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Abstract 

Since 2003 the National Center for Atmospheric Research (NCAR) has been running various 

experimental convection-allowing configurations of the Weather Research and Forecasting model for 

domains covering a large portion of the central US during the warm season (April – July).  In this 

study, the skill of 3-hourly accumulated precipitation forecasts from a large sample of these 

convection-allowing simulations conducted during 2004-2005 and 2007-2008 is compared to that from 

operational North American Mesoscale (NAM) model forecasts using a neighborhood-based Equitable 

Threat Score (ETS).  Separate analyses were conducted for simulations run before and after the 

implementation in 2007 of positive-definite (PD) moisture transport for the NCAR-WRF simulations. 

The neighborhood-based ETS [denoted ] relaxes the criteria for ―hits‖ (i.e., correct forecasts) by 

considering grid-points within a specified radius r.   is more useful than the traditional ETS 

because  can be used to diagnose differences in precipitation forecast skill between different 

models as a function of spatial scale, whereas the traditional ETS only considers the spatial scale of the 

verification grid.   

It was found that differences in  between NCAR-WRF and NAM generally increased 

with increasing r, with NCAR-WRF having higher scores.  Examining time series of  for r = 

100 and r = 0 km (which simply reduces to the ―traditional‖ ETS), statistically significant differences 

between NCAR-WRF and NAM were found at many forecast lead times for  but only a few 

times for .  Larger and more statistically significant differences occurred with the 2007-2008 

cases relative to the 2004-2005 cases.  Because of differences in model configuration and dominant 

large scale weather regime, a more controlled experiment would have been needed to diagnose the 

reason for the larger differences that occurred with the 2007-2008 cases.  Finally, a compositing 

technique was used to diagnose differences in the spatial distribution of the forecasts.  This technique 

implied westward displacement errors for NAM model forecasts in both sets of cases and in NCAR-
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WRF model forecasts for the 2007-2008 cases.  Generally, the results are encouraging because they 

imply that advantages in convection-allowing relative to convection-parameterizing simulations noted 

in recent studies are reflected in an objective neighborhood-based metric.  
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1. Introduction 

 Deficiencies in warm-season forecasts of deep moist convection have been linked to the use of 

cumulus parameterization (CP; e.g., Davis et al. 2003; Liu et al. 2006; Clark et al. 2007, 2009) which is 

necessary to depict the effects of sub-grid scale convective processes (e.g., Molinari and Dudek 1992).  

Thus, it is widely believed that significant improvements in warm season forecasts of convection may 

be obtained by using grid-spacing small enough to treat convective processes explicitly (e.g., Fritsch 

and Carbone 2004).  However, reduction to convection-allowing grid-spacing
1
 comes with 

considerable computational expense.  For example, because of a time-step reduction and 3-D increase 

in number of grid-points, a decrease in grid-spacing by a factor of n requires an increase in 

computational expense by a factor of ~ n
3
 (e.g., a decrease from 12- to 4-km would require 3

3 
= 27 

times more computation time).  Because of the increase in computational expense, it is very important 

to consider whether sufficient value is actually gained from a grid-spacing reduction (e.g., Weisman et 

al. 2008; Kain et al. 2008).   

Further complicating decisions on whether or not to decrease grid-spacing are the increasing 

difficulties associated with using traditional (i.e., ―point to point‖) metrics to evaluate forecasts that 

contain increasingly fine scale and high amplitude features (e.g., Baldwin et al. 2001; Gallus 2002; 

Mass et al. 2002; Ebert 2008; Gilleland et al. 2009) .  These difficulties arise because, even when these 

fine scale features are realistically predicted in a model, slight displacement errors often result in 

―double penalties‖ (i.e., observed-but-not-forecast and forecast-but-not-observed errors), which occur 

more frequently with increasing resolution (Ebert 2008).  Because of these double penalties, subjective 

forecast evaluations are often not consistent with objective metrics (e.g., Kain et al. 2003) and it is very 

difficult to assess the true quality of high resolution guidance.   

                         
1 In this study, the term ―convection-allowing‖ is used to refer to simulations using the maximum grid-spacing (or below) 

at which convection can be treated explicitly and mid-latitude MCSs can be adequately resolved, which is generally 

thought to be ~ 4-km based on Weisman et al. (1997).  



5 

 

The ineffectiveness of traditional metrics has led to application of alternative verification 

strategies for high resolution guidance that aim to provide more useful information on spatial structure 

and presence of features in forecast fields.  Some of these strategies have involved purely subjective 

approaches in which the quality of forecasts was rated based on visual inspection by human forecasters.  

For example, Weisman et al. (2008) ranked forecasts ―good‖, ―bad‖, and ―okay‖ based on specified 

criteria for correspondence of observed and forecast convective events.  Other strategies have involved 

combining subjective and objective methods (e.g., Done et al. 2004; Weisman et al. 2008) by manually 

categorizing possible forecast outcomes for objects (e.g., MCSs) or object attributes (e.g., MCS mode) 

into standard 2x2 contingency table elements (Wilks 1995) and then computing commonly used 

traditional metrics.  Finally, numerous recent studies have developed purely objective non-traditional 

metrics that can generally be categorized as feature-based (e.g., Ebert and McBride 2000; Davis et al. 

2006), scale-decomposition (e.g., Casati et al. 2004), or neighborhood-based approaches (Roberts and 

Lean 2008; Schwartz et al. 2009; Ebert 2009); see Casati et al. (2008) for a review.  The goal of all 

these strategies is to develop measures that accurately reflect the skill and usefulness of forecasts as 

perceived by human forecasters. 

The purpose of this study is to demonstrate use of a neighborhood-based Equitable Threat Score 

(ETS; Schaefer 1990) to compare precipitation forecasts from experimental convection-allowing WRF 

model simulations conducted April-July 2004-2008 by the National Center for Atmospheric Research 

(NCAR) to operational North American Mesoscale (NAM; Janjic 2003) model forecasts that use 

cumulus parameterization.  The NAM model forecasts were used for initial and lateral boundary 

conditions (ICs/LBCs) for most of the convection-allowing forecasts.  Neighborhood-based approaches 

consider values at grid-points within a specified radius (i.e., ―neighborhood‖) of an observation.  

Values within the specified radius are considered equally likely estimates of the true value.  The 

specified radius can be viewed as the amount of displacement error allowed before the forecast is 
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considered ―wrong‖.  Neighborhood-based approaches have been shown to be particularly useful 

because varying the size of the neighborhood allows for a diagnosis of skill at different spatial scales 

(e.g., Ebert 2009).  Previous works using subjective verification strategies have found that NCAR’s 

convection-allowing forecasts better predict MCS frequency and mode (Done et al. 2004) but fail to 

find improvements relative to convection-parameterizing forecasts in the broader characteristics of 

convective systems such as location, timing and relative intensity (Weisman et al. 2008).  This failure is 

somewhat surprising given the improved model climatology of precipitation from convection-allowing 

relative to convection-parameterizing simulations inferred from comparisons of time-longitude 

diagrams (e.g., Clark et al. 2007, 2009; Weisman et al. 2008).  This study examines whether an 

improvement in precipitation forecasts in convection-allowing relative to convection-parameterizing 

forecasts is reflected by a neighborhood-based ETS, and at what spatial scales any improvements are 

observed.  This paper is organized as follows: data and methodology are provided in section 2, results 

are presented in section 3, and a summary and discussion is given in section 4.     

 

2. Data and methodology 

 Three-hourly accumulated precipitation forecasts from convection-allowing WRF model 

simulations (3 to 4 km grid-spacing) conducted by NCAR using the ARW dynamics core (NCAR-

WRF, hereafter) are examined.  These forecasts were initialized at 0000 UTC and integrated 36 h for 

domains over the central US during April-July 2004-2005 and 2007-2008 (data from 2006 were not 

available) and compared with forecasts from NCEP’s operational NAM model.  The NAM model 

forecasts were used as ICs/LBCs in the NCAR-WRF simulations before 2008.  For the 2008 

simulations, the WRF three-dimensional variational data assimilation (WRF-Var; Barker et al. 2004) 

system was used at 9 km grid-spacing to create a 1200 UTC analysis.  Then, 3-hourly assimilation 

cycles were used until 0000 UTC to create the NCAR-WRF ICs, and forecasts from NCEP's Global 
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Forecast System (GFS; Environmental Modeling Center 2003) model were used as LBCs.   

In addition to changes in initialization procedure, other aspects of the NCAR-WRF model 

configuration also changed from year to year based on experiences from previous years (e.g., domain, 

WRF version, physics parameterizations).  These changes are summarized in Table 1.  Microphysics 

parameterizations used in NCAR-WRF included the Lin [derived from Lin et al. (1983)], WRF single-

moment six-class (WSM-6; Hong and Lim 2006), and Thompson et al. (2004) schemes. Boundary 

layer parameterizations included the Yonsei University (YSU; Noh et al. 2003) and Mellor-Yamada-

Janjic (MYJ; Mellor and Yamada 1982; Janjic 2002) schemes.  The Oregon State University land 

surface model (OSU LSM; Chen and Dudhia 2001) was used during 2004, and the NOAH land surface 

model, the successor to the OSU LSM, was used after 2004.  For cases since 2005, the NCAR High-

Resolution Land Data Assimilation System (HRLDAS; Chen et al. 2007) was employed.  Physics 

parameterizations that were not varied in NCAR-WRF during the period included the rapid radiative 

transfer model (RRTM) for long-wave radiation (Mlawer et al. 1997), and the Dudhia (1989) scheme 

for short-wave radiation.  Sensitivity tests conducted by Weisman et al. (2008) for changes in the 

NCAR-WRF model configurations made during the 2003-2005 period found only small changes in 

overall forecast accuracy.  In addition, exclusion of the 18 cases from 2008 that used different 

ICs/LBCs did not have any significant impacts on our results (not shown).   

The change in NCAR-WRF model configuration most likely to noticeably impact our results is 

the use of positive-definite (PD) moisture transport (Skamarock 2006) which was used for the 2007-

2008 cases, but not the 2004-2005 cases.  Examining some of the convection-allowing precipitation 

forecasts examined herein, Skamarock and Weisman (2009) found that using PD moisture transport 

significantly reduced large positive biases in precipitation forecasts relative to simulations that did not 

use PD moisture transport, especially for high precipitation thresholds.  Thus, separate analyses are 

conducted for the cases that use and do not use PD moisture transport. 
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Changes were also made to the NAM model during the period examined.  The most important 

change was the transition from using the Eta (Janjic 1994) to the WRF-NMM (Nonhydrostatic 

Mesoscale Model; Janjic 2003) in June 2006, which also came with a change in data assimilation 

systems from Eta 3D Variational Analysis (EDAS; Parrish et al. 1996) to Gridpoint Statistical 

Interpolation (GSI; Wu eta al. 2002).  Furthermore, although there were not any major switches in 

physics parameterizations accompanying the transition from Eta to WRF-NMM in June 2006, minor 

improvements were made to many of the individual physics schemes and additional improvements 

were made to the cumulus and microphysics parameterizations in Dec. 2006.  Further details on NAM 

model updates can be found at the NCEP website 

http://www.emc.ncep.noaa.gov/mmb/mmbpll/eric.html#TAB4.  NAM model physics include the MYJ 

boundary layer parameterization, NOAH land surface model, Ferrier et al. (2002) microphysics, Betts-

Miller-Janjic (BMJ; Betts 1986; Betts and Miller 1986; Janjic 1994) cumulus parameterization, and 

GFDL shortwave (Lacis and Hansen 1975) and longwave (Fels and Schwarzkopf 1975; Schwarzkopf 

and Fels 1985) radiation parameterizations.   

The cases were chosen based on the availability of data.  NAM model forecasts were obtained 

from the NOAA National Operational Model Archive and Distribution System (NOMADS; 

http://nomads.ncdc.noaa.gov), while NCAR-WRF forecasts were obtained from NCAR’s Mass Storage 

System.  There are 199 (95) cases analyzed in the 2004-2005 (2007-2008) period without (with) PD 

moisture transport (Fig. 1b).   

To verify the precipitation forecasts, NCEP’s stage IV (Baldwin and Mitchell 1997) multi-

sensor rainfall estimates are used, which are available at 1-hourly accumulation intervals on a 4-km 

polar stereographic grid.  The stage IV data were obtained from the NCEP website 

http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/.  The stage IV data, as well as the NAM and 

NCAR-WRF model data are remapped to a common 20-km grid covering the central US (Fig. 1a) 
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using a neighbor-budget interpolation that conserves the total liquid volume in the domain (e.g, 

Accadia et al. 2003).     

The traditional method for computing ETS uses a 2x2 contingency table of possible forecast 

outcomes at individual grid-points where the table elements are hits (correct forecast of an event), 

misses (observed but not forecast event), false alarms (forecast but not observed event), and correct 

negatives (correct forecast of non-event; e.g., Wilks 1995).  Using these elements, ETS is expressed as: 

 

 (1) 

  

where, 

 

  (2) 

 

The ETS can be interpreted as the fraction of correctly predicted observed events, adjusted for hits 

associated with random chance.  A perfect ETS is 1.0, while -1/3 is the lower limit and 0.0 is the 

threshold for no skill.  For computation of a neighborhood-based ETS, the criteria for a hit is relaxed 

by considering adjacent grid-points within a specified radius of each grid-point (see Ebert 2009 for a 

similar application of a neighborhood-based ETS).  If an event is observed at a grid-point, this grid-

point is a hit if the event is forecast at the grid-point or at any grid-point within a circular radius r of 

this observed event.  Similarly, if an event is forecast at a grid-point, the grid-point is a hit if an event is 

observed at the grid-point or at any grid-point within r of this forecast event.  A miss is assigned when 

an event is observed at a grid-point and none of the grid-points within r forecast the event, and false 

alarms are assigned when an event is forecast at a grid-point and not observed within r of the forecast.  
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Correct negatives are assigned the same way as for the traditional ETS computation (i.e., an event is 

neither forecast nor observed at a single grid-point).  Average ETSs were computed by summing (i.e., 

aggregating) contingency table elements over all cases.  The resampling methodology described in 

Hamill (1999) was used to determine whether differences in ETS were statistically significant (α = 

0.05; resampling repeated 10000 times).  For application to this study, the Hamill (1999) method 

involves computing a test statistic using the difference in ETS between NAM and NCAR-WRF at each 

rainfall threshold, forecast hour, and neighborhood radius using contingency tables elements summed 

over all cases.  Then, a distribution of resampled test statistics is created by randomly choosing NAM 

or NCAR-WRF on each day and summing contingency table elements.  The location of the test statistic 

within the distribution of resampled test statistics determines whether the differences are statistically 

significant.   

In this study, radii of 0, 20, 40, 60, 80, 100, 130, 160, 190, 220, and 250 km are used, and 

 denotes neighborhood-based ETS computed at radius r. Note that  simply reduces to the 

traditional form of ETS.  We chose to restrict our analysis to radii at or below 250 km because these are 

approximately the largest scales at which convective systems occur and it was very computationally 

expensive to examine higher radii.  Note, as long as at least one observed and forecast point are present 

anywhere on the domain, as r approaches the domain size,  approaches 1.0. For reference, 

circles with radii of 100 and 250 km overlay the analysis domain in Fig. 1a. 

 

3. Results 

  (r = 0, 20, …, 250 km) is shown for NCAR-WRF and NAM models at forecast hours 

18, 24, and 30 for 0.10-, 0.25-, 0.50-, and 1.00-in rainfall thresholds in Figures 2 and 3, corresponding 

to the 2004-2005 and 2007-2008 cases, respectively.  Because ETS can reward forecasts that have 

higher biases relative to other forecasts (e.g., Baldwin and Kain 2006), ETSs for raw forecasts along 
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with bias-adjusted forecasts are shown.  The bias-adjustment was implemented using a procedure based 

on probability matching (Ebert 2001) described by Clark et al. (2009).  Basically, this procedure 

reassigns the distribution of forecast precipitation with that of the observed precipitation resulting in 

forecast precipitation fields that have the same spatial pattern as the raw forecasts, but with amplitudes 

exactly matching the observations.  The bias-adjustment was applied to the 3-hr accumulation periods 

and results in a perfect bias of 1.0 for all precipitation thresholds.  In addition to allowing a more 

equitable comparison between models, Mesinger 2008 suggest that bias-adjustment may allow position 

errors to be more cleanly detected, and Jenkner et al. 2008 note that bias-adjustment allows the 

quantiles of the forecast and observed distributions to be better compared.  Because this bias-

adjustment requires the verifying observations, it should not be viewed as a post-processing method.  

Rather, the bias-adjustment simply allows for a more equitable comparison between models.  To obtain 

the maximum value from the forecasts in a real-time forecasting environment, post-processing methods 

like those described by Applequist et al. (2002), Eckel and Mass (2005), or Glahn et al. (2009) should 

be applied.   

At the lightest thresholds examined (0.10-in; Figs. 2 and 3a-c), the bias-adjustment did not have 

a noticeable impact.  However, at higher thresholds, especially 0.50- and 1.00-in (Figs. 2 and 3g-l), 

bias-adjustment resulted in improved  with the greatest improvements at the highest r examined.  

Furthermore, the NAM forecasts benefited the most from bias-adjustment, which was likely related to 

the biases in the raw forecasts.  These biases were computed over the analysis domain (Fig. 1b) using 

the standard formulation for bias (i.e. F/O where F is the number of forecast grid-points above a 

specified threshold and O the number of observed) and are shown in Figs. 2-3.  In NAM, the raw 

forecasts for the higher thresholds had biases well below 1.0 so that artificially increasing the bias 

required increasing the number of forecast events (i.e., grid-points with forecasts above a specified 

threshold).  The resulting increase in  from NAM implies that many of the additional forecast 
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events obtained through bias-correction became hits.  However, in NCAR-WRF, the raw forecasts for 

the higher thresholds had biases above 1.0 so that artificially decreasing the bias required decreasing 

the number of forecast events.  Thus, the resulting increase in  from NCAR-WRF implies that 

many of the forecast events that were removed through bias correction had previously been false 

alarms.   

For 2007-2008 NCAR-WRF forecasts (Fig. 3), bias-correction has a noticeably smaller impact 

than in 2004-2005 forecasts (Fig. 2).  The smaller impact results from the use of PD moisture transport 

which reduces the biases in the raw 2007-2008 forecasts, especially for the highest rainfall thresholds, 

confirming the results of Skamarock and Weisman (2009).  Hereafter, only results using bias-adjusted  

 are discussed/shown.  However, from a practical perspective, it should be emphasized that the 

rainfall amounts from the raw forecasts are still very important.  In NAM, the very low biases at the 

higher rainfall thresholds imply that NAM simply cannot produce heavy enough precipitation, and the 

differences in  between NAM and NCAR-WRF that occur even after bias-correction is applied 

suggest more severe location and/or timing errors in NAM.   

 Generally, values of  in NCAR-WRF and NAM were nearly identical at the smallest r 

examined (Figs. 2 and 3), consistent with comparisons of traditional ETS made by Done et al. (2004) 

for NCAR-WRF and NAM simulations during 2003.  However, as r increased, differences in  

between NCAR-WRF and NAM began to increase with NCAR-WRF having the higher values.  These 

differences were larger for the 2007-2008 cases (Fig. 3) than in the 2004-2005 cases (Fig. 2).    For 

some of the lighter rainfall thresholds examined (e.g., 0.10- and 0.25-in), the differences became 

smaller again at the largest radii, which was not unexpected considering that  from both models 

eventually converges to 1.0 as r increases.  In addition to simply comparing forecast skill at different 

spatial scales in NCAR-WRF and NAM, Figures 2 and 3 also allow for some practical information 

regarding predictability to be inferred.  For example, if an ETS of 0.5 is arbitrarily chosen as a 
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threshold for a skillful forecast, then the radius at which the ETS reaches 0.5 can be regarded as the 

minimum spatial scale at which skillful forecasts are obtained.  For instance, in Figure 3g (forecast 

hour 18; 0.50-in rainfall threshold) NCAR-WRF forecasts are ―skillful‖ (i.e., ETS ≥ 0.50) at scales 

down to about 130 km, but for NAM the minimum spatial scale for a skillful forecast is about 220 km.   

 To further illustrate the differences in  between NCAR-WRF and NAM, time series of 

 and  for forecast hours 12-36 at the same rainfall thresholds shown in Figures 2 and 3, 

are plotted in Figure 4 with times at which statistically significant differences occur highlighted.  

Values of  are much lower than  and, perhaps more importantly, the differences 

between  in NCAR-WRF and NAM with r = 100 km are much more noticeable than with r = 0 

km.  The more noticeable differences are reflected by the number of times at which statistically 

significant differences occur.  For example, at the 0.50-in threshold in the 2007-2008 cases (Fig. 4g), 

all but one of the forecast hours examined for  has significant differences with NCAR-WRF 

having the higher values, while only forecast hour 18 contains significant differences for .  

Furthermore, there were larger differences and more forecast hours with significant differences for the 

2007-2008 cases (Figs. 4e-h) compared to the 2004-2005 cases (Figs. 4a-d).  For the 1.00-in rainfall 

threshold (Figs. 4d and h), the number of times at which significant differences occurred for   

drops off relative to lighter thresholds because of a relatively sharp decrease in sample size (not 

shown).   

 While  provides a method to compare the performance of NCAR-WRF and NAM at 

different spatial scales, it still does not provide any information on what actually causes the observed 

differences.  However, the method for computing  does allow for some inference of where 

observations tend to occur relative to forecasts, which gives some useful diagnosis of forecast errors.  

For each forecast hour and rainfall threshold examined, when contingency table elements were being 

compiled for , the distribution of observed events relative to each forecast event (i.e., the 
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conditional distribution of observed events) within r = 250 km of each forecast event was derived.  

Then, composite conditional distributions of observed events were simply obtained by summing the 

conditional distributions over all cases for each forecast hour and rainfall threshold.  This method is 

basically a simplified version of the composite verification approach proposed by Nachamkin (2004).  

However, in our method, single grid-points that exceed a specified rainfall threshold are treated as 

events, whereas Nachamkin (2004) treats contiguous regions over which a criteria is met as single 

events and then derives the conditional distribution of observed events relative to the geometric center 

of the contiguous region.  Because our method uses single grid-points to define events, information 

such as the shape and orientation that is retained using the Nachamkin (2004) composite method is lost 

in our procedure.  However, our method is advantageous because of its simplicity and information 

regarding displacement errors is still retained.  For the method used herein, the observed frequency 

(OFi) for each grid-point within the conditional distribution of observed events can be expressed as: 

 

 

   

where the subscript x represents the xth grid-point in the analysis domain (N = 9108), the subscript i 

represents the ith grid-point within r = 250 km of the xth grid-point (n = 489), and ei,x is 1 if an event is 

forecast at grid-point x and observed at grid-point i, while ei,x is 0 if those conditions are not met.  

Thus, OFi is obtained by looping over all the grid-points in the domain (i.e., summation outside of 

brackets in Eq. 3), and then for each grid-point in the domain that forecasts an event, looping over all 

grid-points within r = 250 km (i.e., summation inside of brackets in Eq. 3).  A schematic for a 

neighborhood with r = 100 km for grid-point x = 462 is shown in Figure 5 with the gray shaded grid-

boxes indicating where ei,x = 1.0.    

(3) 
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The composite conditional distributions of observed events for the 0.50-in rainfall threshold at 

forecast hours 12-36 for NCAR-WRF and NAM as well as their differences (i.e., NCAR-WRF minus 

NAM) are shown in Figures 6 and 7 for the 2004-2005 and 2007-2008 cases, respectively.  To obtain 

an equitable comparison between both sets of cases, the observed relative frequency for 0.50-in is 

shown in Figures 6 and 7 (i.e., the observed frequencies are normalized by the number of cases).  Thus, 

the units for OFi are simply ―counts‖/case.  Note that the strong variations in relative frequencies across 

forecast hours 12 to 36 reflect the diurnal cycle of rainfall over the analysis domain, which exhibits a 

minimum near forecast hours 18-21 and a maximum at forecast hour 30.   

For the 2004-2005 cases (Fig. 6), the most noticeable differences between NCAR-WRF and 

NAM occur at forecast hours 27-36 (Figs. 6f-i, o-r, and x-α), times which immediately surround the 

diurnal peak in rainfall over the analysis domain.  At these forecast hours, there is a tendency in NAM 

for observations to occur east of the forecasts, and at forecast hours 30 and 33 there is a slight 

southward component to the displacement of observations from forecasts.  In other words, the NAM 

forecasts for areas of rainfall greater than 0.50-in at forecast hours 27-36 tend to have westward and 

northward displacement errors.  In NCAR-WRF, the distributions of corresponding observed relative to 

forecast grid-points are more uniformly distributed within the composite domain than in NAM.  

However, the observed frequencies in NAM are larger than WRF, which likely ―compensates‖ for the 

spatial errors and results in the relatively small differences in  between NAM and NCAR-

WRF at these times (Fig. 4c).  These spatial errors in NAM are consistent with problems depicting the 

zonal (west-to-east) movement of MCS-related precipitation in convection-parameterizing simulations 

implied by analyses of time-longitude (or Hovmoller) diagrams by Davis et al. (2003), Clark et al. 

(2007, 2009), and Weisman et al. (2008).  Furthermore, using a modified version of the entity-based 

Ebert-McBride technique, Grams et al. (2006) also found north and west displacement errors for 

convective systems in three different 12-km grid-spacing model configurations used during IHOP 
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(International H2O Project; Weckwerth et al. 2004).  Finally, the results are also consistent with those 

of Wang et al. (2009) finding westward displacement errors in NAM forecasts of precipitation areas 

related to mid-tropospheric perturbations over the central US.   

For the 2007-2008 cases (Fig. 7), the most noticeable differences between NCAR-WRF and 

NAM also occur at the later forecast hours, similar to the 2004-2005 cases.  However, unlike the 2004-

2005 cases, both NCAR-WRF and NAM have a tendency for observations to occur east of the forecasts 

(i.e., westward displacement errors).  In addition, the larger frequencies of observed relative to forecast 

grid-points in NCAR-WRF explain the larger  values in NCAR-WRF at these times (Fig. 4g). 

 Finally, to better understand how differences between  in NCAR-WRF and NAM varied 

among the 294 individual cases, the distribution of  differences (i.e., NCAR-WRF minus 

NAM) at forecast hour 30 for the 0.50-in rainfall threshold is shown in Figure 8.  Clearly, values of 

 in NCAR-WRF are more often higher than NAM (mostly contributed by the 2007-2008 

cases), however, there are a sizable fraction of cases in which  for NAM was higher than 

NCAR-WRF.  Examples of precipitation forecasts representing different portions of the distribution in 

Figure 8 are shown in Figure 9.  The purpose of showing these examples is to examine whether 

subjective impressions of the precipitation fields are consistent with the neighborhood-based objective 

measure .  The ―WRF better‖ cases (Figs. 9a-l) show the forecast and observed precipitation 

fields for the three cases in which NCAR-WRF had higher  than NAM by the largest amounts 

at forecast hour 30 for the 0.50-in threshold; the ―NAM better‖ cases (Figs. 9m-x) are similar except 

for those cases in which NAM had the higher  by the largest amounts; and the  ―WRF and 

NAM about the same‖ cases (Figs. 9w-θ) are the cases in which NCAR-WRF and NAM  

differences were smallest.   

For the 06 May 2007 (Figs. 9a-d) and 23 May 2008 (Figs. 9e-h) cases, it is clear that NCAR-

WRF did a much better job relative to NAM in forecasting the general regions over which 3-hourly 
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precipitation accumulations exceeded 0.50-in.  For these two cases, the superior performance of 

NCAR-WRF is also reflected by values of .  In contrast, for the 31 May 2005 case (Figs. 9i-l), 

the NCAR-WRF and NAM forecasts appear very similar, while values of  imply NCAR-WRF 

had a much better forecast.  From the overlay in Fig. 9l, it appears NCAR-WRF scored so much higher 

than NAM because NCAR-WRF predicted areas of precipitation greater than 0.50-in over north-central 

Texas and Alabama that generally matched observed areas.  Although NAM also predicted 

precipitation over these regions, the NAM forecast amounts did not quite exceed 0.50-in leading to the 

large differences.   

For the ―NAM better‖ cases (Figs. 9m-x),  accurately reflected our subjective 

evaluation that NAM had better forecasts than NCAR-WRF.  The 16 June 2005 case (Figs. 9u-x) was 

notable in that NAM was able to score a high  because it correctly forecast heavy precipitation 

in Oklahoma that corresponded to an observed MCS, while NCAR-WRF completely missed the event.   

Finally, for the ―WRF and NAM about the same‖ cases (Figs. 9w-θ), our subjective evaluation 

of the forecasts was generally consistent with .  However, it was clear that the similar 

 in NCAR-WRF and NAM did not result from similar forecasts.  For these cases, it appeared 

that because both sets of forecasts had about the same number of forecast grid-points within the 

vicinity of observations, they scored very similarly.   

 

4. Summary and discussion 

 A neighborhood-based ETS, , was used to compare precipitation forecast skill in 

convection-allowing simulations conducted by NCAR to convection-parameterizing NAM model 

forecasts.  The comparison was made for the period April-July 2004-2005 (199 cases) and 2007-2008 

(95 cases).   is computed by considering neighboring grid-points within radius, r, of each grid-

point.  Thus, by varying r, it is possible to examine how differences in precipitation forecast skill 
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between NCAR-WRF and NAM change according to the spatial scale.  The most important results are 

summarized below. 

 At the smallest spatial scales examined (i.e.,  which reduces to the traditional form of 

ETS in which no neighboring grid-points are considered), values of  in NCAR-WRF and NAM 

were nearly identical.  However, as r was increased to scales of about 50 km and above, differences in 

 between NCAR-WRF and NAM became more pronounced, especially for rainfall thresholds 

greater than 0.25-in, with NCAR-WRF having higher values than NAM.   

An examination of  time series for forecast hours 12-36 using r = 0 and r = 100 km 

revealed statistically significant differences between NCAR-WRF and NAM at many times analyzed 

for   and only a few times for .  The 2007-2008 cases had larger differences and more 

forecast hours with statistically significant differences relative to the 2004-2005 cases.  At rainfall 

thresholds higher than 0.50-in, the number of times with significant differences decreased relative to 

lighter rainfall thresholds because of a decrease in sample size.   

By constructing composite distributions of observed events within r = 250 km of each grid-

point with a forecast event it was shown that the most noticeable differences between NCAR-WRF and 

NAM occurred at forecast hours 27-36.  At these times for the 2004-2005 cases, composite frequencies 

of observed relative to forecast events implied westward displacement errors in NAM forecasts, while 

the corresponding frequencies of observed events in NCAR-WRF were slightly smaller but much more 

uniformly distributed within the 250-km radius.  For the 2007-2008 cases, composite observed 

frequencies implied that both NCAR-WRF and NAM tended to have westward and/or southward 

displacement errors.  However, observations were more highly concentrated within r = 250 km in the 

NCAR-WRF forecasts than in NAM likely contributing to higher  in NCAR-WRF at these 

times.    

 Finally, it was found that a subjective comparison of forecast quality in NCAR-WRF and NAM 
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for nine selected cases was generally consistent with the differences in forecast quality implied by 

.  For example, for cases in which NCAR-WRF had much higher  values than 

NAM, a simple visual inspection of the forecasts would also indicate that NCAR-WRF forecasts were 

better than those of NAM.   

It is not clear what caused the differences in forecasts between the 2004-2005 and 2007-2008 

cases.  Although it is clear that PD moisture transport impacted the biases in the NCAR-WRF forecasts, 

other changes in model configuration (e.g, changes in PBL schemes or grid-spacing) may have also 

played a role.  In addition, the two sets of cases contained slightly different portions of the warm 

season, and the dominant large scale weather pattern within the different years examined also varied. 

More controlled sensitivity tests which are beyond the scope of this study would have been necessary 

to attribute particular aspects of the models or types of cases to the differences between 2004-2005 and 

2007-2008. 

  Generally, the results from this study are encouraging for convection-allowing simulations, as 

well as neighborhood-based verification strategies.  Larger  in NCAR-WRF relative to NAM 

implies that advantages in convection-allowing relative to convection-parameterizing simulations noted 

in previous studies using subjective verification techniques to evaluate convective system frequency 

and mode (e.g., Done et al. 2004; Weisman et al. 2008) or analyses of ―model climatology‖ (e.g., Clark 

et al. 2007, 2009; Weisman et al. 2008) are consistent with a neighborhood-based metric.  Furthermore, 

the results could be perceived as contradictory to those in Weisman et al. (2008) that did not find 

noticeable differences in the broader characteristics of convective systems (e.g., location, timing, and 

relative intensity) between NCAR-WRF and NAM forecasts.  However, note that the Weisman et al. 

study examined forecast hours 24-36 for the years 2003-2005, and for most of the same forecast hours 

in the current study for an overlapping time period [i.e., the 199 cases from 2004 – 2005 (Figs. 4a-d)] 

there were not statistically significant differences in forecast skill between NCAR-WRF and NAM.  
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Further testing of neighborhood-based, along with other ―non-traditional‖, verification techniques is 

encouraged, along with applications to convection-allowing ensembles.   
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List of Figures 

Figure 1 (a) Outlined domains were used for the experimental NCAR-WRF simulations during 2004, 

2005, 2007, and 2008 (legend provided at top-right) and the gray shaded domain was used for 

the analyses in this study.  The outer and inner white circles within the analysis domain have 

radii of 250 and 100 km, respectively (discussed in text). (b) Gray shaded dates indicate cases 

used in this study (294 total cases). 

Figure 2  during 2004 and 2005 at increasing r for 3-hourly accumulated precipitation forecasts 

from NCAR-WRF (black lines) and NAM (gray lines) at the 0.10-in precipitation threshold for 

forecast hours (a) 18, (b) 24, and (c) 30. (d) – (f), (g) –( i), and (j) – (l) same as (a) – (c) except 

for the 0.25-, 0.50, and 1.00-in precipitation thresholds, respectively.  The thin lines with circles 

are for the raw forecasts and the thick lines are for bias-corrected (bc) forecasts [legend provided 

in panel (a)].  The biases for the raw forecasts corresponding to each rainfall threshold and 

forecast hour pictured are provided in each panel.  The horizontal lines drawn through the 

middle of each panel mark where ETS = 0.50.     

Figure 3 Same as Figure 2, except for 2007 and 2008.   

Figure 4 Time series of   for 2004 and 2005 from NCAR-WRF (black line) and NAM (gray 

line) using r = 100 km and r = 0 km for increasing forecast lead times at precipitation thresholds 

(a) 0.10-, (b) 0.25-, (c) 0.50-, and (d) 1.00-in.  (e) – (h) same as (a) – (d) except for 2007 and 

2008.  Gray shaded regions indicate time periods at which differences in ETS between NCAR-

WRF and NAM were statistically significant (α = 0.05).  

Figure 5 Example of a neighborhood with radius r = 100 km used for the compositing method.  Each 

grid-box is 20 km x 20 km.  x marks a forecast event, o marks an observed event, and the 

variable i is the ith grid-point within the neighborhood around the xth grid-point of the domain 

[x = 462 (center-point of the neighborhood marked in bold) for this particular neighborhood].  
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For this neighborhood, e462,i  = 1.0 for the gray shaded grid-boxes.  For all other grid-boxes e462,i  

= 0.0.  Note that for the composites shown in this study (Figs. 6 and 7), r = 250 km which results 

in a total number of grid-boxes for each neighborhood of n = 489, rather than the values of r = 

100 and n = 81 shown in this example.  

Figure 6 Composite frequency of observed rainfall above 0.50-in relative to grid-points forecasting 

rainfall above 0.50-in. from NCAR-WRF forecasts from 2004 and 2005 for forecast hours (a) 

12, (b) 15, (c) 18, (d) 21, (e) 24, (f) 27, (g) 30, (h) 33, and (i) 36.  (j) – (r) and (s) – (α) same as 

(a) – (i) except for NAM forecasts, and differences between NCAR-WRF and NAM forecasts 

(i.e., NCAR-WRF – NAM), respectively. The bold dot in each panel marks the center of the 

composite domain. 

Figure 7 Same as Figure 6, except for 2007 and 2008. 

Figure 8 Frequency histogram of   differences (NCAR-WRF minus NAM) at forecast hour 30 

and the 0.50-in precipitation threshold. 

Figure 9 Accumulated precipitation forecasts (3-hourly; bias-corrected) at forecast hour 30 for 

simulations initialized 06 May 2007 from (a) NAM and (b) NCAR-WRF, and (c) verifying Stage 

IV analyses. (d) Overlay of NCAR-WRF (hatched blue) and NAM forecasts (hatched green) for 

precipitation greater than 0.50-in. from (a) and (b) along with the verifying Stage IV analyses 

(shaded red). (e) – (h), (i) – (l), (m) – (p), (q) – (t), (u) – (x), (w) – (z), (α) – (δ), and (ε) – (θ) 

same as (a) – (d) except for simulations initialized at the dates indicated to the left of each row of 

panels.  
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Table 1 NCAR-WRF model specifications.  See text for additional information. 

 
Year Domain 

size (km) 

WRF 

Version 

ICs LBCs Grid-

spacing 

Vertical 

levels 

Boundary 

Layer  

Micro-

physics 

PD moisture 

transport 

2004 2000x2000 1.3 NAM NAM 4-km 35 YSU Lin No 

2005 3900x3000 2.0.3.1 NAM NAM 4-km 35 YSU WSM6 No 

2007 3300x2700 2.2 NAM NAM 3-km 35 MYJ Thompson Yes 

2008 2900x2700 3.0 WRF-Var GFS 3-km 40 MYJ Thompson Yes 
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Figure 1 (a) Outlined domains were used for the experimental NCAR-WRF simulations during 2004, 2005, 

2007, and 2008 (legend provided at top-right) and the gray shaded domain was used for the analyses in 

this study.  The outer and inner white circles within the analysis domain have radii of 250 and 100 km, 

respectively (discussed in text). (b) Gray shaded dates indicate cases used in this study (294 total cases).        
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Figure 2  during 2004 and 2005 at increasing r for 3-hourly accumulated precipitation forecasts from 

NCAR-WRF (black lines) and NAM (gray lines) at the 0.10-in precipitation threshold for forecast hours 

(a) 18, (b) 24, and (c) 30. (d) – (f), (g) –( i), and (j) – (l) same as (a) – (c) except for the 0.25-, 0.50, and 

1.00-in precipitation thresholds, respectively.  The thin lines with circles are for the raw forecasts and the 

thick lines are for bias-corrected (bc) forecasts [legend provided in panel (a)].  The biases for the raw 

forecasts corresponding to each rainfall threshold and forecast hour pictured are provided in each panel.  

The horizontal lines drawn through the middle of each panel mark where ETS = 0.50.     
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Figure 3 Same as Figure 2, except for 2007 and 2008.   
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Figure 4 Time series of   for 2004 and 2005 from NCAR-WRF (black line) and NAM (gray line) using r 

= 100 km and r = 0 km for increasing forecast lead times at precipitation thresholds (a) 0.10-, (b) 0.25-, 

(c) 0.50-, and (d) 1.00-in.  (e) – (h) same as (a) – (d) except for 2007 and 2008.  Gray shaded regions 

indicate time periods at which differences in ETS between NCAR-WRF and NAM were statistically 

significant (α = 0.05).   
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Figure 5 Example of a neighborhood with radius r = 100 km used for the compositing method.  Each grid-box is 

20 km x 20 km.  x marks a forecast event, o marks an observed event, and the variable i is the ith grid-

point within the neighborhood around the xth grid-point of the domain [x = 462 (center-point of the 

neighborhood marked in bold) for this particular neighborhood].  For this neighborhood, e462,i  = 1.0 for 

the gray shaded grid-boxes.  For all other grid-boxes e462,i  = 0.0.  Note that for the composites shown in 

this study (Figs. 6 and 7), r = 250 km which results in a total number of grid-boxes for each 

neighborhood of n = 489, rather than the values of r = 100 and n = 81 shown in this example.   
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Figure 6 Composite frequency of observed rainfall above 0.50-in relative to grid-points forecasting rainfall 

above 0.50-in from NCAR-WRF forecasts from 2004 and 2005 for forecast hours (a) 12, (b) 15, (c) 18, 

(d) 21, (e) 24, (f) 27, (g) 30, (h) 33, and (i) 36.  (j) – (r) and (s) – (α) same as (a) – (i) except for NAM 

forecasts, and differences between NCAR-WRF and NAM forecasts (i.e., NCAR-WRF – NAM), 

respectively.  The bold dot in each panel marks the center of the composite domain. 

 

 

 

 

 

 

 

 

Figure 7 Same as Figure 6, except for 2007 and 2008.   
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Figure 8 Frequency histogram of   differences (NCAR-WRF minus NAM) at forecast hour 30 and the 

0.50-in precipitation threshold. 
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