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ABSTRACT
This paper proposes an alternative to ROC representation,
in which the expected cost of a classi�er is represented ex-
plicitly. This expected cost representation maintains many
of the advantages of ROC representation, but is easier to
understand. It allows the experimenter to immediately see
the range of costs and class frequencies where a particu-
lar classi�er is the best and quantitatively how much better
it is than other classi�ers. This paper demonstrates there
is a point/line duality between the two representations. A
point in ROC space representing a classi�er becomes a line
segment spanning the full range of costs and class frequen-
cies. This duality produces equivalent operations in the two
spaces, allowing most techniques used in ROC analysis to
be readily reproduced in the cost space.

Categories and Subject Descriptors
I.2.6 [Arti�cial Intelligence]: Learning|Concept learn-

ing,Induction

General Terms
ROC Analysis, Cost Sensitive Learning

1. INTRODUCTION
Provost and Fawcett [9] have argued persuasively that ac-
curacy is often not an appropriate measure of classi�er per-
formance. This is certainly apparent in classi�cation prob-
lems with heavily imbalanced classes (one class occurs much
more often than the other). It is also apparent when there
are asymmetric misclassi�cation costs (the cost of misclassi-
fying an example from one class is much larger than the cost
of misclassifying an example from the other class). Class im-
balance and asymmetric misclassi�cation costs are related to
one another. One way to correct for imbalance is to train a
cost sensitive classi�er with the misclassi�cation cost of the
minority class greater than that of the majority class, and

one way to make an algorithm cost sensitive is to intention-
ally imbalance the training set. As an alternative to accu-
racy, Provost and Fawcett advocate the use of ROC analysis,
which measures classi�er performance over the full range of
possible costs and class frequencies. They also proposed the
convex hull as a way to determine the best classi�er for a
particular combination of costs and class frequencies.

Decision theory can be used to select the best classi�er if the
costs and class frequencies are known ahead of time. But of-
ten they are not �xed until the time of application making
ROC analysis important. The relationship between deci-
sion theory and ROC analysis is discussed in Lusted's book
[7]. In Fawcett and Provost's [4, 5] work on cellular fraud
detection, they noted that the cost and amount of fraud
varies over time and location. This was one motivation for
their research into ROC analysis. Our own experience with
imbalanced classes [6] dealt with the detection of oil spills
and the number of non-spills far outweighed the number of
spills. Not only were the classes imbalanced, the distribu-
tion of spills versus non-spills in our experimental batches
was unlikely to be the one arising in practice. We also felt
that the trade-o� between detecting spills and false alarms
was better left to each end user of the system. These consid-
erations led to our adoption of ROC analysis. Asymmetric
misclassi�cation costs and highly imbalanced classes often
arise in Knowledge Discovery and Data Mining (KDD) and
Machine Learning (ML) and therefore ROC analysis is a
valuable tool in these communities.

In this paper we focus on the use of ROC analysis for the
visual analysis of results during experimentation, and the
interactive KDD process, and the presentation of those re-
sults in reports. For this purpose despite all of the strengths
of the ROC representation, we found the graphs produced
were not always easy to interpret. Although it is easy to
see which curve is better in �gure 1, it is much harder to
determine by how much. It is also not immediately clear
for what costs and class distributions classi�er A is better
than classi�er B. Nor is it easy to \read-o�" the expected
cost of a classi�er for a �xed cost and class distribution. In
�gure 2 one curve is better than the other for some costs and
class distributions, but the range is not determined by the
crossover point of the curves so is not immediately obvious.
This information can be extracted as it is implicit in the
graph, but our alternative representation makes it explicit.
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Figure 1: Comparing Performance

Figure 2: Performance Ranges

2. TWO DUAL REPRESENTATIONS
In this section we brie
y review ROC analysis and how
it is used in evaluating or comparing a classi�er's perfor-
mance. We then introduce our alternative dual represen-
tation, which maintains these advantages but by making
explicit the expected cost is much easier to understand. In
both representations, the analysis is restricted to two class
problems which are referred to as the positive and negative
class.

2.1 The ROC Representation
Provost and Fawcett [9] are largely responsible for introduc-
ing ROC analysis to the KDD and ML communities. It had
been used extensively in signal detection, where it earned
its name \Receiver Operating Characteristics" abbreviated
to ROC. Swets [12] showed that it had a much broader ap-
plicability, by demonstrating its advantages in evaluating
diagnostic systems. In ROC analysis instead of just a single
value of accuracy, a pair of values is recorded for di�erent
costs and class frequencies. In signal detection these were
called the hit rate and false alarm rate. In the KDD and
ML communities they are called the true positive rate (the
fraction of positives correctly classi�ed) and false positive
rate (the fraction of negatives misclassi�ed). This pair of
values produces a point in ROC space: the false positive
rate being the x-coordinate, the true positive rate being the
y-coordinate.

Some classi�ers have parameters for which di�erent settings
produce di�erent ROC points. For example, a classi�er that
produces probabilities of an example being in each class,
such as a Naive Bayes classi�er, can have a threshold param-
eter biasing the �nal class selection [3, 8]. Plotting all the
ROC points that can be produced by varying these param-
eters produces an ROC curve for the classi�er. Typically
this is a discrete set of points, including (0,0) and (1,1),
which are connected by line segments. If such a parame-
ter does not exist, algorithms such as decision trees can be
modi�ed to include costs to produce the di�erent points [2].
Alternatively the class frequencies in the training set can be
changed by under or over sampling to simulate a change in
class priors or misclassi�cation costs [3].

One point in an ROC diagram dominates another if it is
above and to the left, i.e. has a higher true positive rate
(TP ) and a lower false positive rate (FP ). If point A dom-
inates point B, A it will have a lower expected cost than B
for all possible cost ratios and class distributions. One set of
points A is dominated by another B when each point in A is
dominated by some point B and no point in B is dominated
by a point in A. The normal assumption in ROC analy-
sis is that these points are samples of a continuous curve
and therefore normal curve �tting techniques can be used.
In Swets's work [12] smooth curves are �tted to typically
a small number of points, say four or �ve. Alternatively a
non-parametric approach is to use a piece-wise linear func-
tion, joining adjacent points by straight lines. Dominance is
then de�ned for all points on the curve.

Traditional ROC analysis has as its primary focus determin-
ing which diagnostic system or classi�er has the best perfor-
mance independent of cost or class frequency. But there is
also an important secondary role of selecting the set of sys-
tem parameters (or individual classi�er) that gives the best
performance for a particular cost or class frequency. This
can be done by means of the upper convex hull of the points,
which has been shown to dominate all points under the hull
[9]. It has further been shown that dominance implies su-
perior performance for a variety of commonly-used perfor-
mance measures [10]. The dashed line in �gure 3 is a typical
ROC convex hull. The slope of a segment of the convex hull
connecting the two vertices (FP1; TP1) and (FP2; TP2) is
given by equation 1.
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Figure 3: Comparing Two ROC curves

TP1 � TP2
FP1 � FP2

=
p(�)C(+j�)

p(+)C(�j+)
(1)

where p(a) is the probability of a given example being in
class a, and C(ajb) is the cost incurred if an example in class
b is misclassi�ed as being in class a. Equation 1 de�nes the
gradient of an iso-performance line [9]. Classi�ers sharing a
line have the same expected cost for the ratio of priors and
misclassi�cation costs given by the gradient.

Even a single classi�er can form an ROC curve. The solid
line in �gure 3 is produced by simply combining classi�er B
with the trivial classi�ers: point (0,0) represents classifying
all examples as negative; point (1,1) represents classifying
all points as positive. The slopes of the lines connecting
classi�er B to (0,0) and to (1,1) de�ne the range of the ratio
of priors and misclassi�cation costs for which classi�er B is
potentially useful, its operating range. For probability-cost
ratios outside this range, classi�er B will be outperformed by
a trivial classi�er. As with the single classi�er, the operating
range of any vertex on an ROC convex hull is de�ned by the
slopes of the two line segments connected to it.

Thus the ROC representation allows an experimenter to see
quickly if one classi�er dominates another. Using the con-
vex hull, potentially optimal classi�ers and their operating
ranges can be identi�ed.

2.2 The Dual Representation
One of the questions posed in the introduction is how to
determine the di�erence in performance of two ROC curves.
For instance, in �gure 3 the dashed curve is certainly better
than the solid one. To measure how much better, one might
be tempted to take the Euclidean distance normal to the
lower curve. But this would be wrong on two counts. Firstly,
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Figure 4: Comparing Misclassi�cation Costs

the di�erence in expected cost is the weighted Manhattan
distance between two classi�ers, given by equation 2, not
the Euclidean distance.

E[C1]�E[C2] = (TP1 � TP2) p(+)C(�j+)| {z }
w+

(2)

+ (FP1 � FP2) p(�)C(+j�)| {z }
w
�

Secondly, the performance di�erence should be measured be-
tween the appropriate classi�ers on each ROC curve. When
using the convex hull these are the best classi�ers for the
particular cost and class frequency de�ned by the weights
w+ and w

�

in equation 2. In �gure 3 for a probability-cost
ratio of say 2.1 the classi�er marked A on the dashed curve
should be compared to the one marked B on the solid curve.
But if the ratio was 2.3, it should be compared to the trivial
classi�er marked C on the dashed curve at the origin. This
is the classi�er that always labels instances negative.

To directly compare the performance of two classi�ers we
transform an ROC curve into a cost curve. Figure 4 shows
the cost curves corresponding to the ROC curves in �gure
3. The x-axis in a cost curve is the probability-cost func-
tion for positive examples, PCF (+) = w+=(w++w�) where
w+ and w

�

are the weights in equation 2. This is simply
p(+), the probability of a positive example, when the costs
are equal. The y-axis is expected cost normalised with re-
spect to the cost incurred when every example is incorrectly
classi�ed. The dashed and solid cost curves in �gure 4 corre-
spond to the dashed and solid ROC curves in �gure 3. The
horizontal line atop the solid cost curve corresponds to the
classi�er marked B. The end points of the line indicate the
classi�er's operating range (0:3 � PCF (+) � 0:7), where it
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Figure 5: ROC Space Crossover

outperforms the trivial classi�ers. It is horizontal because
FP = 1� TP for this classi�er (see below). At the limit of
its operating range this classi�er's cost curve joins the cost
curve for the majority classi�er. Each line segment in the
dashed cost curve corresponds to one of the points (vertices)
de�ning the dashed ROC curve.

The distance between cost curves for two classi�ers directly
indicates the performance di�erence between them. The
dashed classi�er outperforms the solid one { has a lower
or equal expected cost { for all values of PCF (+). The
maximum di�erence is about 20% (0.25 compared to 0.3),
which occurs when PCF (+) is about 0:3 (or 0:7). Their
performance di�erence is negligible when PCF (+) is near
0:5, less than 0:2 or greater than 0:8.

It is certainly possible to get all this information from the
ROC curves, but it is not trivial. The gradients of lines inci-
dent to a point must be determined to establish its operating
range. To calculate the di�erence in expected cost, an iso-
performance line must be brought into contact with each
convex hull to determine which points must be compared.
To �nd the actual costs the weighted Manhattan distance
between them must be calculated. All this information is
explicit in the alternative representation.

The second question posed in the introduction was for what
range of cost and class distribution is one classi�er better
than another. Suppose we have the two hulls in ROC space,
the dotted and dashed curves of �gure 5. The solid lines in-
dicate iso-performance lines. The line designated A touches
the convex hull indicated by the dotted curve. A line with
the same slope touching the other hull would be lower and
to the right and therefore of higher expected cost. If we roll
this line around the hulls until it touches both of them we
�nd points on each hull of equal expected cost, for a par-
ticular cost or class frequency. Continuing to roll the line
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Figure 6: Cost Space Crossover

shows that the hull indicated by the dashed line becomes the
better classi�er. It is noteworthy that the crossover point
of the two hulls says little about where one curve outper-
forms the other. It only denotes where both curves have
a classi�cation performance that is the same but subopti-
mal for any costs or class frequencies. Figure 6 shows the
cost graph that is the dual of the ROC graph of �gure 5.
Here it can immediately be seen that the dotted line has a
lower expected cost and therefore outperforms the dashed
line to the left of the crossover point and vice versa. This
crossover point when converted to ROC space becomes the
line touching both hulls shown in �gure 5.

2.2.1 Constructing the Dual Representation
To construct the alternative representation we use the nor-
malised expected cost. The expected cost of a classi�er is
given by equation 3.

E[C] = (1� TP )p(+)C(�j+)+ FPp(�)C(+j�) (3)

The worst possible classi�er is one that labels all instances
incorrectly so TP = 0 and FP = 1 and its expected cost is
given by equation 4.

E[C] = p(+)C(�j+)+ p(�)C(+j�) (4)

The normalised expected cost is then produced by dividing
the right hand side of equation 3 by that of equation 4 giving
equation 5.



NE[C] =
(1 � TP )p(+)C(�j+)+ FPp(�)C(+j�)

p(+)C(�j+)+ p(�)C(+j�)
(5)

Then replacing the normalised probability-cost terms with
the probability-cost function PCF (a) as in equation 6 re-
sults in equation 7.

PCF (a) =
p(a)C(aja)

p(+)C(�j+) + p(�)C(+j�)
(6)

NE[C] = (1� TP ) � PCF (+) + FP � PCF (�) (7)

Because PCF (+)+PCF (�) = 1, we can rewrite equation 7
to produce equation 8 which is the straight line representing
the classi�er.

NE[C] = (1� TP � FP ) � PCF (+) + FP (8)

A point (TP; FP ) representing a classi�er in ROC space is
converted by equation 8 into a line in cost space. A line
in ROC space is converted to a point in cost space, using
equation 9, where S is the slope and TPo the intersection
with the true positive rate axis. Both these operations are
invertible. So there is also a mapping from points (lines) in
cost space to lines (points) in ROC space. Therefore there
is a bidirectional point/line duality between the ROC and
cost representations.

PCF (+) =
1

1 + S
(9)

NE[C] = (1� TPo)PCF (+)

Figure 7 shows lines representing four extreme classi�ers in
the cost space. At the top is the worst classi�er, it is always
wrong and has a constant normalised expected cost of 1.
At the bottom is the best classi�er, it is always right and
has a constant cost of 0. The classi�er that always chooses
negative has zero cost when PCF (+) = 0 and a cost of 1
when PCF (+) = 1. The classi�er that always chooses pos-
itive has cost of 1 when PCF (+) = 0 and a zero cost when
PCF (+) = 1. Within this framework it is apparent that we
should never use a classi�er outside the shaded region of �g-
ure 7 as a lower expected cost can be achieved by using the
majority classi�er which chooses one or other of the trivial
classi�ers depending on PCF (+).

At the limits of the normal range of the probability-cost
function equation 8 simpli�es to equation 10. To plot a
classi�er on the cost graph, we set the point on the left hand
side y-axis to FP and the point on the right hand side y-axis
to (1 � TP ) and connect them by a straight line. Figure 8
shows a classi�er with FP = 0:09 and TP = 0:36. The line
represents the expected cost of the classi�er over the full
range of possible costs and class frequencies.
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Figure 7: Extreme Classi�ers
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Figure 8: A Single Classi�er

NE[C] =

(
FP; when PCF (+) = 0

(1� TP ); when PCF (+) = 1
(10)

This procedure can be repeated for a set of classi�ers, as
shown in �gure 9. We can now compare the di�erence in
expected cost between any two classi�ers. There is no need
for the calculations required in the ROC space, we can di-
rectly measure the vertical height di�erence at some par-
ticular probability-cost value. Dominance is explicit in the
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Figure 9: A Set of Classi�ers

cost space. If one classi�er is lower in expected cost across
the whole range of the probability-cost function, it domi-
nates the other. Each classi�er delimits a half-space. The
intersection of the half-spaces of the set of classi�ers gives
the lower envelope indicated by the dashed line in �gure 9.
This e�ectively chooses the classi�er that has the minimum
cost for a particular operating range. This is equivalent to
the upper convex hull in the ROC space. This equivalence
arises from the duality of the two representations.

2.2.2 Representing Other Performance Criteria
In this section we look at how the other performance criteria
discussed by Provost and Fawcett [10] are dealt with in cost
space. They are as follows: error rate, area under the curve,
Neyman-Pearson criterion and workforce utilisation.

As error rate is produced by setting all the costs in equa-
tion 5 to one, the cost graph is easily turned into an ac-
curacy graph. The vertical distance between curves would
then represent the di�erence in accuracy. There is no di-
rect mapping of area under the curve in ROC space to cost
space. But we can measure area under the curve in cost
space and it has an intuitive meaning. Let us assume we
do not know the probability-cost value used in practice, but
we will use the appropriate classi�er on the lower envelope
when it is known. The area under the curve is the expected
cost, assuming a uniform distribution p(x) where x is the
probability-cost value (the x-axis in the cost graph). Indeed
if the probability distribution p(x) is known the expected
cost can be determined using equation 11. This also allows
a comparison of two classi�ers, or lower envelopes, where
one does not strictly dominate the other. The di�erence in
area under the two curves gives the expected advantage of
using one classi�er over another.
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Figure 10: The Weighted Sum of Two Classi�ers

TEC =

Z
1

o

NE[C(x)]p(x)dx (11)

A point on an edge of the ROC convex hull is not one of
the original classi�ers, but it can be realised by combining
the two classi�ers incident to it in a probabilistic way [10].
The probabilistic weighting is determined by the distance
of the point to each classi�er. As the cost graph is a dual
representation to the ROC graph, there are also duals to
operations, such as averaging two classi�ers. In the cost
graph, the combined classi�er is a line, shown as the dotted
line in �gure 10. This is just the weighted sum of the two
classi�ers on the lower envelope, indicated by the solid lines,
that intersect at a given vertex.

This becomes important when considering criteria such as
Neyman-Pearson and workforce utilisation. The Neyman-
Pearson criterion comes from statistical hypothesis testing
and minimises the probability of a type two error for a max-
imum allowable probability of a type one error. For our
purposes, this determines the maximum false positive rate
and the aim is then to �nd the classi�er with the largest
true positive rate. This can be readily found on an ROC
hull by drawing a vertical line for the particular value of
FP , as shown by the dashed line in �gure 11. The maxi-
mum value of TP (the minimum probability of a type two
error) is where the line intersects the hull.

The procedure is very similar in the cost space. Remem-
bering that the intersection of a classi�er with the y-axis
gives the false positive rate, then a point can be placed on
the axis representing the criterion. This is marked FP in
�gure 12. Immediately on either side of this point are the
equivalent points of two of the classi�ers forming sides of the
lower envelope. Connecting the new point to where the two
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Figure 12: Cost Curve: Neyman-Pearson Criterion

classi�ers intersect automatically gives the classi�er meeting
the Neyman-Pearson criterion.

Unfortunately, although the workforce utilisation criterion
can be dealt with in cost space, it does not have the simple
visual impact apparent in ROC space. The workforce util-
isation criterion is based on the idea that a workforce can
handle a �xed number of cases, factor C in equation 12. To
keep the workforce maximally busy we want to select the
best C cases, achieved by maximising the true positive rate.
This is realised by the equality condition of equation 12 and
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Figure 13: ROC Curve: Workforce Utilisation

is the line given by equation 13, such as the dashed line in
�gure 13. This line will be transformed to a point in the cost
graph using equation 9 and is shown as the small circle on
the left hand side of �gure 14. The line's slope is negative,
resulting in a PCF (+) outside the normal interval of zero
to one. We might consider it a virtual point, but strictly
there is no constraint PCF (a) � 0 and so this represents a
valid point on the line representing the classi�er.

TP � P + FP �N � C (12)

TP = �
N

P
� FP +

C

P
(13)

The Neyman-Pearson criterion can be considered a special
case of workforce utilisation, when the constraint only in-
volves false positives. So for workforce utilisation a similar
procedure to the one discussed above could be used for �nd-
ing the appropriate classi�er. All that would be required
is to extend the original classi�ers out until they have the
same PCF (+) value as the virtual point. Unfortunately
this point may be arbitrarily far outside the normal range,
which militates against easy visualisation. So instead below
we give a simple algorithmic solution.

To solve the problem algorithmically in ROC space, a walk
along the sides A, B, C of the convex hull, shown in �gure
13, would be used to �nd the intersection point with the
constraint. At each step, the edge is extended into a line
and its intersection point with the constraint is tested to
see if is between the two vertices, representing classi�ers,
that de�ne the side. Equivalently in cost space we walk a
line connected to the virtual point along the vertices A, B,
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Figure 14: Cost Curve: Workforce Utilisation

C of the lower envelope, shown in �gure 14. At each step,
the slope of the line is tested to see if is between the two
lines, representing classi�ers, sharing the same vertex. In
both spaces the appropriate classi�er is found when the test
is successful. In cost space, virtual points can be avoided
if we rearrange the terms of equation 13 and substitute for
the gradient of equation 8 resulting in equation 14. This
can be solved for each point on the lower envelope. So a
walk along vertices A, B, C of the lower envelope would
produce the classi�ers represented by the solid lines in �gure
14, spanning just the normal probability-cost values.

NE[C] =

�
1�

C

P
+ (

N

P
� 1)FP

�
PCF (+) + FP (14)

In this section we have shown that the cost graph, can rep-
resent most of the alternative metrics discussed by Provost
and Fawcett [10]. This is not surprising given the duality
between the two spaces. But the di�erent representations
have di�erent intuitive appeal. Certainly for the direct rep-
resentation of costs, the cost graph seems the most intu-
itive. However we have also seen that for some metrics like
the workforce utilisation criterion the ROC graph provides
better visualisation.

2.2.3 Averaging Multiple Curves
Figure 15 shows two ROC curves, in fact convex hulls, rep-
resented by the dashed lines. If these are the result of train-
ing a classi�er on di�erent random samples, or some other
cause of random 
uctuation in the performance of a single
classi�er, their average can be used as an estimate of the
classi�er's expected performance. There is no universally
agreed-upon method of averaging ROC curves. Swets and
Pickett [13] suggest two methods, pooling and \averaging",
and Provost et al. [11] propose an alternative averaging
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Figure 15: Average ROC Curves
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Figure 16: Average Cost Curves

method.

The Provost et al. method is to regard y, here the true posi-
tive rate, as a function x, here the false positive rate, and to
compute the average y value for each x value. This average
is shown as a solid line in �gure 15, with each vertex corre-
sponding to a vertex from one or other of the dashed curves.
Figure 16 shows the equivalent two cost curves, lower en-
velopes, represented by the dashed lines. The solid line is
the result of the same averaging procedure but y and x are
now the cost space axes. If the average curve in ROC space



is transformed to cost space the dotted line results. Simi-
larly, the dotted line in �gure 15 is the result of transforming
the average cost curve into ROC space. The curves are not
the same.

The reason these averaging methods do not produce the
same result is that they di�er in how points on one curve
are put into correspondence with points on the other curve.
For the ROC curves points correspond if they have the same
FP value. For the cost curves points correspond if they have
the same PCF (+) value, i.e. when PCF (+) is in both their
operating ranges. It is illuminating to look at the dotted
line in the top right hand corner of �gure 15. The vertex
labelled \A" is the result of averaging a non-trivial classi�er
on the upper curve with a trivial classi�er on the lower curve.
This average takes into account the operating ranges of the
classi�ers and is signi�cantly di�erent from a simple average
of the curves.

The cost graph average has a very clear meaning, it is the
average normalised expected cost assuming that the clas-
si�er used for a given PCF (+) value is the best available
one. Notably the Provost et al. ROC averaging method,
indicated by the dotted curve in �gure 16, gives higher nor-
malised expected costs for many PCF (+) values. This is
due to the average including at least some suboptimal clas-
si�ers. Pooling, or other methods of averaging ROC curves
(e.g. choosing classi�ers based on TP ), will all produce dif-
ferent results, and all give higher normalised expected costs
compared to the cost graph averaging method.

When estimating the expected performance of a classi�er
the average should be based on the selection procedure i.e.
how the curve will ultimately be used to select an individ-
ual classi�er. So far, we have compared curves without ex-
plicitly mentioning a selection procedure, but implicitly we
are assuming the selection procedure inherent in using the
lower envelope of the cost graph and the ROC convex hull:
the point selected is the one that is optimal for the given
PCF (+) value. In this case the average based on the nor-
malised expected cost is appropriate. This does not mean
however that other averages are incorrect. Each is based
on a di�erent selection procedure which will be appropriate
for di�erent performance criteria. Provost et al.'s averaging
method is appropriate when the performance criterion calls
for classi�er selection based on FP , such as the Neyman-
Pearson criterion.

2.3 A Suboptimal Selection Procedure
We have just seen that di�erent averages of two curves re-
sult from di�erent selection procedures, due to the di�erent
ways of deciding which point on one curve will correspond to
which point on another curve. A selection procedure is also
necessary to compare two curves quantitatively, since by its
very nature quantitative comparison involves summing the
di�erence in performance of corresponding points.

The selection method that is most commonly used in com-
paring learning algorithms is parameter-based. For example,
suppose one wishes to compare two learning algorithms and
that an ROC curve is generated for each algorithm by under-
sampling or oversampling to create various class ratios in the
training set. Typically, one would compare the performance
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Figure 17: ROC for Sonar Data

of the classi�ers produced on the same training sets: this
is choosing which points on each curve correspond based on
the underlying parameter that generated them rather than
on their operating range. It might happen that algorithm A
trained with a 5:1 ratio produces a classi�er with the same
operating range as the classi�er produced by algorithm B
with a 10:1 ratio. This could only be determined by looking
at the convex hull or the lower envelope in their respective
spaces.

The fact that the optimal classi�er for a particular PCF (+)
value is not necessarily the one produced by a training set
with the same PCF (+) characteristics is illustrated in �gure
17, which shows ROC curves for the sonar data set from the
UCI collection [1]. The points represented by circles, and
connected by solid lines, were generated using C4.5 (release
7 using information gain) modi�ed to account for costs (by
altering the values inside C4.5 representing priors). Each
point is marked with the probability-cost ratio used to pro-
duce it. If the probability-cost ratio is 11 at the time of
application, for example, parameter-based selection would
select classi�er A, since it was produced by a training set
with a 11:1 ratio.

Using the convex hull selection method, the dashed line in
�gure 17, classi�ers would be selected according to the slope
of its sides. This would result in the expected cost shown by
the lower envelope, the dashed line in �gure 18. If instead,
the classi�ers are chosen according to the probability-cost
ratio input to the classi�er, the solid line is produced. A
probability-cost ratio R is converted to a PCF (+) value
using the PCF (+) = 1=(1 + R). In cost space, classi�er
A will be chosen when PCF (+) = 1=(1 + 11) and classi-
�er B when PCF (+) = 1=(1 + 5:1), as shown in �gure 18.
Changing from classi�er A to classi�er B we assume occurs
at the mid-point of these two probability-cost values. The
area between this curve and the lower envelope is a measure
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of the additional cost of using this selection procedure over
the optimal one. The large di�erence at the left hand and
right hand sides is due to not using the majority classi�er
at the appropriate time. This shows the clear disadvantage
of using a classi�er outside its operating range.

3. LIMITATIONS AND FUTURE WORK
One limitation of this work, which is common to that of
ROC analysis, is that we have not investigated the situation
of more than two classes. Although the ideas should read-
ily extend to three or more classes, the main advantage of
this approach is it ease of human understandability. Higher
dimensional functions are notoriously di�cult to visualise
and the number of dimensions increases quadratically with
the number of classes. Due to the duality between the two
representations there might be little merit in using one over
the other in this situation. However, if the high dimensional
space can be projected into a two dimensional space, the
improved understandability would again be an advantage.
Another limitation is that we have not investigated other
commonly used metrics for evaluating classi�er performance
such as lift. One interesting avenue of future research is
whether or not there are alternative dualities based on such
metrics.

4. CONCLUSIONS
This paper has demonstrated an alternative to ROC analy-
sis, which represents the cost explicitly. It has shown there is
a point/line duality between the two representations. This
allows the cost representation to maintain many of the ROC
representation's advantages, while making notions such as
operating range visually clearer. It also allows the easy cal-
culation of the quantitative di�erence between classi�ers.
The fact that the two representations are dual representa-
tions makes it unnecessary to choose one over the other, as
we have shown it is easy to switch between the two.
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