcome index (=1 if the event occurs) for the t

∑
=

=
jT

t
tjj xr

1

jf jT ∑
=

=
J

j
jTT

1

tjx th occasion in which 

forecast  was offered. Then jf jjj Tfe =  is the expected number of occurrences in the 

group j. The SM-D test statistic for calibration or accuracy in each probability group is 

obtained as the weighted difference between the predictive probability and the realization 

of the event jjjj werZ /)( −= , where is the weight determined by 

. If the Z

jw

)1( jjjj ffTw −= j statistic lies too far out in the tail of the standard normal 

distribution, it might be regarded as evidence against forecast accuracy for the probability 

group j. The overall performance of the forecasts for all j can be evaluated using the test 

statistic , which is distributed asymptotically with j degrees of freedom. Thus, a 

forecaster would exhibit good calibration-in-the-small if on 70% of the times when he or 

she forecasts a 0.7 chance of GDP decline, it actually declines, if 10% of the times when 

he or she forecasts a 0.1 chance of a GDP decline, it actually declines, and so forth. Using 

SM-D calibration test, the accuracy of probability forecasts can be statistically assessed 

with explicitly expressed uncertainty as indicated by the confidence level.  

∑ 2
jZ 2χ

 

The results from the SM-D test to assess the SPF probability forecasts for all five quarters 

are reported in Table 2 where we find that the forecasts of all forecasting horizons appear 

to be well calibrated. The detailed calculations are presented in Table 1 for only Q0. 

The  values for each forecasting horizon fall into the acceptance area with confidence 

level of 95% and the degrees of freedom determined by the number of non-zero elements 

2χ
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in each column in Table 2. While the values of statistics vary from 3.49 to 12.68, 

surprisingly the lowest value of is obtained for the four-quarter-ahead forecasts (Q4).

2χ

2χ 7  

 

Given , SM-D showed how their calibration test could be 

converted to a test of QPS being significantly different from its expected value 

under the hypothesis of perfect forecast validity using a standard N 

(0,1) approximation for the distribution of  
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When probability forecasts are grouped,  can be calculated as: nY
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.                  (3)                

The test results are reported in Table 2 as well. We find that, for all forecast horizons, 

none of the calculated statistics fall in the (one-sided) rejection region at the 5% 

significance level, which is consistent with the SM-D calibration test results that forecasts 

for all horizons satisfy the hypothesis of perfect forecast validity. 

 

4. FURTHER DIAGNOSTIC VERIFICATIONS 

 

Some of the results from the calibration tests in the previous section may seem counter- 

intuitive. While the probability forecasts for the longer forecasting horizons, especially 

Q3 and Q4, never exceed 0.40 even when the event has already occurred, the SM-D test 

showed that they are well calibrated. This observation leads to a question of whether the 

calibration is an adequate measure of forecast validity, and why, if it is not. The issue 

may be analyzed using some alternative approaches. 

 

                                                 
7 Using a Bayesian posterior odds approach, it will be interesting to study the analytical power of the SM-D 
test against alternatives such as Q3 or Q4 forecasts. We should, however, emphasize that a more powerful 
calibration test will not minimize the importance of other evaluation approaches discussed in this paper. 
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4.1. The Skill Score 

Skill Score (SS) measures the relative accuracy of a forecast compared to a benchmark. 

We calculated the bellwether skill measure 

                                )],(/),([1),( xQPSxfQPSxfSS xµ−=                                                 (4)  

where QPS ( xµ , x) is the accuracy associated with the constant base rate or the constant 

relative frequency forecast (CRFF) ,xµ which is estimated as = 0.14 in 

our sample. For forecasting horizons Q0-Q4, we found the SS values to be 0.36, 0.19, 

0.05, -0.002, and -0.05, respectively. Note that the use of this historical average value as 

the base rate presumes substantial knowledge on part of the forecasters.

∑∑
= =

=
J

j

T

t
tj

j

xTx
1 1

_
)/1(

8 While the skill 

score for the shorter run forecasts (Q0-Q1) indicate substantial improvement of the SPF 

forecasts over the benchmark base rate forecast, the longer run forecasts (Q3 and Q4) do 

not show any clear-cut relative advantage. The value of Q2 forecasts is marginally 

positive. These results were not discernable using the calibration tests.  

 

Note that the skill score in (4) can be decomposed as (cf. Murphy (1988)):   

                                     (5) 222 ]/)[()]/([),( xxfxffxfxxfSS σµµσσρρ −−−−=

where fxρ  is the correlation coefficient between forecast and the actual binary outcome,  

 and  are their true variances, and 2
fσ 2

xσ ),( xf µµ are the respective means. The 

decomposition shows that SS is simply the square of the correlation between f and x 

adjusted for any miscalibration penalty (second term) and the normalized difference in 

the sample averages of the actual and the forecast (third term). This decomposition for 

Q0-Q4 are given in Table 3a where we find that the last two terms of the decomposition 

are close to zero, and thus, the skills for Q0-Q4 forecasts in effect reflect the correlations 

between the forecasts and the actual. For Q0, Q1, and Q2, these correlations are 0.393, 
                                                 
8 Alternatively, one can consider using the last realization as the forecast to form a binary time varying base 
rate. Thus, for current and next four quarters, the last quarter realization is used. The associated skill scores 

of SPF forecasts were significantly more than those with = 0.14 implying that the latter base rate is 
considerably more informative than the use of the lagged actual. Other base rate alternatives, e.g., eternal 
optimist (f=0), eternal pessimist (f=1), or a coin flipper (f=0.5), are also considerably less informative than 
the alternative in (5); cf. Zellner et al. (1991). Diebold and Kilian (2001) have developed measures of 
predictability of short-term forecasts relative to a long term forecast based on skill scores.  

_
x
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0.220, and 0.077 respectively, and are found to be statistically significant using the 

simple t-test for no correlation.9 The correlations for Q3-Q4 are very small and 

statistically insignificant.  This decomposition again shows that the long-term probability 

forecasts have no skill compared to the benchmark forecast even though they seem to be 

well calibrated like the near term forecasts.  

 

4.2 The Murphy Decomposition 

In addition to calibration, there are several other features that also characterize good 

probability forecasts. Murphy (1972) decomposed the QPS or the Brier Score into three 

components: 

                                                (6) 2
|

2
|

2 )()(),( xfxfxx EfExfQPS µµµσ −−−+=

where E(.) is the expectation operator, and fx|µ is the conditional mean of x given the 

probability forecast  f.  Rewriting QPS for grouped data  
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the Murphy decomposition in (6) can be expressed as  

                     (8) 2
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where is the relative frequency of event’s occurrence over  occasions ∑
=

=
jT

t
tjjj xTx

1

_
)/1( jT

with forecast , i.e., (= / ) is an estimate of jf jx
_

jr jT fx|µ using grouped data. 

 

The first term on the RHS of (8) is the variance of the observations, and can be 

interpreted as the QPS of constant forecasts equal to the base rate. It represents forecast 

difficulty. The second term on the RHS of (8) represents the calibration or reliability of 

the forecasts, which measures the difference between the conditional mean of the 

occurrence on the probability group and the forecast probability. It can be interpreted as a 

                                                 
9 The t-values were obtained from a regression of ( fxρ / ) x on f.  2

xσ
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labeling skill that expresses uncertainty. The third term on the RHS of (8) is a measure of 

resolution or discrimination; it refers to the ability of a set of probability forecasts to sort 

individual outcomes into probability groups which differ from the long-run relative 

frequency. In general, it is desirable for the relative frequency of occurrence of the event 

to be larger (smaller) than the unconditional relative frequency of occurrence when f is 

larger (smaller). Note that a sample of probability forecasts will be completely resolved if 

the forecast probabilities only take values zero and one. For perfectly calibrated 

forecasts, ffx =|µ  and fx µµ = , and the resolution term equals the variance of the 

forecasts, σf
2. Forecasts possess positive absolute skill when the resolution reward 

exceeds the miscalibration penalty. Even though calibration is a natural feature to have, it 

is resolution that makes the forecasts useful in practice, cf. DeGroot and Fienberg 

(1983).10

 

Following Murphy and Winkler (1992), the conditional distributions for Q0-Q4 

are depicted in Figures 2a-2e. In these figures, estimates of 

)|( fxp

fx|µ are plotted against f, and 

referred to as the attributes diagram. The calculations are presented in Tables 2b and 2c.  

Figures 2a-2e indicate the relationship between fx|µ and f for the relevant sample of 

forecasts and observations, and also contain several reference or benchmark lines. The 

straight line for which 045 ffx =|µ represents perfectly calibrated forecasts. The 

horizontal line represents completely unresolved forecasts, for which xfx µµ =| . The 

dotted line equidistant between the line and the horizontal line represents forecasts 

with zero skill in terms of SS where the resolution award is equal to the miscalibration 

penalty. To the right (left) of the vertical auxiliary line at

045

xf µ= , skill is positive above 

(below) the zero-skill line and negative below (above) it. This is because, when fx|µ is on 

the right (left) of the vertical line and above (below) the zero-skill line, the resolution 

award will be greater than the miscalibration penalty. Hence, the QPS of the SPF would 
                                                 
10 Dawid (1986) presents a simple example to distinguish between calibration and resolution. Suppose the 
event (=1) occurs in every alternative period as 0, 1, 0, 1, …. Consider three sets of forecasts: F1 assigns 0.5 
always; F2 assigns 0, 1, 0, 1, …, and F3 assigns 1, 0, 1, 0,….  Here F1 and F2 are well calibrated, but F2 is 
perfect whereas F1 is almost useless. Both F2 and F3 are perfectly resolved, but F3 is not well calibrated. F3 
is more useful than F1 once we know how to calibrate F3.  
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be smaller than that of the base rate, leading to a positive SS. Thus, Figures 2a-2e permit 

qualitative evaluation of resolution and skill as well as calibration for individual values of 

forecasts. An examination of Figures 2a-2e indicates that, similar to the previous 

findings, the SPF forecasts with shorter forecasting horizons (Q0-Q2) are generally well 

calibrated; most points on the empirical curves fall in regions of positive skill. However, 

SPF forecasts with longer forecasting horizons (Q3-Q4) reveal less satisfactory 

performance with negative overall skill scores. 

 

 In Figures 3a – 3e, the graph is split into two conditional likelihood distributions given x 

= 1 (GDP decline) and x = 0 (no GDP decline). For these two conditional distributions, 

the means were calculated to be (0.56, 0.38, 0.26, 0.19 and 0.18) for x = 1 and (0.14, 

0.16, 0.17, 0.17 and 0.18) for x = 0, respectively. Good discriminatory forecasts will give 

two largely non-overlapping marginal distributions, and, in general, the ratio of their 

vertical differences should be as large as possible. While the shorter run forecasts (Q0-

Q2) display better discriminatory power, the longer run forecasts (Q3-Q4) display poor 

discrimination due to the over-use of low probabilities during both regimes (i.e., x = 0 

and x = 1). So the two distributions overlap. In particular, the mean values for x = 1 

(GDP decline) and x = 0 (no GDP decline) for the 4-quarter ahead forecasts (Q4) are 

almost identical.11   

 

Numerical values of the Murphy decomposition are given in Table 4 where we find that 

QPS improves by about 35%, 16% and 6% for the current (Q0), one quarter- (Q1), and 2-

quarter–ahead (Q2) forecasts, respectively, over the constant relative frequency forecast 

(CRFF). The 3-quarter-ahead (Q3) forecasts are even with CRFF, and the QPS of the 4-

quarter-ahead (Q4) forecasts are worse by nearly 4%.  

 

The major contributor for the improvement in QPS is resolution, which helps to reduce 

the baseline QPS (CRFF) by about 47%, 25%, 17%, 6%, and 8% for Q0 to Q4, 

                                                 
11 Cramer (1999) suggested the use of this difference in the conditional means as a goodness-of-fit measure 
in binary choice models with unbalanced samples where one outcome dominates the sample. See also 
Greene (2003).  
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respectively.  On the other hand, the miscalibration increases QPS of CRFF by 12%, 9%, 

11%, 5% and 13%, respectively – they are relatively small for all forecast horizons. The 

improvement due to resolution is greater than the deterioration due to miscalibration for 

the up to 2-quarter-ahead forecasts, and the situation is opposite for the 4-quarter-ahead 

forecasts. In the case of 3-quarter-ahead forecasts, resolution and miscalibration pretty 

much cancel each other out. As indicated by the attributes diagrams (Figs. 2a-2e) and the 

overlapping of the p(f|x=1) distribution with p(f|x=0) (Figs. 3a-3e), the SPF forecasters 

are conservative in assigning high probability during quarters when recession occurs. 

This also suggests that distinguishing between occurrences and non-occurrences, and 

assigning higher probabilities in quarters when recession occurs, can improve the 

resolution of the forecasts. It may be noted that the assignment of low probability for rare 

events is not unusual, and is actually quite common in many other areas of forecasting. 

When the diagnostic information or “cue” is not adequate to make informed forecasts, the 

tendency for the forecaster is to assign the average base rate probability.12

 

4.3 The Yates Decomposition 

The calibration component in (8) can be written as: 

                     (9) 2
__

1

2
__

22
_

1
)()/1(2)()()/1( xxTTsxfsxfTT j

J

j
jfxfjj

J

j
j −+−−+=− ∑∑

==

where ,  and  are the sample forecast mean, variance and covariance respectively. 

Since the last term in equation (9) is the resolution component in (8), Yates (1982) and 

Yates and Curley (1985) have argued that the calibration and resolution components in 

the Murphy decomposition are algebraically confounded with each other, and suggested a 

covariance decomposition of QPS that is more basic and more revealing than the Murphy 

decomposition, see also Björkman (1994) and Yates (1994).  The so-called Yates 

decomposition is written as: 

_
f 2

fs fxs

                                                 
12 Diebold and Rudebusch (1989, 1991) and Lahiri and Wang (1994) used QPS and its resolution and 
calibration components to study the value of recession forecasts generated from probability models of 
Neftci (1984) and Hamilton (1989), respectively. Bessler and Ruffley (2004) have studied probability 
forecasts from a 3-variable VAR model of stock returns by a bootstrap-type procedure under the normality 
assumption. They found forecasts to be well calibrated but have very low resolution to be useful.  
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           (10) xfxfffxxxfQPS ,
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min,
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where , and . )1()( 2
0|1|

2
min, xxxfxff µµµµσ −−= ==

2
min,

22
fff σσσ −=∆

 

As noted before, the outcome index variance = )2
xσ 1( xx µµ − provides a benchmark 

reference for the interpretation of QPS. The conditional minimum forecast variance  

reflects the double role that the variance of the forecast plays in forecasting performance. 

Even though minimization of  will reduce QPS, this minimum value of forecast 

variance will be achieved only when a constant forecast is offered. But a constant 

forecast would lead to zero covariance between the forecast and event, which will, in 

turn, increase QPS. So the solution is to minimize the forecast variance given the 

covariance that demonstrates the fundamental forecast ability of the forecasters. The 

conditional minimum value of forecast variance (i.e., = ) is achieved when the 

forecaster has perfect foresight such that he or she can exhibit perfect discrimination of 

the instances in which the event does and does not occur. 

2
min,fσ

2
fσ

2
min,fσ 2

fσ

 

Since , the term may be considered as the excess variability in 

forecasts. If the covariance indicates how responsive the forecaster is to information 

related to an event’s occurrence, might reasonably be taken as a reflection of how 

responsive the forecaster is to information that is not related to the event’s occurrence. 

Note that  can be expressed as , where ) is the 

number of periods associated with the occurrence (i =1) and non-occurrence (i = 0), 

. So the term is the weighted mean of the conditional forecast variances. 

2
min,

22
fff σσσ −=∆

2
fσ∆

2
fσ∆ TTT xfxf /)( 2

0|0
2

1|1 == + σσ )1,0( =iTi

TTT =+ 01

 

Using the SPF probability forecasts, the components of equation (10) were computed and 

presented in Table 5. Note that the QPS values and the variances for Q0-Q4 in Tables 4 

and 5 are slightly different because the Yates decomposition could be done with 

ungrouped data whereas the Murphy decomposition was done with probabilities grouped 

as in Tables 1 and 2. For the shorter forecasting horizons up to 2-quarters (Q0-Q2), the 
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overall QPS values are less than the constant relative frequency forecast variance, which 

demonstrate the absolute skillfulness of the SPF probability forecasts. For the longer run 

forecasting horizons (Q3-Q4), the overall QPSs are slightly higher than those of the 

constant relative frequency forecast. The primary contributor of the performance is the 

covariance term that helps reduce the forecast variance by almost 84%, 44%, 18% and 

5% for up to 3-quarter-ahead forecasts, but makes no contribution for the 4-quarter-ahead 

forecasts. The covariance reflects the forecaster’s ability to make a distinction between 

individual occasions in which the event might or might not occur. It assesses the 

sensitivity of the forecaster to specific cues that are indicative of what will happen in the 

future. It also shows whether the responsiveness to the cue is oriented in the proper 

direction. This decomposition is another way of reaching the same conclusion as the 

decomposition of skill score in Table 3a.   

 

The excess variability of the forecasts, , for each horizon is found to be 

0.0330, 0.0212, 0.0113, 0.0046, and 0.0040, respectively. Compared to the overall forecast 

variances 0.0541, 0.0272, 0.0123, 0.0047, and 0.004, the excess variability’s of SPF 

probability forecasts are 61%, 77%, 91%, 97% and 100% for Q0-Q4 forecasts, 

respectively.  Thus, they are very high, and this means that the subjective probabilities are 

scattered unnecessarily around 

2
min,

22
fff σσσ −=∆

1| =xfµ  and 0| =xfµ . Since the difference in conditional means,  

0|1| == − xfxf µµ , are very close to zero for Q3-Q4 forecasts, all of their variability is 

attributed to excess variability. Assigning low probabilities in periods when GDP actually 

fell seems to be the root cause of the excess variance.  In our sample real GDP fell 20 

times. However, in 10 of these quarters, the assigned probabilities for Q0-Q2 forecasts 

never exceeded 0.5; for Q3-Q4 forecasts, the assigned probabilities were even below 0.2. In 

contrast, for Q0-Q2, in more than 90% of the quarters when GDP growth did not decline, 

the probabilities were assigned correctly below 50% (for Q3-Q4 the probabilities were 

below 30%). This explains why Var (f|x=1) is much larger than Var (f|x=0) when the 

forecasts have any discriminatory power (cf. Figs. 3a-3e). The Yates decomposition gives 

this critical diagnostic information about the SPF probability forecasts that the Murphy 

decomposition could not.  
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Overall, both the Murphy and Yates decompositions support the usefulness of shorter run 

SPF probabilities as predictors of negative real GDP growth, and suggest ways of 

improving the forecasts, particularly at short-run horizons. The longer-term forecasts 

have very little discriminatory power. While the overall accuracy or the calibration of the 

forecasts are very similar for each forecasting horizon, the usefulness of the shorter run 

forecasts primarily comes from their better discriminatory power. These probabilities 

embody effective information related to the occurrence of the event, and the overall 

average forecast probabilities are close to the relative frequency of the occurrence of the 

event. However, improvement can be made by further distinguishing factors related to the 

occurrence of quarterly GDP declines, while keeping the sensitivity of the forecasts to 

information that are actually related to such an event. This would imply a reduction of 

unnecessary variance of forecasts particularly during GDP declines, thereby increasing 

resolution further. This is an important economic insight regarding business cycle 

forecasting that can be gleaned from SPF probability forecasts.13  

 

5. RELATIVE (RECEIVER) OPERATING CARACTERISTIC (ROC)  

 

As the Murphy and Yates decompositions indicated, the traditional measure - the overall 

calibration or accuracy (or calibration-at-large) - can be decomposed into two distinct 

components. The calibration by group (or calibration-at-small), as assessed by SM-D 

validity test, is only one of the characteristics that a forecast possesses. Resolution or 

discrimination is another, and actually a more important feature to a forecast end-user. 

However, one vital issue is that, when the resolution is high and the judgment is accurate, 

the overall calibration will be good or even perfect. But if the resolution is high and the 

judgment is not accurate, the increased resolution may, instead, cause poor calibration 

score. Given the inability of any forecaster to forecast perfectly, the frequent trade-off 

between the calibration and resolution is unavoidable. In this case, if the performance is 

measured by the traditional calibration and the QPS is used as the metric, it may 

                                                 
13 Clements (2006b) finds little evidence that the asymmetry in forecasters’ loss functions can possibly 
explain the relatively low forecast probabilities for impending real GDP declines.   
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encourage hedging behavior as is evidenced by the preponderance of assigned 

probabilities close to the historical base rate. As a result, the end users may frequently 

receive forecasts with decent calibration scores, but the forecast actually contains little 

value to them.  

 

In contrast, the resolution or the discrimination characteristic focuses on the fundamental 

value of a forecast: its ability to capture the occurrence of an event with an underlying 

high hit rate, while maintaining the false alarm rate to some acceptable level. The 

Murphy and Yates decompositions analyzed the structure of the total forecast error and 

the impact or the relative contribution of each component to the total error, but they could 

not provide a stand-alone single measure for the discrimination ability of a forecast. In 

evaluating rare event probabilities, it is crucial to minimize the impact of the predominant 

outcome on the outcome score.  More specifically, the impact of correctly identifying the 

frequent event, which is the primary source of the hedging, should be minimized. So a 

better approach to forecast performance should concentrate on the hit rate and false alarm 

rate of the infrequent event, instead of the “percentage correctly predicted” that is the 

very basis of QPS, cf. Doswell et al (1990) and Murphy (1991). 

 

A simple and often-used measure of forecast skill, the Kuipers (or sometimes referred to 

as Pierce skill score) score (KS), is obtained by taking the difference between the hit rate 

(H) and the false alarm rate (F), where H is the proportion of times an event was forecast 

when it occurred, and F is the proportion of times the event was forecast when it did not 

occur. Given a decision threshold w, the contingency table for successes and failures for 

the event can be written as in Table 6. Then the Kuipers score can be calculated as 

. Assuming independence of the hit and false alarm 

rates, the asymptotic standard error of the Kuipers score is given 

by

)))(/(()( dbcabcadFH ++−=−

))/()1((())/()1(( dbFFcaHH +−++− ; see Agresti (1996). Alternatively, based on 

the market-timing test of Pesaran and Timmermann (1992), Granger and Pesaran (2000) 

have suggested an alternative test for the significance of the Kuipers test, 

)1(/)1(/
__

xxPPKSTPT xx −−= , where . Stephenson (2000) notes FxHxPx )1(
__

−+=
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that if one of the two elements in a column of the contingency table is very large (e.g., d), 

then Kuipers skill score effectively disregards the other element (e.g., b) almost 

completely. This can be a limitation of the Kuipers score in evaluating rare event 

forecasts.   

 

Rather, the forecast skill can better be judged by comparing the odds of making a good 

forecast (a hit) to the odds of making a bad forecast (a false alarm), i.e., by using the odds 

ratio θ = {H/(1-H)}/{F/(1-F)} which is simply equal to the cross-product ratio (ad)/(bc) 

obtainable from the contingency table. The odds ratio is unity when the forecasts and the 

realizations are independent or KS=0, and can be easily tested for significance by 

considering the log odds that is approximately Normal with a standard error given 

by dcba /1/1/1/1 +++ . Note that each cell count should be at least 5 for the validity 

of the approximation. KS and θ are reported in Table 7 for relevant values of the decision 

threshold w.  

 

One important but often overlooked issue in the evaluation of probability forecasts is the 

role of the selected threshold. The performance of a probability forecast in terms of 

discrimination ability is actually the result of the combination of the intrinsic 

discrimination ability of a forecasting system and the selection of the threshold. In these 

regards, Relative (or Receiver) Operating Characteristic (ROC) is a convenient 

descriptive approach, but unfortunately has drawn little attention in econometrics.14  

 

The decision to issue a forecast for occurrence or non-occurrence of an event is typically 

made based on a predetermined threshold (say, w) on the weight of evidence scale W. 

The occurrence forecast is announced if W > w, the non-occurrence is announced 

otherwise. ROC can be represented by a graph of the hit rate against the false alarm rate 

as w varies, with the false alarm rate plotted as the X-axis and the hit rate as the Y-axis. 

The location of the entire curve in the unit square is determined by the intrinsic 

                                                 
14 This approach has a long history in medical imaging, and has also been used in evaluating loan default 
and rating forecasts, cf. Hanley and McNeil (1982) and Stein (2005). See Jolliffe et al. (2003), Stephenson 
(2000), and Swets and Pickett (1982) for additional analysis on the use of ROC.   
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discrimination capacity of the forecasts, and the location of specific points on a curve is 

determined by the decision threshold w that is selected by the user. As the decision 

threshold w varies from low to high, or the ROC curve moves from right to left, H and F 

vary together to trace out the ROC curve. Low thresholds lead to both high H and F 

towards the upper right hand corner. Conversely, high thresholds make the ROC points 

move towards the lower left hand corner along the curve. Thus, a perfect discrimination 

is represented by an ROC that rises from (0,0) along the Y-axis to (0,1), then straight right 

to (1,1). The diagonal H = F represents zero skill, indicating that the forecasts are 

completely non-discriminatory. ROC points below the diagonal represent the same level 

of skill as they would if they were located above the diagonal, but are just mislabeled, 

i.e., a forecast of non-occurrence should be taken as occurrence. 

 

In Figures 4a-4e the ROC curves together with their 95% confidence intervals for the 

current quarter and the next four quarters are displayed. The confidence interval was 

calculated using the formula 
Tz
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where = = 1.96 for a standard normal variate.2/αz 0.025z 15  It can be seen that the ROC for 

the current quarter (Q0) is located maximally away from the diagonal towards the left 

upper corner demonstrating the highest discrimination ability of the SPF forecasts, 

followed by the one-quarter-ahead forecasts. For longer-term forecasts ROCs become 

rapidly flatter as the forecasting horizon increases. For the four-quarter-ahead forecasts, 

the ROC mildly snakes around the diagonal line, and the associated confidence band 

suggests that practically none of the values are statistically different from the values on 

the diagonal line. This means that the 4Q forecasts have no skill or discrimination ability 

for any value of the threshold. In situations where the analyst may have only vague idea 

about the relative costs of type I and type II errors (e.g., in the problem of predicting the 

                                                 
15 The confidence interval is obtained by inverting the appropriate score test for sample proportions, and are 
asymmetric and non-linear in H. For reasonable values of w in our case (i.e., around 0.25), it varied from 
approximately .09 for Q0 to .14 for Q4. Agresti and Coull (1996) have shown that this (score) confidence 
interval has excellent coverage probability for nearly all sample sizes and parameter values.  
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turning point in a business cycle), he or she can pick a comfortable hit rate (or false alarm 

rate) of choice, and the underlying ROC curve will give the corresponding false alarm 

rate (or hit rate). This will also give an optimal threshold for making decisions. When the 

relative costs two types of errors are known exactly, the decision theoretic framework 

developed by Zellner et al. (1991) and Granger and Pesaran (2000) can be used to issue 

recession signals. However, before using the probability forecasts in decision-making, the 

significance of their skillfulness should first be established.  

 

The hit rates and false alarm rates for selected threshold values in the range 0.50-0.05 are 

reported in Table 7, where one can find the mix of hit and false alarm rates that are 

expected to be associated with each horizon-specific forecast.16 For example, for 

achieving a hit rate of 90% with Q0 forecasts, one should use 0.25 as the threshold, and 

the corresponding false alarm rate is expected to be 0.16. Table 7 also shows that at this 

threshold value, even though the false alarm rates are roughly around 0.15 for forecast of 

all horizons, the hit rate steadily declines from 90% for Q0 to only 21% for Q4 - clearly 

documenting the rapid speed of deterioration in forecast capability as the forecast horizon 

increases. Though not reported in Table 7, for the same hit rate of 90%, the false alarm 

rates for Q1 through Q4 forecasts are 0.189 (w=0.237), 0.636 (w=0.13), 0.808 (w=0.115) 

and 0.914 (w=0.10) respectively. Thus, for the same hit rate, the corresponding false 

alarm rates for Q3-Q4 forecasts are so large (80% and 91% respectively) that they can be 

considered useless for all practical purposes, and thus, may have very little value in 

decision-making.  

 

In Table 7 we have also reported the Kuipers scores (KS) and the odds ratios (θ) for 

selected w. The rapid decline in these values as the forecast horizon increases is 

remarkable, and for Q4 forecasts these values are close to zero and unity respectively, 

suggesting no-skill. Using the critical value 1.645 for a one-sided normal test at the 5% 

level, the KS and θ values were found to be statistically significant for Q0-Q2 and 

                                                 
16 In order to save space, we did not report in Table 7 the values of w greater than 0.5. Moreover, these 
values were less relevant in our context. 
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insignificant for Q4 forecasts.17 For Q3 forecasts, there is some conflicting evidence 

depending on the tests we use. Based on the standard error 

formula )]/()1([)]/()1([ dbFFcaHH +−++− for KS reported in Argesti (1996), KS 

values for Q3 were insignificant at the 5% level for all allowable values of w. However, 

the PT test and the test based on log odds ratio for Q3 were statistically significant only 

for w = 0.25 even at the 1% level. Notwithstanding this result, the weight of our previous 

evidence suggests that Q3 forecasts have very little skill. We should, however, emphasize 

that statistical significance or insignificance does not mean the forecasts have utility or 

value in a particular decision theoretic context.18  

 

We find overwhelming evidence that Q0-Q2 forecasts have good operating 

characteristics. Given the relative costs of two types of classification errors, the end-user 

can choose an appropriate threshold w to minimize the total expected cost of 

misclassification. This type of optimal decision rule cannot be obtained by the Murphy-

Yates decompositions of QPS.  More importantly, for forecasting relatively rare business 

events like recessions, ROC and odds ratios are useful for making sure that the 

probability forecasts have operational value.  This is because, in this approach, the 

success rate in predicting the predominant event is not part of the goodness of fit 

measure.  

 

6. CONCLUSION  

 

In this paper we have evaluated the subjective probability forecasts for real GDP declines 

during 1968-2004 using alternative methodologies developed in psychology and 

meteorology.  The Survey of Professional Forecasters record probability forecasts for 

real GDP declines during the current and next four quarters. We decomposed the 

traditional QPS score associated with these probability forecasts into calibration, 

                                                 
17 Note that the cell counts were in excess of 5 only in cases of w values (0.50-0.35) for Q0, (0.45-0.35) for 
Q1, (0.30-0.20) for Q2, (0.25-0.20) for Q3 and (0.20-0.15) for Q4. The significance tests were conducted 
only for these cases.  
18 Granger and Pesaran (2000) show how, under certain simplifying assumptions, Kuipers score can be 
used as an indicator of economic value.  
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resolution, and alternative variance decompositions. We found overwhelming evidence 

that the shorter run forecasts (Q0-Q2) possess significant skill, and are well calibrated. 

The resolution or the discrimination ability is also reasonable. Q3 forecasts have 

borderline value, if at all. However, the variance of these forecasts, particularly during 

cyclical downturns, is significantly more than necessary. The analysis of probability 

forecasts, thus, shows that forecasters respond also to cues that are not related to the 

occurrence of negative GDP growths.  

 

In contrast, Q4 forecasts exhibit poor performance as measured by negative skill scores, 

low resolutions, dismal ROC measures, and insignificant correlations with actual 

outcomes. Interestingly, the Seillier-Moiseiwitsch and Dawid (1993) test for perfect 

forecast validity failed to detect any problem with the longer-term forecasts. However, it 

is clear from our analysis that our professional forecasters do not have adequate 

information to forecast meaningfully at horizons beyond two quarters; they lack relevant 

discriminatory cues. Since the SPF panel is composed of professional economists and 

business analysts who forecast on the basis of models and informed heuristics, their 

failure for the long-term forecasts may indicate that at the present time forecasting real 

GDP growth beyond two quarters may not be possible with reasonable type I and Type II 

errors. Since survey probabilities embody important additional information over point 

forecasts, an analysis of the probability forecasts provided us with a unique opportunity 

to understand the reasons for forecast failures. As Granger (1996) has pointed out, in 

some disciplines forecasting beyond certain horizons is known to be not possible; for 

instance, in weather forecasting the boundary seems to be four or five days. Our analysis 

of probability forecasts suggests that in macro GDP forecasts, two quarters appears to be 

the limit at the present time.   

 

We have also emphasized that for forecasting rare events, it is important to examine the 

ROC curves where the relative odds for the event can be studied at depth. The analysis 

also helps find an optimum probability threshold for transforming the probability 

forecasts to a binary decision rule. In many occasions the selection of the threshold is 

quite arbitrary. In this regard, ROC analysis provides a simple but an objective approach, 
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incorporating the end user’s loss function for missed signals and false alarms. The ROC 

analysis in our case revealed that for a pre-assigned hit rate of (say) 90%, the associated 

false alarm rates for the Q3-Q4 forecasts are so high that they may be considered useless 

for all practical purposes.   

Other interesting implications of this study are as follows: First, decomposition 

methodologies introduced in this paper have much broader implications for evaluating 

model fit in Logit, Probit and other limited dependent variable models. These models 

generate probabilities of discrete events. Again, often in economics, we try to identify 

events that are relatively rare or uncommon (e.g., loan defaults, hospital stays, road 

accidents, crack babies, etc.) in terms of observable predictors. Usually the model fit 

criteria look excellent, but the estimated model hardly identifies the small population of 

interest. Using the evaluation methodology of probability forecasts, one can study the 

true value of the estimated probability models for out-of-sample predictions.  

 

Second, given the multi-dimension nature of the forecasts and the possible trade-offs 

between the different characteristics of the forecasts such as calibration and resolution, 

discrimination ability should be taken as an important characteristic with high priority for 

the end users. As the ROC analysis revealed, a fundamental issue for forecasting a binary 

event is to distinguish the occurrence of an event from its non-occurrence. A forecast 

with higher discrimination ability should certainly be considered a better one over others. 

As revealed by our analysis, a decent external correspondence may not necessarily 

represent a truly useful forecast. Instead, it could be just the result of the “hedging” 

behavior on part of the forecasters. Most importantly, a higher accuracy score can be 

achieved at the expense of lowered discrimination ability.  

 

Third, considering the fact that the chronologies of the NBER recessions are usually 

determined long after the recession is over, negative GDP growth projections are 

probably a reasonable way of tracking business cycles in real time. We have found 

conclusive evidence that the SPF subjective probability forecasts for the near term are 

useful in this regard, even though these probability forecasts are characterized by excess 

variability. In principle, the quality of these forecasts can be improved by further 
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distinguishing factors related to the event from those that are not, while keeping the 

sensitivity of the forecasts to correct information.  

 

One wonders if the SPF forecasters can be trained to do better. In the current situation, 

forecasting improvement may not be possible for various reasons. In most psychological 

and Bayesian learning experiments, the outcomes are readily available and are known 

with certainty; thus prompt feedback for the purpose of improvement is possible. In 

contrast, the GDP figures are announced with considerable lag, and are then revised 

repeatedly.  Also, as we have mentioned before, correct and dependable cues for 

predicting recessions a few quarters ahead may not be available to economists. The 

excess variability of forecasts and the observed lack of discriminating ability may just be 

a reflection of that hard reality. It may be the same reason why model-based forecasts 

over business cycle frequencies have not succeeded in the past. Given the loss/cost 

structure facing the forecasters and lacking useful cues, issuing low probabilities for 

future recessions may be the optimal predictions for the forecasters under considerable 

uncertainty, particularly when the course of the cycle can be manipulated by government 

policies. 
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Fig. 1a: Probability of Decline in Real GDP in the Current Quarter
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Fig. 1b: Probability of Decline in Real GDP in the Following Quarter
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Fig. 1c: Probability of Decline in Real GDP in Following Second Quarter
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Fig. 1d: Probability of Decline in Real GDP in Following Third Quarter
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Fig. 1e: Probability of Decline in Real GDP in Following Fourth Quarter
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Figure 2a: Attributes Diagram (Q0)
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Figure 2b: Attributes Diagram (Q1)
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Figure 2c: Attributes Diagram (Q2)
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Figure 2d: Attributes Diagram (Q3)
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Figure 2e: Attributes Diagram (Q4)
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Figure 3a: Likelihood Diagram (Q0)
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Figure 3b: Likelihood Diagram (Q1)
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Figure 3c: Likelihood Diagram (Q2)

0%

10%

20%

30%

40%

50%

60%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Forecast Probability (f)

Li
ke

lih
oo

d 
[p

(f|
x)

]

P(f|x=0)

P(f|x=1)

 
 

 34



 
 
 

Figure 3d: Likelihood Diagram (Q3)
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Figure 3e: Likelihood Diagram (Q4)
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Figure 4a: ROC for Q0 ± 95% Band      Figure 4b: ROC for Q1 ± 95% Band    
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   Y-axis: Hit Rate; X-axis: False Alarm Rate                         Y-axis: Hit Rate; X-axis: False Alarm Rate 
 
Figure 4c: ROC for Q2 ± 95% Band      Figure 4d: ROC for Q3 ± 95% Band  
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Figure 4e: ROC for Q4 ± 95% Band          
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          Table 1: Calculations for the Calibration Test: Quarter 0   

         
Probability 

Interval Midpoint Frequency Occurrence 
Relative 

Frequency Expectation Weight Test Statistic 
Chi 

Square 

 jf  jT  jr  jj Tr /  jjj Tfe =  )1( jjjj ffTw −=  jjjj werZ /)( −=  2
jZ  

0.00 - 0.049 0.025 42 0 0.00 1.05 1.02 -1.04 1.08 
0.05 - 0.149 0.100 51 0 0.00 5.10 4.59 -2.38 5.67 
0.15 - 0.249 0.200 25 7 0.28 5.00 4.00 1.00 1.00 
0.25 - 0.349 0.300 4 1 0.25 1.20 0.84 -0.22 0.05 
0.35 - 0.449 0.400 3 2 0.67 1.20 0.72 0.94 0.89 
0.45 - 0.549 0.500 6 2 0.33 3.00 1.50 -0.82 0.67 
0.55 - 0.649 0.600 4 2 0.50 2.40 0.96 -0.41 0.17 
0.65 - 0.749 0.700 3 1 0.33 2.10 0.63 -1.39 1.92 
0.75 - 0.849 0.800 5 5 1.00 4.00 0.80 1.12 1.25 
0.85 - 0.949 0.900 0 0 0.00 0.00 0.00 0.00 0.00 
0.95 - 1.000 0.975 0 0 0.00 0.00 0.00 0.00 0.00 

    143 20        = 2χ ∑ 2
jZ  12.68 
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Table 2: Calibration Tests for Q0-Q4 
      
      

Midpoint )0(jZ  )1(jZ  )2(jZ  )3(jZ  )4(jZ  

          
0.025 -1.04 -0.55 -0.23 -0.16 -0.16 

          
0.1 -2.38 -2.37 -1.45 -0.43 0.37 

          
0.2 1.00 -0.92 -1.00 -1.10 -0.93 

          
0.3 -0.22 1.01 1.41 0.28 -1.57 

          
0.4 0.94 0.15 -0.61 -1.63 0.00 

          
0.5 -0.82 0.00 -1.89 0.00 0.00 

          
0.6 -0.41 -0.94 0.82 0.00 0.00 

          
0.7 -1.39 -1.46 0.00 0.00 0.00 

          
0.8 1.12 0.00 0.00 0.00 0.00 

          
0.9 0.00 0.00 0.00 0.00 0.00 
          

0.975 0.00 0.00 0.00 0.00 0.00 
          

2χ  12.7 10.82 9.74 4.17 3.50 
            

QPS Test 
 (N (0,1)) -1.597 -1.481 -1.393 -1.137 -0.916 
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                          Table 3a:  Decomposition of Skill Score   

Lead 
Time SS (Skill Score)  =  Association   -  Calibration   -  Bias 
Q0 0.3644 0.3930 0.0017 0.0269 
Q1 0.1942 0.2202 0.0000 0.0260 
Q2 0.0594 0.0774 0.0015 0.0165 
Q3 -0.0019 0.0140 0.0059 0.0100 
Q4 -0.0454 0.0000 0.0323 0.0130 

 
 
 
 
 
 
 Table 3b:  Summary Measures of Marginal & Joint Distributions of Forecasts & Realizations 

Lead 
Time                                Means                     Variances   Correlation Sample 

  fµ  xµ  )( fVar  )(xVar  Coefficient Size 
Q0 0.1969 0.1399 0.0541 0.1211 0.6269 143 
Q1 0.1971 0.1408 0.0272 0.1219 0.4693 142 
Q2 0.1868 0.1418 0.0123 0.1226 0.2781 141 
Q3 0.1780 0.1429 0.0047 0.1233 0.1184 140 
Q4 0.1806 0.1407 0.0040 0.1218 0.0017 135 

 
 
 
 
 
 
    Table 3c:  Summary Measures of Conditional Forecast Distributions Given Realizations  

Lead 
Time Means                     Variances   Sample Sample 

  0| =xfµ  1| =xfµ  0|)( =xfVar  1|)( =xfVar  )0(0 =xT  )1(1 =xT  

Q0 0.1383 0.5573 0.0284 0.0632 123 20 
Q1 0.1659 0.3875 0.0206 0.0258 122 20 
Q2 0.1743 0.2624 0.0110 0.0139 121 20 
Q3 0.1747 0.1978 0.0048 0.0039 120 20 
Q4 0.1806 0.1809 0.0042 0.0032 116 19 
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=QPS +)(xVAR

 
 
 

 
 
 
 
 
 
 
                Table 5:  Yates Decomposition   

Lead 
Time   +∆ )( fVAR  +)( fAR −− 2)( xf µµ ),(*2 xfCOVARMinV   
Q0 0.0769 0.1203 0.0330 0.0211 0.0033 0.1008 
Q1 0.0977 0.1210 0.0212 0.0059 0.0032 0.0536 
Q2 0.1146 0.1217 0.0113 0.0009 0.0020 0.0214 
Q3 0.1227 0.1224 0.0046 0.0001 0.0012 0.0057 
Q4 0.1265 0.1209 0.0040 0.0000 0.0016 0.0001 

 
 
 
 
 
 

                            Table 6: Schematic Contingency Table  
 Event Observed  

     Event Forecasted Occur Not Occur Total 
     

Yes a (hit) b (false alarm) a+b  
    

No c (miss)  d (correct rejection)  c+d  
    

Total a+c  b+d  a+b+c+d = T 
 
 
 
 
 

                            Table 4:  Murphy Decomposition   
Lead 
Time QPS (Accuracy)   =  Uncertainty   +  Reliability  -  Resolution 
Q0 0.0793 0.1211 0.0153 0.0572 
Q1 0.1018 0.1219 0.0108 0.0308 
Q2 0.1150 0.1226 0.0135 0.0210 
Q3 0.1226 0.1233 0.0062 0.0069 
Q4 0.1270 0.1218 0.0155 0.0103 



Table 7: Measures of Forecast Skill: Quarter 0 to Quarter 4 
                                      

  Q0   Q1 Q2   Q3 Q4 
w       H F Kuipers Odds H F Kuipers Odds H F Kuipers Odds  H F Kuipers Odds H F Kuipers Odds 
       score Ratio      score Ratio     score Ratio      score Ratio     score Ratio 

0.50   0.55  0.07  0.48 17.57  0.25 0.05 0.20 6.44 0.05 0.03 0.02 1.54  0.00 0.00 0.00 - 0.00 0.00 0.00 - 
0.45   0.60  0.07  0.53 19.00  0.30 0.07 0.23 5.38 0.10 0.05 0.05 2.13  0.00 0.00 0.00 - 0.00 0.00 0.00 - 
0.40   0.60  0.08  0.52 16.95  0.40 0.08 0.32 7.47 0.10 0.07 0.03 1.57  0.00 0.00 0.00 - 0.00 0.00 0.00 - 
0.35   0.70  0.10  0.60 21.58  0.50 0.10 0.40 9.17 0.15 0.07 0.08 2.20  0.00 0.03 -0.03 0.00 0.00 0.00 0.00 - 
0.30   0.85  0.11  0.74 44.12  0.75 0.14 0.61 18.53 0.35 0.11 0.24 4.47  0.10 0.08 0.03 1.37 0.00 0.05 -0.05 0.00 
0.25   0.90  0.16  0.74 46.35  0.80 0.18 0.62 18.18 0.50 0.15 0.35 5.72  0.25 0.12 0.13 2.52 0.21 0.16 0.06 1.45 
0.20   0.95  0.20  0.75 74.48  0.95 0.25 0.70 58.27 0.70 0.26 0.44 6.77  0.45 0.36 0.09 1.47 0.32 0.43 -0.12 0.61 
0.15   1.00  0.23  0.77 -  0.95 0.37 0.58 32.51 0.85 0.53 0.32 5.05  0.80 0.66 0.14 2.08 0.74 0.66 0.07 1.42 
0.10   1.00  0.40  0.60 -  1.00 0.66 0.34 - 1.00 0.81 0.19 -  1.00 0.86 0.14 - 0.89 0.93 -0.04 0.63 
0.05   1.00  0.68  0.32 -  1.00 0.94 0.06 - 1.00 0.99 0.01 -  1.00 1.00 0.00 - 1.00 1.00 0.00 - 

Note: w = decision threshold; H = hit rate; F = false alarm rate.  
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