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SIGNAL DESIGN AND PROCESSING TECHNIQUES FOR  
WSR-88D AMBIGUITY RESOLUTION 

Part 14: Staggered PRT Algorithm Updates, the CLEAN-AP Filter, and 
the Hybrid Spectrum Width Estimator 

 

 

1. Introduction 

The Radar Operations Center (ROC) of the National Weather Service (NWS) has funded 

the National Severe Storms Laboratory (NSSL) to address data quality improvements for 

the WSR-88D. This is the fourteenth report in the series that deals with range and 

velocity ambiguity resolution and other data quality techniques for the WSR-88D (other 

relevant reports are listed at the end). It documents NSSL accomplishments in FY10.  

Section 2 provides a brief review of the SPRT algorithm and the modifications that are 

needed to accommodate dual polarization data. Alternative solutions for ground clutter 

filtering the two polarization channels are evaluated and a recommendation is provided. 

Although changes with respect to the single-polarization version are minimal, a complete 

description of the recommended algorithm is included. Simulations show that the 

recommended dual-pol SPRT algorithm exhibits good performance under realistic 

conditions. These results are validated with examples from real data processed with the 

recommended algorithm.  

Section 3 describes and documents the performance of the CLEAN-AP filter. This 

ground clutter filter was developed for the National Weather Radar Testbed Phased Array 

Radar (NWRT PAR), but is recommended as a complete ground-clutter mitigation 
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technique for future upgrades of the WSR-88D. CLEAN-AP combines automatic 

detection and filtering capabilities so that seamless integration with other functions in the 

signal processing pipeline is possible. The performance of the CLEAN-AP filter is 

extensively quantified using simulations within the framework outlined by the NEXRAD 

Technical Requirements (NTR). The filter is shown to meet NTR and exceed the already 

superior performance of GMAP. Real data analyses are also included to demonstrate the 

performance of this novel scheme on mechanically scanned radars. Qualitative 

comparisons with the currently operational clutter mitigation scheme reveal the potential 

for improved data quality with less user intervention. 

Section 4 is devoted to the analysis of the hybrid spectrum width estimator proposed by 

NCAR. This independent evaluation confirms that the proposed estimator outperforms 

the classical spectrum width estimator in most situations. However, modifications to the 

proposed hybrid estimator are recommended to further improve the performance. These 

include adaptive thresholds for estimator selection, an additional spectrum width 

estimator, and enhanced censoring rules for quality control. 

This report also includes two appendices. Appendix A contains the latest description of 

the staggered PRT algorithm that is able to produce spectral moments and polarimetric 

variables. Appendix B includes one relevant conference paper on the CLEAN-AP filter 

that was presented at the last AMS Radar Meteorology conference.  

Once again, the work performed in FY10 exceeded considerably the allocated budget; 

hence, a part of it had to be done on other NOAA funds. 
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2.1.1. Algorithm Steps 

The previous SPRT algorithm was modified to accommodate the computations required to 

produce dual-polarization variables; a few existing steps were modified and a few new ones were 

added. These changes are summarized in Fig. 2.2. and explained next. 

 

Fig. 2.2. Changes to the staggered PRT algorithm for the dual polarization implementation. Bold fonts denote 

changes or additions. 

1. Pre-computation steps 

This set of steps, which defines the velocity dealiasing rules and other constants for 

the SACHI clutter filter, doesn’t need any changes. 

2. Auto- and cross- correlation computations 

Either for the bypass or the ground clutter filter schemes, some computations must be 

added to later calculate the polarimetric variables. The required computations are: 

2.1. H-channel mean power 

2.2. V-channel mean power 

Dual Polarization Algorithm 

1. Pre-computation steps 

2. Auto- and cross-correlation 

computations 

a. Bypass 

b. Ground clutter filter 

3. Strong point clutter filter 

4. Spectral moment computations 

5. Polarimetric variable 

computations 

6. Censoring 

Single Polarization Algorithm 

1. Pre-computation steps 

2. Autocorrelation computations 

a. Bypass 

b. Ground clutter filter 

3. Strong point clutter filter 

4. Spectral moment computations 

5. Censoring 
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2.3. H-channel lag-1 correlation 

2.4. H-channel and V-channel cross-correlation 

For the bypass mode (i.e., no clutter filtering) the computations will be done for 

each PRT, and then combined according to the range segment (see the Appendix 

for the detailed expressions). Similarly, the DC removal is applied in the time-

domain, H- and V- channels will be filtered independently following the bypass 

procedure. On the other hand, the SACHI ground clutter filter, which is used in the 

frequency domain, will provide these computations directly.  

3. Strong point clutter filter 

The strong point clutter filter is applied based on the H-channel power and applied to 

all power, autocorrelation, and cross-correlation arrays. 

4. Spectral moment computations 

The calculations for reflectivity, velocity and spectrum width use the H-channel 

computations from step 2: H-channel mean power and H-channel lag-1 correlation. 

5. Polarimetric variable computations 

The calculations of differential reflectivity, differential phase and correlation 

coefficient use the computations from step 2: H-channel mean power, V-channel 

mean power, and H-channel V-channel cross-correlation. 

6. Censoring 

The non-significant return arrays for reflectivity, velocity, and spectrum width are 

determined. The array for reflectivity is also used for the polarimetric variables. The 

determination of overlaid returns is done by using the mean power of the H-channel. 

2.1.2. The SACHI Filter 

The SACHI filter that is currently recommended for use in the SPRT algorithm has the following 

high-level steps: 
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1. Extended spectrum computation 

The SPRT time series with M samples are interpolated with zeroes so that an 

extended uniform PRT sequence of 5M/2 samples is built. A uniform sequence is 

needed to go to the frequency domain. Because of this manipulation, the spectrum of 

the extended time series will contain the original spectrum of weather and clutter as 

well as their “replicas”. 

2. Notchwidth determination 

The GMAP clutter filter is applied to one fifth of the spectrum around zero velocity. 

GMAP returns a value for the notch width. 

3. Ground clutter filtering 

The ground clutter contamination around zero Doppler is removed with the notch 

filter obtained in 2). Clutter components projected to ±2va/5 and ± 4va/5 are also 

removed.  

4. Magnitude deconvolution 

A magnitude deconvolution is applied at this point. This means that only the 

amplitude of the matrix coefficients is obtained. 

5. Interpolation 

Values across zero Doppler are linearly interpolated 

6. Power and autocorrelations for spectral moments 

Two-fifths of the spectrum around the estimated weather velocity are retained. Then, 

the power and autocorrelations for spectral moments are computed. 

As it can be seen, the phases of the spectral components are lost in step 4). Since the polarimetric 

variable computations require this phase, the SACHI filter has to be modified. Recall that it must 

produce filtered power computations for both channels, H-channel lag-1 correlation, and H-

channel V-channel cross correlation. 
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Two different solutions were considered. First, the spectral reconstruction method, presented by 

Sachinanda and Zrnić (2006) was tested. This is a complex solution that also serves a broader 

need. The spectral reconstruction, which can be performed in the time or frequency domains, 

allows the recovery of the phases of weather signals after the ground clutter has been filtered. 

Because the SACHI ground clutter filter operates in the frequency domain, the second approach 

was chosen for these tests. In this approach, the spectrum is reconstructed over two-fifths of the 

total number of spectral coefficients centered on the estimated mean velocity. The remaining 

coefficients are set to zero. This method is only valid if the original signal spectrum agrees with 

the definition of “narrow spectrum.” That is, the spread of the nonzero spectral coefficients is 

less than M/2 coefficients in the 5M/2 -point DFT extended spectrum for the conventional 

staggered ratio of  = 2/3. In the absence of ground clutter contamination, the spectrum can be 

fully restored. Otherwise, the reconstruction is made for just (M - nc) coefficients, where nc is the 

clutter filter width. An important drawback is that this method relies on the accuracy of the 

weather velocity estimation. When catastrophic errors occur, the spectrum is erroneously 

reconstructed. 

Due to the complexity and limitations of the spectral reconstruction method, a new method was 

developed. This is a direct method that uses the remaining complex spectral coefficients after 

ground clutter filtering (step 3) to perform the cross-correlation computations. Simulations were 

used to compare the performance of both methods. The results are shown in Fig. 2.3. The 

parameters used in these simulations are as follows: 

- Weather: 

o SNRh = 40 dB, v = 20 m/s, w = [0.5, 8] m/s 

o ZDR = 3 dB, ΦDP = -30 deg, ρHV = 0.90 
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- Clutter: 

o CSRh = 40 dB, v = 0, w = 0.28 m/s,  

o ZDR = -0 dB, ΦDP = -30 deg, ρHV = 0.80 

- va = 50 m/s, M = 64. 

- Number of realizations = 1000. 

Fig 2.3 shows the errors from the spectral reconstruction and direct methods. They are the 

additional errors of estimates introduced by each processing option with respect to the typical 

statistical errors obtained by time-domain computation of clutter-free signals. Two time series 

are independently generated for each method; one for the ground clutter and the other for the 

weather signal. The reference estimates (ZDR, ΦDP, and ρHV) are obtained from the windowed 

weather signal using the pulse-pair processing of time series. The sum of the weather and the 

ground clutter time series is processed with the clutter filter and then the direct or spectral 

reconstruction method; that is, the second set of parameters are estimated from the final spectrum 

(directly estimated or reconstructed). Statistical errors are computed with respect to the reference 

estimates. 

The results show little difference between the direct and spectral reconstruction methods. The 

biases of polarimetric variables are almost zero for both methods, whereas there is a small 

difference in the standard deviations. However, it is very small for both cases: less than 0.25 dB 

for differential reflectivity, 1.5 degrees for differential phase, and 0.001 for cross-correlation 

coefficient. For all variables, errors are slightly smaller for the spectral reconstruction approach 

for spectrum widths between 1.5 and 6 m/s, whereas the behavior of the direct method is more 

consistent across the range of simulated parameters. This is because the spectral reconstruction 

method performs best under the assumption of narrow spectrum.  
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Due to the similar performances of both methods, the direct method was chosen due to its 

simplicity. The direct method also provides an easier implementation in the previous SPRT 

clutter filtering scheme, explained in the next section, and is independent of the mean velocity 

estimation (hence it is immune to catastrophic errors). 
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Fig. 2.3. Spectral reconstruction and direct method comparisons. 
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2.2. Polarimetric Variable Computations Using the Direct Method 

2.2.1. A Brief Review of Staggered PRT Processing in the Spectral Domain 

In the staggered PRT, scheme two different pulse repetition times, T1 and T2 (T1 < T2), are 

alternated. Then, alternate pairs of samples are used to compute autocorrelation estimates R1 at 

lag T1, and R2 at lag T2. These estimates are used to compute the spectral moments. When 

spectral processing is needed, we must proceed in a different way because uniform sampling is 

required. In this case, the signal is “reconstructed” as if it were sampled at intervals Tu = (T2 – 

T1). This puts a small restriction on the selection of T1 and T2. Namely, they should be integer 

multiples of the difference Tu, so that T1 = n1Tu and T2 = n2Tu, where n1 and n2 are integers. The 

best choice, as discussed in previous reports, is n1 = 2 and n2 = 3, or the stagger ratio  = T1/T2 = 

2/3. Once this condition is satisfied, we can generate an Mx-sample uniform time series, vi, i = 0, 

1, 2, …, Mx-1, (signal sampled at intervals Tu) from the staggered PRT sequence by inserting 

zeros in the place of missing samples. For  = 2/3, we have only the 1st and the 3rd samples 

available in each set of 5 samples. We call this the derived time series. Now, we can write the 

derived time series, vi, i = 0, 1, 2, …, Mx-1, as a product of the sequences c and e, where e is the 

signal time series sampled at Tu intervals, and ci, i = 0, 1, 2, …, Mx-1, is a code sequence of zeros 

and ones given by c = [1010010100… etc.] for  = 2/3. In other words, 

 vi = ciei; i = 0, 1, 2, …, Mx-1. (2.1)

If there are M staggered PRT samples, we have Mx = M(n1+n2)/2 samples in the derived time 

series. The DFT spectrum of v is a convolution of the spectra of c and e: 
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 DFT(v) = DFT(c)DFT(e), (2.2)

where the symbol  represents the convolution operation and the DFT stands for discrete 

Fourier transform. We use capital letters to denote DFT coefficients of the corresponding time-

domain quantities in lower-case letters, and capital bold face letters to denote matrices or vectors. 

The subscript ‘i’ is used for time-domain quantities and the subscript ‘k’ is used for spectral-

domain coefficients. For example, Ek is the kth spectral coefficient of DFT(e), and E is the 

column matrix of coefficients Ek, k = 0, 1, 2, …, Mx-1. In matrix notation, (2.2) can be written as  

 V = C E. (2.3)

V and E are (Mx–by-1) column matrices and C is the (Mx-by-Mx) convolution matrix whose 

columns are cyclically shifted versions of the DFT(c). The convolution matrix is formed from 

the spectrum of the code sequence as follows: (a) Form a matrix with first row as the DFT(c), the 

second row is the same coefficients cyclically shifted to the right by one coefficient, the 3rd row 

is the same spectrum shifted to the right by two coefficients, and so on through the last row. This 

forms an Mx-by-Mx matrix. (b) Take the complex conjugate transpose of this matrix to get the 

convolution matrix, C. (c) Normalize the matrix to preserve the power in the spectrum; the 

columns of the convolution matrix are normalized to be unit vectors (i.e., the norm of each 

column vector is unity). Note that normalizing the columns also normalizes the row vectors of C 

automatically. 

2.2.2. Magnitude Deconvolution and Computation of Spectral Moments.  

The convolution matrix is singular (its rank is M), hence we cannot solve for E, but we can get 

the magnitudes without the phases under certain conditions as explained next. If we discard the 
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phases of C, the convolution matrix becomes non-singular and hence can be inverted. Further, 

we note that it is sufficient to recover the magnitude spectrum of the weather signal to recover 

the spectral moments; the phases are not needed. Hence, we discard the phases of all the three 

matrices in (2.3) and write abs{V} = abs{C} abs{E} which is valid under the “narrow 

spectrum” condition. The spectrum is considered narrow if the spectral spread of the weather 

signal is less than Mx /(n1+n2) coefficients. Because the staggered PRT scheme can be designed 

to have a large unambiguous velocity, va, this condition can be nearly met for most weather 

signals. In general, abs{V} ≠ abs{C}abs{E} because of the complex addition process; however, 

under the “narrow spectrum” condition, the complex addition does not take place, hence we can 

replace the inequality sign with the equality sign. Note that each row of C has only five non-zero 

coefficients spaced M/2 coefficients apart, and if E has only M/2 contiguous non-zero 

coefficients, the product of E and each row of C results in only one non-zero term. Hence, no 

complex addition takes place in the convolution operation. Therefore, we can recover abs{E} 

from the inverse operation  

 abs{E} = abs([abs{C}]-1abs{V}). (2.4)

We refer to the operation indicated in (2.4) as the “magnitude deconvolution”. The recovery of 

the magnitude spectrum is exact under the “narrow spectrum” condition. If the spread of the 

spectral coefficients is more than Mx/(n1+n2), the reconstruction is not exact; however, the 

velocity estimate is not biased by this non-ideal reconstruction; only its variance is increased. 

The spectrum width bias is removed by eliminating the residual coefficients outside an interval 

2M/(n1+n2) centered on the estimated weather velocity. The amplitude coefficients of abs{E} are 

then used to compute the signal power, P, and the short and long PRT autocorrelations, R1 at lag 
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T1 and R2 at lag T2. These computations allow the estimation of the three spectral moments: 

reflectivity, velocity, and spectrum width. 

2.2.3. Computation of Polarimetric Variables in the Spectral Domain. 

As we discussed in the previous section, the spectral moments can be calculated from the 

recovered abs{E} from eq. (2.4). Unfortunately, the same is not possible for the polarimetric 

variables because the phase is lost. However, for the computation of these variables, only the 

powers from both channels and the cross-correlation between the horizontal and the vertical 

channels are needed. That is, the spectral reconstruction is not actually needed since we can 

compute these values from the VHk and VVk coefficients for the horizontal and the vertical 

polarization, regardless of the spectral structure. In other words, the power and the cross-

correlation do not depend on the sample-time autocorrelation of the time series. Thus, the 

spectral reconstruction is not needed. The cross-correlation and horizontal and vertical powers 

are calculated as 

 
ܴு௏ ൌ ෍ ுܸ

∗ሺ݇ሻ ௏ܸሺ݇ሻ,

ேିଵ

௞ୀ଴

 
(2.5)

 ுܲ ൌ ∑ | ுܸሺ݇ሻ|ଶ
ேିଵ
௞ୀ଴ , and (2.6)

 
௏ܲ ൌ ෍| ௏ܸሺ݇ሻ|ଶ

ேିଵ

௞ୀ଴

. 
(2.7)

Fig. 2.4 shows a representation of the magnitude and phase of the spectrum used to compute 

these values for both the direct method and the spectral reconstruction for a simulated clutter-

contaminated weather time series. 
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Fig. 2.4. Spectrum used to calculate powers and cross-correlation for the two methods under consideration. In the 

left side, the magnitude (up) and the phase (bottom) for the direct method are plotted. In the right side, the 

magnitude (up) and the phase (bottom) for the spectral reconstruction method are plotted. The results are very 

similar for both methods. 

2.2.4. Clutter Filtering Procedure 

In equation (2.3), V is the spectrum of the derived time series, and E is the unknown spectrum 

we are trying to recover. In other words, the vector V is the spectrum of the staggered PRT 

sequence obtained after converting the time series into a uniform sequence by inserting zeros in 

places of “missing samples”, or the spectrum after convolving E with the code spectrum. Here we 

assume that the weather signal and the ground clutter are present in the time series. To contain 

the spread of the clutter power around zero Doppler, we need to multiply the time series by the 

data window weights. It is assumed that the effects of the data window are included in the 

spectrum V. Now, if we examine the convolution matrix, C, we find that each row has only five 
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non-zero coefficients (for κ =2/3) spaced M/2 coefficients apart. For example, with M = 64 (Mx = 

160), of the 160 coefficients of DFT{c} = [C1, C2, C3, …, C160] only C1, C33, C65, C97, and C128 

are non-zero. In terms of these DFT coefficients the convolution matrix will have its first row as 

[C1, C160, C159, C158, …, C2], the second row as [C2, C1, C160, C159, C158, …, C3], which is the 1st 

row cyclically shifted to the right by one element, and so on. The first row has non-zero 

coefficients at column numbers 1, 33, 65, 97, and 129, and the DFT coefficients of the code 

sequence in these positions are C1, C129, C97, C65, and C33. In the second row these same 

coefficients would shift to columns 2, 34, 66, 98, 130. Thus, after the convolution, the first and 

second elements V1 and V2 of the matrix V would be a weighted sum of the elements given by 

 V1 = C1 E1 + C129 E33 + C97 E65 + C65 E97 + C33 E129, and 

V2 = C1 E2 + C129 E34 + C97 E66 + C65 E98 + C33 E130. 

(2.8)

Similarly, we can write equations for all 160 elements. Since each row of C is obtained by 

cyclically shifting the elements of the previous row to the right; all the coefficients are the same 

in the first 32 equations. For the next 32 equations, the coefficients would be shifted to the right 

by one, i.e., C33, C1, C129, C97, and C65. Similarly, for every 32 equations, the coefficients are 

shifted to the right by one, and there are five such sets. Therefore, we can rearrange the 

convolution matrix as a 5-by-5 matrix Cr, and E and V are rearranged row-wise as 5-by-32 

matrices, Er and Vr, respectively (e.g., the first row of Vr has V1 to V32, the second row V33 to 

V64, etc.). Equation (2.3) then becomes  

 Vr = Cr Er, (2.9)
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where the subscript ‘r’ represents a re-arranged matrix. Cr can be obtained from C by first 

deleting all rows containing zero in the first column of C, and then deleting all columns 

containing zero in the first row, which reduces it to a 5-by-5 matrix. (Note: The five non-zero 

spectral coefficients of C can also be obtained from a code vector of length 5, [10100], taking its 

DFT, and normalizing the power in the spectrum.) The matrix Cr is also singular (its rank is 2), and 

its columns are normalized such that each column is a unit vector (row vectors are normalized 

automatically).  

Therefore, the 160 coefficients of the spectra are arranged row-wise into 5-by-32 matrices. Each 

column of Vr represents one of the 32 independent equations. The first column of Vr is related to 

the first column of Er via the transformation matrix Cr, the second column of Vr is related to the 

second column of Er and so on. Clutter contamination is in the first few and last few coefficients 

of E, and the signal is centered on its mean velocity. After rearrangement, clutter contamination 

is in the first few coefficients in the first row and last coefficients in the last row of Er. If the 

narrow spectrum criterion is satisfied, the signal coefficients are spread, at most, over two rows. 

Therefore, in each column of Er, at most two elements are non-zero. After the transformation via 

the matrix Cr, powers in these two coefficients spread to all the elements of each column of Vr. 

The clutter and the weather signal have five weighted replicas in the V spectrum because of the 

convolution with the code spectrum which has only five non-zero coefficients. The clutter will 

be in the first coefficients of the first few columns and in the last coefficients of the last few 

columns. Figure 2.5 attempts to clarify these concepts by showing the magnitude of an extended 

spectrum. 
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 V1 = C1E1 +C4E4, (2.12)

where vector V1 on the left hand side is the first column of Vr. To filter the clutter we just have to 

take the component of V1 along the direction C1 and substract it from V1. This is accomplished 

by taking the inner product between C1 and V1, multiplying this by C1 and then substracting it 

from V1: 

 Vf1 = V1- (C1*
T V1) C1. (2.13)

In other words, the main replica around zero and the projected clutter around ±2va/5 and ± 4va/5 

are removed. 

Since the clutter is present in the first few and the last few columns of Er, we apply this 

procedure only to those columns in which the clutter is present. In the last columns the clutter 

coefficient are in the last row, hence, we replace the vector C1 by C5: 

 Vf32 = V32- (C5*
T V32) C5. (2.14)

In terms of the DFT coefficients, the ground clutter filtering procedure is applied to the first q 

columns and the last (q-1) columns (where the clutter filter width, nc = 2q – 1 ). nc has to be an 

odd number in order to maintain symmetry around zero Doppler (or the 1st coefficient). 

Therefore, we select first q columns and last (q-1) columns and remove the clutter by applying 

(2.13) or (2.14). This complete operation can be written in matrix notation as 

 Vf = Vr - Cf1 Vr If1 - Cf1 Vr If2,  (2.15)
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where Cf1 and Cf1 are the clutter filter matrices and If1 and If2 are matrices that select the columns 

to be filtered: 

 Cf1 = C1 C1*
T, and (2.16)

 Cf2 = C5 C5*
T. (2.17)

The matrix If1 is an M/2-by-M/2 diagonal matrix with diagonal elements equal to 1 for the first q 

elements and 0 for the rest. Similarly, the matrix If2 is an M/2-by-M/2 diagonal matrix with last 

(q-1) elements unity and the rest zeros. 

Finally the matrix Vf is rearranged into a N-by-1 vector Vdf. This vector represents the filtered 

extended spectrum. Fig. 2.6 shows vector V before and after clutter filtering. It can be seen how 

the first and the last coefficients are removed, but it is only the projections that are removed in 

the replicas. 
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Fig. 2.6. Vector V before (up) and after (down) clutter filtering. 

This procedure is applied for both channels, and once the clutter has been filtered, the powers 

and cross-correlation can be computed from vector Vdf according to equations (2.5), (2.6) and 

(2.7). After this, the final steps of the clutter filter remain unchanged. That is, after the 

computation of the powers and cross-correlation for the polarimetric variables, the magnitude 

deconvolution is applied to the H-channel data, and the rearranged vector is used to retrieve the 

values for the auto-correlations and power. More details about this procedure are explained in 

previous reports. 
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2.2.5. Notchwidth Determination 

Given that we have two different time series, one for each polarization channel, the notchwidth 

determination is an important issue. For single polarization, the value for nc is determined by the 

GMAP algorithm. The input to GMAP is one-fifth of the spectrum around zero velocity; i.e., 

containing the first and the last coefficients. We considered three different possibilities: 

1. Use the H channel as a “master” channel. The input to GMAP will be one-fifth of the H-

channel spectrum. 

2. Consider H and V channels independently, each with its own q value. The clutter filtering 

will be performed independently for each channel. 

3. Use the channel with larger clutter-to-signal ratio (CSR) as a “master” channel. Retrieve 

q values from GMAP for the H and V channels and then choose the maximum value to 

filter both spectra in the same manner. 

Simulations were employed to find the optimum approach. Fig. 2.7 shows the bias and the 

standard deviation for the three polarimetric variables for a high CSR versus ZDR. We chose ZDR 

as the independent variable because we found that these results were highly influenced by this 

variable. As we can see, the three methods offer similar results. Since the CSR was fixed for the 

H channel, negative ZDR produce higher errors and standard deviations. A negative ZDR means 

that the CSR for the V channel is higher than the CSR for the H channel. However, if we choose 

a low CSR, results are completely different for each approach for negative ZDR, Fig. 2.8 shows 

that. With these results in mind, the third approach was chosen. The notchwidth will be the same 

for both channels, and it will be the maximum between them as computed independently. If we 

choose the first approach (the H channel as the master channel) and the ZDR is negative, we are 

underestimating the amount of clutter in the V channel. If we choose the second approach, the q 
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values can be completely different and may lead to biased computations since we can have 

different number of coefficients filtered for each channel. 
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Fig. 2.7. Bias and standard deviation for ZDR, DR and HV varying ZDR for a fixed CSRH of 40 dB comparing three notchwidth determination approaches. 
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Since only the H-channel is used for the spectral moment computations, the q retrieved with 

H channel spectrum will be used for this purpose. That is, two different q values can be 

considered. Fig. 2.9 shows the procedure.  

 

Fig. 2.9. Notchwidth determination for dual polarization SPRT ground clutter filter 
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Fig. 2.8. Bias and standard deviation for ZDR, DR and HV varying ZDR for a fixed CSRH of -20 dB comparing three notchwidth determination approaches. 
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2.2.6. Dual-Polarization Time-Series Simulation 

Simulations were performed to test the dual polarization staggered PRT ground clutter filter 

method. The bias and the standard deviation for the polarimetric variables are plotted for a 

variety of situations. The default parameters are detailed below. Since this algorithm update only 

affects polarimetric variable computations, they were chosen as the independent variables in the 

simulations. One of the simulations is used to quantify the clutter filter suppression, and the rest 

illustrate the effects of varying the polarimetric properties of the input signals. In these cases, 

several CSR were used, as well as a no-clutter case (i.e., CSR = -). 

• Weather: 

– SNRh = 20 dB, v = random in the extended Nyquist interval, w = 2 m/s 

– ZDR = 3 dB, ΦDP = -30 deg, ρHV = 0.99 

• Clutter: 

– CSRh = 40 dB, v = 0, w = 0.28 m/s,  

– ZDR = -5 dB, ΦDP = 50 deg, ρHV = 0.8 

• va = 35 m/s, M = 48 

• 1000 realizations 

Note that these parameters correspond to a worst case scenario. For the weather signal, we chose 

typical testing parameters for SNR and spectrum width. The velocity was chosen randomly in 

every realization in the range from –va to va. The positive value of differential reflectivity means 

that the SNR is higher for the H channel than for the V channel, since the noise in both channels 

is assumed to be the same. For the clutter, we considered a high CSR and the typical values for 

velocity and spectrum width. We also considered a different value for the differential phase, 

since this difference in ΦDP for weather and clutter can cause a higher bias. For differential 

reflectivity and correlation coefficient we chose a worst case based on Fig. 2.10. It is important 
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spectrum widths, the results are as expected. Given a GCF suppression of 40 dB, the error in ZDR 

will be less than 0.6 dB, 6 degrees for DP, and 0.06 for HV. 

2.2.6.2.Ground clutter filter performance as a function of clutter ZDR 

Fig. 2.12 shows the ground clutter filter performance versus the clutter differential reflectivity 

for several CSRh. The results agree with the expected GCF suppression. Only CSRh= 40 dB 

causes a high bias and standard deviation for negative clutter ZDR, since this really represents a 

higher value for CSRv. For instance, consider the case where CSRh= 40 dB, ZDRc = -3 dB 

(subscript ‘c’ indicates clutter) and ZDR = 3 dB (no subscript indicates weather). The CSRv can 

be written as a function of CSRh as follows:  

 CSRh = Ch/Sh, CSRv = Cv/Sv 

 ZDR =Sh/Sv = 3 dB  Sv = ½Sh 

ZDRc =Ch/Cv = -3 dB  Cv = 2Ch 

 CSRv = Cv/Sv = 2Ch/½Sh = 4CSRh. 

That is, CSRv would be 6 dB higher than CSRh. This explains the exponential behavior of the 

purple curve in Fig. 2.12, which is exactly the same behavior we see in Fig. 2.11 for the GCF 

suppression. For lower CSR values, the bias is around zero in every case, and the standard 

deviation is very close to the no-clutter case. 
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2.2.6.3.Ground clutter filter performance as a function of clutter DP 

Fig. 2.13 shows the performance of the filter as a function the clutter DP. In these simulations 

we maintained a fixed DP for the weather and we varied the DP for the clutter. The difference 

between the two differential phases is what causes the high bias and standard deviation for high 

CSR. The bias of differential reflectivity is small. The DP difference between weather and 

clutter has little influence on its computation, but a strong effect on differential phase and cross-

correlation coefficient. For lower CSR, the results are close to the no-clutter case. 

2.2.6.4.Ground clutter filter performance as a function of clutter HV 

Fig. 2.14 depicts the performance of the filter versus the clutter cross-correlation coefficient. The 

results agree with the previous simulations for the standard case, since this independent value has 

little influence on the computation of the polarimetric variables for a CSR lower than 40 dB. 

Hence, we can conclude for each variable: 

- ZDR: There is no bias in the ZDR computation except for CSR = 40 dB. The standard 

deviation is well below 0.6 dB even for the worst CSR case. 

- DP: The bias is zero for CSR < 40 dB. The standard deviation is only 3.5 degrees, not too 

far from the 3 degree standard deviation for the no-clutter case. 

- HV: The bias is lower than 0.006 for CSR < 40 dB. The standard deviation is around 0.01, a 

very close value to the no-clutter case. 
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Fig. 2.11. GCF suppression.  
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Fig. 2.12. GCF Performance vs. Clutter ZDR 
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Fig. 2.13. GCF Performance vs. Clutter ΦDP 
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Fig. 2.14. GCF Performance vs. Clutter HV 
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2.3. Real Data Results 

The proposed algorithm was tested on real data. We used a single-elevation scan of time series 

data recorded on March 4th, 2004 with the KOUN radar in Norman, OK. The main parameters 

are in the table below. 

VCP 2048 
Elev. (deg) 2.45 

AZ rate (deg/s) 16.30 
Period (s) 22.08 

Dwell time (ms) 61.4 
Staggered ratio  2/3 

M 20 
T1 (ms) 1.23 
T2 (ms) 1.84 
rar (km) 276 
ra1 (km) 184 
va (m/s) 45.1 

Figures 2.15 to 2.20 show the filtered and unfiltered PPIs for the spectral moments and the 

polarimetric variables. By visual inspection, it can be confirmed that the recommended dual-

polarization SPRT algorithm fulfills the requirements. The polarimetric variables are calculated, 

the clutter is filtered, and the spectral moment computation is not harmed. 
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2.4. Data Window Effects: Some Observations 

A higher noise in the real-data cross-correlation coefficient was perceived when we compared 

the filtered and unfiltered PPI images. Since the no-clutter simulations were also computed in the 

spectral domain, a brief study about this issue was performed. The reason for this is clear if we 

recall that the meteorological variable computations for SPRT in the time and the spectral 

domain differ considerably. The zero padding and the window result in higher standard deviation 

of the cross-correlation coefficient computation. In region II, a rectangular window would 

provide the same results than the computations in the time domain. But in regions I and III we 

are considering different sets of data: even or odd pulses in time and extended series in 

frequency. The cross-correlation coefficient is an extremely sensitive variable, and these slight 

differences in the power computations can lead to a noticeable change, see Fig. 2.21. However, 

this is only important for low SNR values, as it can be appreciated in Fig. 2.22, where the highest 

differences coincide with the lowest SNRs.  

Additionally, we conducted simulations to analyze the probability of obtaining a cross-

correlation coefficient higher than 1 for staggered PRT processing in the time and in the spectral 

domains and also for uniform PRT (UPRT). The results are shown in Fig. 2.23. These 

simulations employ the same set of default parameters of section 2.2.6. No clutter was added to 

the simulations. For the SPRT case, the cross-correlation coefficient is computed first from the 

powers and cross-correlation calculated from the unwindowed time samples. Second, the powers 

and cross-correlation are calculated from the extended spectra, using a standard Blackman 

window. The UPRT computations are the time domain with the same va (va = 35 m/s) and 

number of samples Mx (Mx = 120). As expected, the probability of HV > 1 increases for low 
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SNRs. For instance, given an SNR of 10 dB, the probability of obtaining HV > 1 is basically 

zero for UPRT processing, 0.38 for SPRT time-domain processing, and 0.51 for SPRT spectral 

processing. Fig. 2.24 shows the differences in standard deviation. For SNRs lower than 10 dB, 

this standard deviation can exceed 0.05 for SPRT spectral processing, which is a very high value 

for a variable as sensitive as the cross-correlation coefficient. 

Note that these results are preliminary and further studies are warranted. 
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Fig. 2.23. Probability of |HV|>1 for UPRT time-domain, SPRT time-domain, and SPRT frequency-domain 

processing. 

 

Fig. 2.24. Standard deviation of |HV| for UPRT time-domain, SPRT time-domain, and SPRT frequency-

domain processing. 
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3. The CLEAN-AP Filter 

Ground clutter mitigation (detection and filtering) continues to be a major concern for 

operational ground based Doppler weather radar systems. For the WSR-88D system, the 

Radar Operations Center (ROC) has received field complaints of reflectivity loss along 

the contour of zero velocity (zero-isodop); “hot spots” within clutter regions; and spatial 

irregularities in the reflectivity, velocity, and spectrum width fields (Data Quality Team 

personal correspondence 2010). The performance of the clutter mitigation algorithm has a 

direct impact in all these areas of concern. Ideally, the detection algorithm should apply 

(or bypass) the ground clutter filter when ground clutter is present (or absent) in the 

received radar signal. As well, the ideal ground clutter filter should provide effective 

ground clutter removal with minimum disturbance of the desired weather signal. The goal 

of the two algorithms is to work collectively to mitigate ground clutter and provide 

quality meteorological estimates of reflectivity, velocity, and spectrum width. To 

accomplish this goal, the detection algorithm should not miss a ground-clutter 

contaminated gate; otherwise, the unfiltered ground clutter results in hot spots. Just as 

important, the ground clutter filter should not overly suppress ground clutter when the 

detection algorithm falsely identifies a clutter–contaminated gate. Such false detections 

create irregularities or partial/complete loss of the meteorological estimates. Thus, an 

integrated ground clutter mitigation algorithm is warranted. That is, an algorithm for 

which the detection and filtering characteristics are tuned to the clutter characteristics of 

the received radar signals. In this report, we describe the CLutter Environment ANalysis 

using Adaptive Processing (CLEAN-AP © 2009 Board of Regents of the University of 

Oklahoma) filter (Warde and Torres, 2009). The CLEAN-AP filter provides a real-time, 
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integrated clutter mitigation solution with: (a) improved ground clutter suppression, (b) 

effective ground clutter detection, and (c) dynamic ground clutter suppression 

characteristics optimally matched to the existing ground clutter environment. 

3.1. Background 

Radar backscatter from the ground (or fixed targets on the ground), known as ground 

clutter, can contaminate weather signals, often resulting in severely biased meteorological 

estimates. If not removed from the estimate, the ground clutter contamination tends to 

bias reflectivity high as well as biasing radial Doppler velocity and spectrum width 

toward zero. A ground clutter filter (GCF) can mitigate this contamination and provide 

unbiased meteorological estimates but usually with reduced quality. However, the overall 

quality of the meteorological estimates needlessly suffers when a GCF is applied when 

no ground clutter contamination exists and the weather signal has near-zero Doppler 

velocities. In this case, significant biases result from the misapplication of the GCF. 

Preferably, the GCF should only be applied if the ground clutter contamination 

contaminates (biases) the weather signal. Thus, judicious application of the GCF is 

needed to mitigate ground clutter contamination.  

Typically, weather radars use static clutter maps (i.e., pre-identified clutter contaminated 

regions) to control the application of the GCF. However, anomalous propagation 

conditions can cause the radar beam to increase contact or overshoot ground clutter, 

giving the appearance that the clutter shifts within or disappears from the radar volume 

coverage very rapidly. This constant shift of the ground clutter in the radar volume 

coverage renders static clutter maps ineffective for controlling the application of the GCF 
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in a dynamic atmosphere. Fortunately, spectral examination of the received echoes 

provides a means to determine the presence of ground clutter in real time without having 

to rely on static clutter maps. A disadvantage of using spectral analysis on a finite number 

of samples comes from spectral leakage; hence, data windows are classically applied to 

contain this detrimental effect. It is desirable to use low dynamic range windows to 

preserve the quality and resolution of the meteorological estimates. However, high 

dynamic ranges windows may be required to adequately suppress strong ground clutter 

returns, consequently reducing the quality and resolution of the meteorological estimates.  

The CLEAN-AP spectral GCF is capable of mitigating the adverse effects of ground 

clutter contamination while preserving the quality of the meteorological estimates. This 

‘smart’ filter performs real-time detection and suppression of ground clutter returns in 

dynamic atmospheric environments. 

3.2. CLEAN-AP Performance Analysis 

The CLEAN-AP filter clutter mitigation performance was reported by Warde and Torres 

(2009) using a MATLAB implementation and signal simulations. Additionally, Warde 

and Torres (2010) used recorded time-series data from WSR-88D operational sites to 

qualitatively assess the detection performance of the CLEAN-AP filter. The results from 

the simulations and the real data show that the CLEAN-AP filter meets and in most cases 

exceeds the WSR-88D requirements for both ground clutter detection and filtering. The 

analysis reported here and in Warde and Torres (2009, 2010) was completed using 

empirically derived notch widths based on a Gaussian model with expected spectrum 

width of 0.28 m/s and velocity of 0 m/s.  
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3.2.1. Analysis Methodology 

The CLEAN-AP filter performance is characterized using a MATLAB implementation of 

the algorithm. Simulations of weather and clutter were generated from Gaussian power 

spectra (Zrnić 1975). To reduce windowing effects and to provide a pseudo-continuous 

spectrum, the number of spectral coefficients is increased by a factor of three and the 

resulting time series signal is truncated to create a uniformly spaced signal of the 

appropriate sample size. The statistical performance of the filter is characterized over a 

range of parameters with one hundred realizations created for each parameter set.  

3.2.2. Clutter Suppression Requirements 

The CLEAN-AP filter was compared against requirements detailed in the WSR-88D 

System Specifications 2810000H dated 25 April 2008, chapter 3.7.2.7 “Ground Clutter 

Suppression”. Although the system specification includes filter requirements for dual 

polarization, only the single polarization requirements for reflectivity, velocity, and 

spectrum width are statistically assessed in this report. The WSR-88D System 

Specification (SS) is written for an Infinite-Impulse Response (IIR) filter with selectable 

notch widths; thus, some of the specifications do not apply to frequency domain filters 

using automatic adaptable notch widths (Ice et al. 2004a and 2004b). The goal of ground 

clutter filtering is to remove the effects of ground clutter bias on reflectivity, velocity, and 

spectrum width while providing meaningful estimates of these moments (i.e., small errors 

of estimates). To that end, the WSR-88D SS provides bias and standard deviation 

requirements for the application of a filter for a signal at 20 dB signal-to-noise ratio 

(SNR) with a weather spectrum of 4 m/s. Clutter model A of the WSR-88D SS provides 
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for a zero-mean normally distributed clutter model and is most relevant for this ground 

clutter filter evaluation. Although not specified in the WSR-88D SS, a 0.28 m/s clutter 

spectrum width is used for this evaluation which is in line with the expected clutter 

spectrum width of 0.1 m/s when accounting for spectrum broadening due to the antenna 

scanning motion. Additionally, 0.28 m/s clutter spectrum width provides ready 

comparison with earlier filter evaluations conducted for the WSR-88D system at the 

Radar Operation Center (e.g., Sirmans 1992, Ice et al. 2004a). 

When applied, the filter is required to provide a clutter suppression capability of 30 dB in 

the reflectivity channel and selectable clutter suppression levels from 20 dB to 50 dB in 

the Doppler channel (velocity and spectrum width) where clutter suppression is defined 

as the ratio of the input power to the output power after application of the clutter filter. 

The bias on the moments caused by the application of the filter is assessed with a 

signal-to-clutter ratio (SCR) of 30 dB. In the bias assessment, the low clutter level with 

high signal level is used so that the prominent contributor to the moment bias is 

associated with the filter performance and not due to clutter residue. An additional 

allowance in moment bias is provided in the WSR-88D SS when clutter residue is present 

in the output signal: reflectivity bias of 1 dB for an output SCR of 10 dB, velocity bias of 

1 m/s for an output SCR of 11 dB and spectrum width bias of 1 m/s for an output SCR of 

15 dB. 

The filtered reflectivity bias requirement is assessed with a weather signal at 0 m/s and is 

dependent on the spectrum width of the weather as shown in table 3.1 (reproduced from 

the WSR-88D SS). As can be seen in table 3.1, the bias in reflectivity is expected to 

increase as the weather spectrum width becomes small compared to the notch width of 
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the clutter filter. The bias in reflectivity is due to portions of the weather signal coincident 

with the notch width of the filter centered at 0 m/s. When the weather signal is 

completely contained within the notch width of the filter, the entire weather signal 

moments are likely to be unrecoverable (i.e. severely biased).  

Weather Spectrum 
Width (m/s) 

Maximum Bias of 
Reflectivity (dB) 

1 10 
2 2 
≥3 1 

Table 3.1. WSR-88D Filtered Reflectivity Bias Requirements 

The filtered Doppler moments have a bias requirement of less than 2 m/s over a range of 

usable velocities as a function of the notch width selection as shown in table 3.2 

(reproduced from the WSR-88D SS). As mentioned earlier, this requirement is for an IIR 

filter with selectable notch widths. The WSR-88D system no longer uses an IIR filter; 

however, filtered velocity and spectrum width bias and standard deviation can be 

assessed to ensure 2 m/s is not exceeded for all usable velocities above those minimums 

stated on the left side of table 3.2 when the filter provides the clutter suppression level 

listed on the right side of the table.  

Notch Width 
Selection 

Minimum Usable 
Velocity (m/s) 

 
Clutter Suppression (dB) 

Low 2 20 
Medium 3 28 

High 4 50 

Table 3.2. WSR-88D Usable Filtered Velocity Requirement 

3.2.3. Reflectivity Clutter Suppression and Bias Analysis 

Two examples of the clutter suppression performance of the CLEAN-AP filer are shown 

in figures 3.1 and 3.2. In these figures, two scatter plots of filtered power bias as a 
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function of input clutter-to-signal ratio (CSR) level show the clutter suppression 

performance of the CLEAN-AP filter. The simulated weather signal has an SNR of 20 dB 

with a 4 m/s spectrum width and representative velocities uniformly distributed 

throughout the Nyquist co-interval. The PRT for these examples are 882 µs and 1000 µs, 

respectively. The dwell time is set at 40 ms giving 45 samples for figure 3.1 and 64 

samples for figure 3.2. The input CSR levels used are -30 dB and 0 dB to 100 dB in 5 dB 

step sizes. At each CSR level, 5000 (50 velocities x 100 realizations) power bias results 

are shown. The color scale indicates the percentage of occurrences at each power bias 

level with the maroon indicating 100% (100 occurrences) and white indicating 0% (0 

occurrences). Optimal clutter suppression performance is indicated when the power bias 

is at 0 dB. Clutter residue is present when the power bias increases above 0 dB; while 

over-suppression occurs when the power bias drops below 0 dB. In each scatter plot, high 

occurrences (>90%) are seen in red along the zero power bias with a quick taper to near 

zero occurrences on either side of zero power bias. The clutter suppression performance 

of the tested filter can be estimated at the point where the highest occurrence of power 

bias level (blue line) departs from zero power bias. For the examples in figure 3.1, clutter 

suppression is seen at ~70 dB; whereas, clutter suppression is seen at ~80 dB in figure 

3.2. The red ovals indicate over-suppression that begin at ~60 dB in both figures. In both 

cases, the CLEAN-AP clutter suppression performance is above the WSR-88D 

requirement of 50 dB. Although not shown, reduced number of samples and different 

PRT settings meet or exceed the 50 dB requirement.  

Another measure of CLEAN-AP filter performance is seen when compared to current 

(GMAP) and past (IIR) filters used in the WSR-88D system. The comparisons are made 
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1992). The GMAP filter (magenta) is displayed with the operational clutter spectrum 

seed width of 0.4 m/s (e.g., Ice 2004a). The PRT of 3106 µs with 16 samples (dwell 

~50 ms) was used for the evaluation. It is seen that the CLEAN-AP filter (light green) 

meets the reflectivity bias levels at all spectrum width values and easily exceeds WSR-

88D requirements in the Surveillance mode.  

The performance enhancement seen in the CLEAN-AP filter is due to two aspects of the 

algorithm. At narrow spectrum widths (<1 m/s), the dominating factor that improves 

CLEAN-AP performance over the other filters shown in figure 3.1 is attributed to the use 

of the spectral leakage in the lag-1 ASD phases to correctly identify the spectral 

components with clutter contamination. At wider spectrum widths, the adaptive window 

feature of the algorithm automatically adjusts the suppression level of the filter based on 

the measured power at 0 frequency (seen in figure 3.3 at wide spectrum widths >1 m/s). 

This is because a wider spectrum signal will have less power concentrated around the 

mode of the spectrum (in this case 0 velocity or DC level). The bias changes seen in the 

CLEAN-AP filter plot above 1.5 m/s are attributed to the algorithm choosing lower 

dynamic range windows as a function of wider spectrum width signals. This feature of 

the CLEAN-AP filter helps to preserve the quality of the weather estimates. When a 

signal is away from the zero-isodop, no DC component is measured and the rectangular 

window is automatically selected giving the best quality for all the weather estimates.  
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3.2 shows the usable velocities that should be unaffected by the filtering process when 

the clutter suppression levels are at 20, 28 and 50 dB (respectively). In the passband of 

the filter, the WSR-88D SS allows a 2 m/s bias and 2 m/s standard deviation for these 

usable velocities. Ice et al. (2004a and 2004b) evaluated the GMAP filter and found that 

it meets WSR-88D requirements for velocity bias and standard deviation. 

Like the GMAP filter, the CLEAN-AP filter does not use a fixed notch width; however, 

velocity biases and standard deviations can still be established for the conditions listed in 

table 3.2. The weather signal used for this test has a 20 dB SNR and 4 m/s spectrum 

width with varying levels of clutter. As seen in figures 3.1 and 3.2, the CLEAN-AP filter 

starts to overly suppress the clutter signal at around 60 dB. Before this level of clutter, the 

CLEAN-AP filter without clutter model control meets the WSR-88D requirements for 

velocity bias and standard deviation, so these images are not shown. However, it is more 

interesting to see how the CLEAN-AP filter compares to the GMAP filter above the 50 

dB clutter level. 

In figure 3.6, a histogram of the velocity estimate bias after filtering is shown as a 

function of true weather velocity for a 20 dB weather signal with a CSR of 55 dB. The 

PRT is set to 1000 μs and has 64 samples. The filtered weather velocity bias is evaluated 

at 50 velocities throughout the Nyquist co-interval. For each true velocity, results from 

100 realizations are shown and the color indicates the percentage of occurrences. For this 

example, CLEAN-AP shows < 1 m/s biases and < 1 m/s standard deviation across the 

complete Nyquist co-interval (including in the stop band). This is typical performance for 

the CLEAN-AP filter below 55 dB CSR.  
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Compare the CLEAN-AP filter performance to that of the GMAP filter for the same 

conditions. In figure 3.7, the GMAP filter produces larger biases and increased standard 

deviations, especially near ±10 m/s. The GMAP filter imparts velocity biases in the 

region from -10 m/s to 10 m/s that appear linear. This is due to the clutter residual present 

in the filter output which biases the velocity estimate toward 0 m/s. Ice et al. (2004a) 

reported power biases of 0.25 dB at 50 dB CSR increasing to 3.88 dB at 60 dB CSR for 

the GMAP filter using the same signal parameters. As the power bias increases, the 

clutter residual becomes the prominent contributor to the velocity estimate which biases 

the velocity estimate toward zero. For example, figure 3.7 shows that approximately -5 

m/s bias is imparted on the velocity estimate at 10 m/s true velocity. This translates to a 

velocity estimate of 5 m/s (10 true + -5 bias = 5 estimated). Thus, the clutter residual 

caused a 5 m/s underestimate in velocity at a true velocity of 10 m/s. Another artifact 

caused by clutter residue is shown in the region of the stop band (near 0 m/s) of the 

GMAP filter where there appear to be small bias and standard deviation. Increased 

performance in the areas of clutter suppression with reduced velocity biases of the 

CLEAN-AP filter over the GMAP filter for this example is, once again, attributed to the 

use of the lag-1 ASD phases. That is, the CLEAN-AP filter uses phases to identify the 

notch width; whereas, the GMAP filter uses the magnitudes.  
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over-suppressed region can be identified and censored by using the identified clutter 

contaminated coefficients of the lag-1 ASD as a guide. This technique is used in the 

CLEAN-AP implementation on the National Weather Research Testbed (NWRT) Phased 

Array Radar (PAR) but is not discussed in this report. Removing these over-suppressed 

values leaves velocity estimates that are again within the WSR-88D requirements. 

Compare the CLEAN-AP filter performance to the GMAP filter performance for the 

same conditions. In figure 3.7, the GMAP filter completely fails to remove the clutter 

contamination as seen by the nearly linear bias values running from approximately 23 

m/s (bias) at a true velocity of -23 m/s to approximately -23 m/s (bias) at a true velocity 

of 23 m/s. The enhanced performance of the CLEAN-AP filter comes from the addition 

of the Blackman-Nuttal data window which has first sidelobe levels of -98 dB. For CSR 

above ~58 dB, the failure of the GMAP filter to remove the clutter contamination is 

attributed to the insufficiently low Blackman data window sidelobes. The addition of the 

Blackman-Nuttal data window to the CLEAN-AP algorithm increases its clutter 

suppression capability reducing data window sidelobe artifacts. 
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3.2.8. Spectrum Width Bias Analysis 

When clutter filtering is applied, the WSR-88D SS requirements for spectrum width bias 

and standard deviation are 2 m/s for an input spectrum width of 4 m/s. An additional 1 

m/s allowance is provided for spectrum width bias when a clutter residue of -15 dB CSR 

is present at the output of the filter. The estimator used for these tests is the R0/R1 

estimator described by Doviak and Zrnić (1993). At times, the R0/R1 estimator can give 

a spectrum width estimate that is nonsensical. These values are normally set to 0 m/s in 

the estimation routine for the WSR-88D system. For the bias and standard deviation 

estimates, these artificial zeros are removed. 

Recall that the CLEAN-AP filter starts to overly suppress the clutter signal at around 60 

dB. Before this level of clutter, the CLEAN-AP filter without clutter model control meets 

the WSR-88D requirements for spectrum width bias and standard. Figure 3.10 through 

3.13 show histograms of spectrum width biases as a function of true spectrum width. The 

color scale shows the level of occurrence of each spectrum width estimate with 500 

estimates made for each true spectrum width value. For each true spectrum width value, 

the mean spectrum width bias is shown with red circles; red vertical bars are used to 

display the spectrum width standard deviation. The red horizontal lines at ±2 m/s 

represent the bias requirements of the WSR-88D SS.  

Seen in figure 3.10, the CLEAN-AP filter has biases < 1 m/s for all true spectrum widths. 

Additionally, the standard deviations are ≤ 1 m/s for true spectrum widths above 0.5 m/s 

and below 7 m/s with values ≤ 2 m/s above 0.1 m/s and below 9 m/s. Contrast the 

CLEAN-AP filter performance (figure 3.10) with the GMAP filter performance in figure 
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The CLEAN-AP filter was developed and has been operating on the NWRT PAR since 

the fall of 2008 in support of MPAR research (Torres et al. 2009). The PAR can acquire 

all measurements of the atmospheric environment using electronic beam steering; i.e., 

without antenna beam smearing from scanning. To transfer this technology to the WSR-

88D, which measures the atmosphere by scanning in azimuth, it is beneficial to show that 

the CLEAN-AP filter can perform well with the effects of beam smearing. Although 

there was no tasking to NSSL from the ROC for the CLEAN-AP algorithm, the ROC 

agreed to provide an example of CMD/GMAP clutter mitigation for a cursory 

comparison with CLEAN-AP clutter mitigation. The ROC provided the lowest elevation 

level of 0.5° of a VCP 32 with super resolution enabled for this comparison. CMD is ran 

on the Surveillance scan at the 0.5° elevation, but not on the Doppler scan at the same 

elevation. Therefore, only the reflectivity is shown. For this comparison, CLEAN-AP and 

CMD/GMAP are compared using time series data collected from the WSR-88D at 

Tucson, AZ (KEMX) on April 22, 2009 during beta testing of the CMD implementation 

into the WSR-88D (Ice et al. 2009). The data set was chosen because of the mountainous 

terrain that surrounds the radar. During the beta test of the CMD/GMAP system, missed 

detections created persistent areas of high reflectivity in the Santa Catalina mountains 

(red ovals in figure 3.14) causing a redesign of the implementation of the CMD algorithm 

in the WSR-88D (Ice personal correspondence 2009). Time series data were played back 

both in the MATLAB environment to get the CLEAN-AP reflectivity output and in an 

offline WSR-88D system (e.g., Rhoton et al. 2005) to get the CMD/GMAP reflectivity 

output. Additionally, the unfiltered reflectivity was provided by the ROC through the 

offline WSR-88D system. The unfiltered and CMD/GMAP reflectivity outputs were 
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between 13 to 41 dB clutter-to-noise ratio (CNR). The signal power from distributed 

targets drops at a rate of the 1/R2 (inverse range squared). Thus, weather signals at far 

ranges are weak compared to clutter signals near the radar. When weather signals exceed 

the unambiguous range in the Doppler scan, the weather signal will overlay (range fold) 

into this undetected/unfiltered ground clutter. The operational implications is that range 

folded echoes in the Doppler scan become masked by the unfiltered ground clutter caused 

by missed detection in the Surveillance scan. Additionally, the Doppler velocity and the 

spectrum width fields in the Doppler scan are biased toward zero where the unfiltered 

ground clutter remains causing discontinuities in these Doppler fields. These 

discontinuities can impede the performance of the velocity dealiasing and Velocity 

Azimuth Display (VAD) wind profile algorithms. Not only are the weather signatures 

biased by the unfiltered ground clutter, but insect and bird signatures are masked/biased 

as well when ground clutter is present. Although more real data cases are needed to 

provide a thorough evaluation of the CLEAN-AP filter; the preliminary evaluation 

provided shows great promise. 
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4. Evaluation of the Hybrid Spectrum Width Estimator 

[This section follows in its original format] 



1 Introduction

The spectrum width is a well known radar parameter related to the dispersion of radial

velocities, and its value can be potentially useful for measuring the turbulent nature of radar

scatterers and leading to better warnings of severe weather events (Lemon, 1999) and means

of detecting turbulence for air transportation (Mahapatra, 1999). The popular approach for

measuring the spectrum width uses a pulse pair logarithm approach, however its performance

is questionable at the narrow spectrum where significant biases are observed. This deficiency

can be be problematic in many weather conditions where a large dispersion range of velocities

is observed; for example, a sheared layer that is commonly observed can produce significantly

differing dispersion signatures depending on radar range, elevation angle, and other factors,

and all these measurements are needed. As a result, an accurate and reliable technique for

measuring the spectrum over a wide range is needed in order to instill confidence in this

useful radar parameter.

Recently, a hybrid technique using multiple autocorrelation-based approaches to estimate

this parameter was introduced Meymaris et al. (2009b). It was claimed that the values

produced had better root-mean-squared error at the narrower spectrum width range compare

to the popular approach. In this report, the performance of this estimator such as bias,

variance, frequency of zeros were examined using simulations. While it will be shown that

the results validates the claims, it was observed that some simple modifications can be made

2



to further improve the performance.

2 Methodology

2.1 Hybrid Spectrum Width Estimator

The method as described in Meymaris et al. (2009b) provides an estimate of the dispersion of

the radial velocity by selecting from one of three temporal autocorrelation-based techniques

a value of the estimated spectrum width that most appropriately describes characteristics

obtained from the inputted short time sequence. An illustration of the method is depicted

in Figure 1 for an aliasing velocity of 25 ms−1, and it shows the three available choices with

their appropriate ranges that can be seen to depend on the estimated spectrum width value

and input time sequence length. According to Meymaris et al. (2009b), the three ranges are

systematically given the label small, medium, and large. While not explicitly stated, these

thresholds appears to have been obtained via simulations. Additionally, a fourth estimator

based on the parabolic form of the autocorrelation function is used to provide the initial

guess of the estimated spectrum width.

The approach for obtaining the spectrum width estimate of the short time series sequence

v(k) with M samples begins by estimating its auto correlation, which is defined as

Ri[v] =
1

M − i

M−i−1
∑

k=0

v∗(k)v(k + i). (1)

Additionally, let r[i] = |Ri[v]|.

The hybrid spectrum width estimators uses a combination of the w13, w12, and w01 to provide
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Figure 1: Hybrid Spectrum Width Estimator Model for an aliasing velocity of 25 ms−1. Two

sets of thresholds, which are labeled “small” and “large” widths in this figure, are used for

categorizing the estimated spectrum width values and for selecting the choice of spectrum

width estimator.



the spectrum width estimate. When the input spectrum width is small, the output of the

w13 estimator is used within this range. If r[3] ≥ r[1] then w13 = 0, else

w13 =

√
2

π
√

32 − 12
va

[

ln

(

r[1]

r[3]

)]1/2

, (2)

where va is the aliasing velocity. At the medium range, the w12 estimator is used. The

output of this estimator is: If r[2] ≥ r[1] then w12 = 0, else

w12 =
2
√

2

π
√

3
va

[

ln

(

r[1]

r[2]

)]1/2

(3)

At the largest range, the w01 estimator is used. The output of this estimator is: If r[1] ≥

r[0] − PN then w01 = 0, else

w01 =

√
2

π
va

[

ln

(

r[0] − PN

r[1]

)]1/2

, (4)

where PN is the noise power.

The fourth estimator that is used in the initial spectrum width estimate is

w012 =
1

π
va

√

−2 min(0,−0.1923 ln(r[0] − PN) − 0.0769 ln(r[1]) + 0.2692 ln(r[2]) (5)

The normalized spectrum width thresholds are listed in Table 1 according to Meymaris et al.

(2009a). The values listed depend only on the number of samples and increase with large

samples size, and linear interpolation is used to obtain the thresholds for sample sizes that

fall between those listed.

The following pseudo-code can be used to describe this technique:

• Use Table 1 to obtain the thresholds.

• If 1/2(w01 +w012) is larger than the large values threshold, use the value obtained from

w01. Else,



Table 1: Hybrid Spectrum Width Thresholds (normalized to va from Meymaris et al. (2009a))

M Thresholds

Small Values Large Values

23.0000 -1.0000 -1.0000

24.0000 -1.0000 -1.0000

25.0000 -1.0000 0.1610

30.0000 -1.0000 0.1630

35.0000 -1.0000 0.1650

40.0000 -1.0000 0.1680

45.0000 -1.0000 0.1700

50.0000 -1.0000 0.1710

55.0000 -1.0000 0.1730

58.0000 -1.0000 0.1740

59.0000 0.0730 0.1740

70.0000 0.0740 0.1760

80.0000 0.0720 0.1770

100.0000 0.0730 0.1790

150.0000 0.0730 0.1840

200.0000 0.0740 0.1850

300.0000 0.0740 0.1890



• if w13 is smaller than the small values threshold, use the value obtained from w13. Else,

• use the value obtained from w12.



3 Modified Hybrid Spectrum Width Estimator

Compared to the results obtained using w01, the results obtained using the hybrid spectrum

width estimator are significantly improved. These results will, however, be presented later.

Nevertheless, one of the most obvious improvement is observed at narrow spectrum widths,

where the standard deviation and bias are better, which lead to better mean-squared error

values at these ranges. Additionally, the percentage of complex widths obtained at the

narrow spectrum widths, which is also a measure of the performance at these range, decreases

when using the hybrid spectrum width estimators. These two improvements are desirable in

providing better spectrum width estimates.

Even though the performance of the hybrid spectrum width estimator is improved compared

to that of the w01 estimator, its performance could be improved using several simple modifi-

cations. Observe the optimal estimator range for these values shown in Figure 2. The solid

black lines are the thresholds used in the hybrid spectrum width estimator. The color images

below these lines depict the optimal choice of the estimated spectrum width estimator for

different sets of sample sizes, signal-to-noise ratio, and spectrum width values. The values

for the small, medium, and large thresholds for optimal performance actually varies accord-

ing to these parameters and do not match the static thresholds as presented for the hybrid

spectrum width estimator. By matching these thresholds, some additional improvements in

the estimated spectrum width can be obtained.

Another modification to the hybrid spectrum width estimator that can be applied to improve

the estimated spectrum width is to incorporate the wadp estimator at the small spectrum

width when the signal-to-noise ratio is sufficiently large. This estimator, which was presented



Figure 2: Overlay of the hybrid spectrum width thresholds versus the range obtained for the

optimal estimator (based on mean-squared error). Left to right: SNR = 10 (dB), SNR = 20

(dB), and SNR = 30 (dB).

in Melnikov and Doviak (2002), has the advantage of lower bias and standard deviation

compared to the w13 estimator when these conditions are satisfied, and the frequency of

non-zero estimates at the small spectrum width is lower using this estimator. The wadp

estimator has the following expression

wadp =
va

π

∣

∣

∣

∣

∣

∣

∣

∣

ln









1
{

1 −
[

△P
r[0]−PN

]1/2
}

{1 + SNR}1/2









∣

∣

∣

∣

∣

∣

∣

∣

1/2

, (6)

where

△P =
1

M − 1

M−2
∑

k=0

|v(k + 1)|2 − |v(k)|2. (7)

When △P >= P , set wadp = 0.

A final modification to the hybrid spectrum width estimator involves applying data quality

control by exploiting conditions when one or multiple of the w01 w12 or w13 estimators produce

a zero value. This modification aims at limiting the estimated spectrum width value to the

small range from the knowledge that the condition to realize such a value is statistically

insignificant at the medium and rare at the large spectrum width ranges. This conditional



probability example, which is illustrated in Figure 3 using simulated data, shows that the

true spectrum width should be small when one of the three w01 w12 or w13 estimators produce

zero values. As a result, it is possible to replace the zero value with a non-zero but a small

value produced by one of the other estimator and track for conditions when narrow spectrum

width values are incorrectly estimated. Shown in Tables 2 and 3 are now thresholds values

for the w01 and w12 estimators that depend on signal-to-noise ratios and number of samples.

σ

σ

Figure 3: Frequency of estimates with zero values for a selected simulation case.

Additionally, the threshold for wapd are

[

0.80 0.95 1.10 1.25 1.50 1.95

]

for M =
[

25 50 75 100 150 200

]

, respectively when the SNR is above 20 dB.

The following pseudo-code can be used to describe this technique:



Table 2: Hybrid Spectrum Width Thresholds for w01 (Non-normalized)

M / SNR 10 (dB) 20 (dB) 25 (dB) 30 (dB)

25 4.9500 4.3500 4.3500 4.2500

50 4.6000 3.8500 3.8500 3.8000

75 4.4500 3.6000 3.5500 3.5000

100 4.3500 3.4000 3.3500 3.4000

150 4.2500 3.1500 3.1500 3.1000

200 4.1000 3.0000 2.9500 2.9500

Table 3: Hybrid Spectrum Width Thresholds for w12 (Non-normalized)

M / SNR 10 (dB) 20 (dB) 25 (dB) 30 (dB)

25 2.8500 2.3500 2.2500 1.9500

50 2.7000 2.1500 2.0500 1.5000

75 2.5900 2.0000 1.9500 1.2500

100 2.5000 1.9000 1.8500 1.1000

150 2.4500 1.7000 1.6500 0.9500

200 2.4500 1.6500 1.6000 0.8000



• Use Tables 3 and 2 and linear interpolation to obtain the thresholds. Additionally,

obtain the threshold for wapd if needed.

• If w01 is larger than the large values threshold, use the value obtained from w01. Else,

• If w12 is larger than the medium threshold, use w12. Else,

• If wapd is smaller than its threshold use the value obtained from wapd. Else,

• use w13.

The following quality control of the estimated spectrum width values are used:

• If the SNR is above 20 dB, check to make sure the estimated value fall within its

intended optimal range or use value of the estimator at the larger range.

• If the output spectrum width is zero, insert another spectrum width value from either

w01 w12 and w13 if it is also small.

• If the output spectrum width value is large and at least one of the estimate of w01 w12

and w13 is small, either insert a replacement if it is small or insert 0.



4 Simulations and Results

The performance of the hybrid and modified hybrid estimators in terms of standard deviation,

bias, mean-squared-error, and frequency of non-zero estimates was obtained via simulations.

This was achieved by analyzing the output values of the spectrum width obtained from the

w01, hybrid spectrum width estimator, and the modified hybrid spectrum width estimators

using input sequences that were generated using the technique described in Zrnić (1975).

The performance of the estimators were observed for spectrum width values that ranged

from 0.1 to 10 ms−1, samples from 25 to 200, and signal-to-noise ratios from 10 to 30 dB.

For each set of configuration, ten thousand independent sequences were generated, and the

output from these simulations were used to obtain the statistics of the performance of the

estimators.

4.1 Pulse Pair Logarithmic Estimator

For comparison, the performance of the w01 estimator was also simulated, and the values

related to the performance of this estimator are plotted in Figure 4. The results show that

the estimator performs relatively well when the spectrum width is larger than 2 ms−1, and

the performance of this estimator improves when either the number of samples or signal-to-

noise ratio is increased. Additionally, the estimator has a bias value that is relatively near

zero (≈0 ms−1) over this range, while it has a standard deviation that increases with larger

values of the spectrum width. The performance of the estimator dramatically worsens and

deviates from the desired values by several folds when the true spectrum width is below

2 ms−1 . Additionally, the estimator produces estimates that are zeros at a frequency of



approximately 50 % of the time when the spectrum widths less than 1 ms−1. Compared to the

frequency above 4 ms−1 where the frequency of zeros for the output values are insignificant,

most of the values produced by this estimator in this small region are relatively ambiguous.

Figure 4: Performance of the w01 estimator: Top to bottom: bias, standard deviation, and

frequency of zeros. Right to left: SNR = 10 (dB), SNR = 20 (dB), and SNR = 30 (dB).



4.2 Hybrid Spectrum Width Estimator

The same sequences of time series signals used in producing the statistics generated for the

w01 estimator were also applied to the hybrid spectrum width estimator to evaluate its per-

formance, and the results of these simulations are plotted in Figure 5. The results show that

the hybrid spectrum width estimator are mostly desirable with values that are generally

very good. When compared to the performance obtained using the w01 estimator, the re-

sults are similar when the spectrum width is greater than 7 ms−1, while the results are more

noticeably different below this soft threshold. At values below 4 ms−1, the hybrid spectrum

width estimator is consistently better the w01 estimator with lower values of bias, standard

deviation, and frequency of zeros, which are all desirable. The difference is particularly evi-

dent for the results when the spectrum width is below 2 ms−1, where the bias and standard

deviation are closer to zero and the frequency of the zero estimates is smaller for the hybrid

spectrum width estimator. In some cases, the performance of the hybrid spectrum width

estimator is improved by at least 50% as compared to those obtained by the w01. Unfortu-

nately, the hybrid spectrum width estimator does not always perform better than the w01

estimator, and the results obtained for the hybrid spectrum width estimator with spectrum

width between 4 and 7 ms−1 demonstrate this. Over this range of true spectrum width

values, the degradation of the standard deviation observed with the hybrid spectrum width

estimator is more detrimental than the improvement obtained with the bias . Nevertheless,

the benefits of the hybrid spectrum width estimator gained from its improved performance

over the w01 outweighs its disadvantageous, and its disadvantage is only relatively minor

when these values are compared.



Figure 5: Performance of the hybrid spectrum width estimator: Top to bottom: bias, stan-

dard deviation, and frequency of zeros. Left to right: SNR = 10 (dB), SNR = 20 (dB), and

SNR = 30 (dB).



4.3 Modified Hybrid Spectrum Width Estimator

A similar setup as used in evaluating the hybrid spectrum width estimator was used to obtain

the performance of the modified hybrid spectrum width estimator. Using the same sequences

of the time series signals, the results of these simulations are plotted in Figure 6 and show

that the results obtained with the modified hybrid spectrum estimator are mostly desirable

with values that are generally very good. When compared to the performance obtained

using the w01 estimator, the results are better when the spectrum width is less than 5 ms−1.

The bias and standard deviation are closer to zero and the frequency of the zero estimates

is significantly small for the modified hybrid spectrum width estimator. In some cases, the

frequency of zeros generated by the modified hybrid spectrum width estimator is less than

25%, which is significantly better than that obtained using the w01 estimator. Unfortunately,

the performance of the modified hybrid spectrum width estimator is slightly worse than the

w01 estimator when the true spectrum width is larger than 5 ms−1 where a more negative

bias is observed, and it is slightly worse when the spectrum width is between 3 and 6 ms−1

and the number of samples is less than 50, where the degradation of the standard deviation

outweighs the benefit of the improved bias. In contrast, the performance of modified hybrid

spectrum width estimator in term of the mean-squared error metric is generally as good

or better than the hybrid spectrum width estimator. The comparison, which is plotted in

Figure 7, shows that the modified hybrid spectrum width estimator outperform the hybrid

spectrum width estimator in most cases and produces lower bias, standard deviation, and

frequency of zeros. The modified hybrid spectrum width estimator produces worse bias

when the spectrum width is larger than 5 ms−1, and larger standard deviation when the

number of samples is less than 50 and the true spectrum width is between 3 and 5 ms−1.



Nevertheless, the performance of the modified spectrum width estimator is generally better

than the hybrid spectrum width estimator.

Figure 6: Performance of the modified hybrid spectrum width estimator: Top to bottom:

bias, standard deviation, and frequency of zeros. Left to right: SNR = 10 (dB), SNR = 20

(dB), and SNR = 30 (dB).



Figure 7: MSE of the original (top) and modified (bottom) hybrid spectrum width estima-

tors. Left to right: SNR = 10 (dB), SNR = 20 (dB), and SNR = 30 (dB).



5 Conclusion

Results of the simulations to evaluate the hybrid spectrum width estimator show that this

technique generally performs better than the w01 estimator. The results of the two tech-

niques are approximately identical when the spectrum width is greater than 7 ms−1, while a

significant difference is observed below this soft threshold. At values below 4 ms−1, the hy-

brid spectrum width estimator is consistently better than the w01 estimator with lower values

of bias, standard deviation, and frequency of zero estimates, which are all desirable. The

difference is particularly evident for the results when the spectrum width is below 2 ms−1,

where the bias and standard deviation are closer to zero and the frequency of the zero es-

timates is smaller for the hybrid spectrum width estimator. However, the hybrid spectrum

width estimator performs worse than the w01 estimator when the true spectrum width ranges

between 4 and 7 ms−1, the signal-to-noise ratio is greater than 20 dB, and the number of

samples is larger than 50. In these conditions, the degradation of the standard deviation

that is observed with the hybrid spectrum width estimator is more detrimental than the

improvement obtained from the bias. Nevertheless, the overall gains of the hybrid spectrum

width estimator over the w01 estimator outweighs its disadvantageous, and the disadvantages

are only relatively minor when these values are examined.

After the above simulations, some modifications that included using an adaptive threshold,

incorporating the wadp spectrum width estimator, and adding some quality control censoring

were implemented into the hybrid spectrum width estimator. Using the same sequences of

the time series signals, the results obtained with the modified hybrid spectrum estimator

are also generally very good. When compared to the performance obtained using the w01



estimator, the results are better when the spectrum width is less than 5 ms−1. The bias and

standard deviation are closer to zero and the frequency of the zero estimates is significantly

better for the modified hybrid spectrum width estimator. Unfortunately, the performance of

the modified hybrid spectrum width estimator is slightly worse than the w01 estimator when

the true spectrum width is larger than 5 ms−1, where a more negative bias is observed, and it

is slightly worse when the spectrum width is between 3 and 6 ms−1 and the number of samples

is less than 50, where the degradation of the standard deviation outweighs the benefit of the

improved bias. Nevertheless, the general consensus is that it is a significant improvement

over the w01 estimator. In contrast, the performance of modified hybrid spectrum width

estimator in term of the mean-squared error metric is generally as good or better than the

hybrid spectrum width estimator with lower bias, standard deviation, frequency of zeros. An

exception occurred when the number of samples is less than 50 and the true spectrum width

is between 3 and 5 ms−1, where the modified hybrid spectrum width estimator produces

worse bias when the spectrum width is larger than 5 ms−1, and larger standard deviation.
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Appendix A. Staggered PRT Algorithm Description (July 2010) 

A.1. Preface 

This document extends the previous Staggered PRT algorithm description from July 2009 

by including dual polarization sequences and the calculation of polarimetric variables. 

This algorithm description includes a high-level description with the overall processing 

logic followed by a detailed explanation of each pre-computation and processing step.  

Most of the July 2009 algorithm steps are now repeated for both H- and V-channels 

calculation. On the other hand, the SACHI filter has been modified to preserve the 

spectral phases in order to allow the calculation of polarimetric variables. Now, the 

output of the SACHI filter produces autocorrelations for both H- and V-channels and also 

the cross-correlation between them. As with previous versions, most of the steps in the 

SACHI algorithm are described in algorithmic form to ease implementation and reduce 

ambiguity. The DC removal ground clutter filter has been retained to operate on those 

range gates where only long-PRT data is available and ground clutter filtering is needed 

and now it includes both channels. 

As in the July 2009 description, the algorithm is able to handle overlaid echoes, 

extending the recovery of Doppler moments to the unambiguous range of the long PRT. 

Moment-specific overlaid power thresholds are used to identify recoverable data and flag 

unrecoverable Doppler moments. Finally, ground clutter is also assumed to be within the 

unambiguous range of the short PRT.  
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A.2. Assumptions 

1) The transmission sequence alternates two pulse repetition times (PRT) as: T1, T2, T1, 
T2 … for a total of M pulses.  

2) The PRT ratio T1/T2 = 2/3, where m = 2, n = 3 and T2  T1 = Tu. 

3) All range gates are available and there is a perfect alignment of range gates between 
the two PRTs (i.e., a given range gate represents the same resolution volume in space 
for every transmitted pulse).  Also, the number of range gates for each PRT is: 
N1 = T1/s and N2 = T2/s, where s is the sampling period. 

4) There are no significant echoes beyond the maximum unambiguous range 
corresponding to T2 (ra2).  

5) There is no significant ground clutter beyond the maximum unambiguous range 
corresponding to T1 (ra1).  

6) The number of staggered PRT samples per range gate (M) is even. 

7) The algorithm operates on a radial worth of data at a time. 

A.3. Inputs 

1) Dual polarization complex time-series data: 

VH (n, m) = IH (n, m) + jQH (n, m),  

VV (n, m) = IV (n, m) + jQV (n, m),  

where subscripts H and V denote horizontal and vertical polarization, 0 < n < N1 for even 
m, 0 < n < N2 for odd m and 0 < m < M.  Note that n indexes the range gates and m the 
sweeps (or pulses). 

2) Associated metadata: 

λ is the radar wavelength in meters 
NH is the noise power in linear units for the horizontal channel 
NV is the noise power in linear units for the vertical channel 
dBZ0 is the system calibration constant in dB 
ATMOS is the elevation-dependent atmospheric attenuation in dB/km 
R is the spacing between range gates in km (R = cs/2)  
TZ is the signal-to-noise ratio threshold for reflectivity in dB 
TV is the signal-to-noise ratio threshold for velocity in dB 
TW is the signal-to-noise ratio threshold for spectrum width in dB 
TOV is the velocity overlaid threshold in dB (Note: recommended value is 0 dB) 
TOW is the spectrum width overlaid threshold in dB (Note: recommended value is 10 dB) 



107 

3) Data window: 

d’(m), where 0 < m < 5M/2. Note that d’ does not need to be normalized or scaled in any 
way. A tapered data window such as the Blackman window is recommended for best 
performance of the SACHI ground clutter filter. Otherwise, rectangular window (i.e., no 
window) should be applied. 

4) Ground clutter filter bypass map: 

B(n), where n indexes the range bins with the same resolution as the time-series data 
along a radial, and the map corresponds to the elevation and azimuth of the radial being 
processed.  B is 0 if clutter filtering is required and 1 otherwise. In this algorithm, the 
clutter map is ignored beyond the unambiguous range corresponding to the short PRT 
where clutter is assumed not to be present. 

A.4. Outputs 

1) Reflectivity, Doppler velocity, and spectrum width calculated from H channel data: 

Z (n)       for 0 < n < N2, 
v (n) and w (n)    for 0 < n < N2. 

2) Differential reflectivity, differential phase and correlation coefficient calculated from 
H and V channel data: 

ZDR(n) for 0 < n < N2, 
DP(n) for 0 < n < N2, 
HV(n) for 0 < n < N2. 

3) Signal-to-noise ratio and overlaid censoring flags*: 

NSZ (n), NSV (n) and NSW (n) for 0 < n < N2, 
OVV (n) and OVW (n)   for 0 < n < N2. 

* NSZ (n) is used for censoring ZDR(n), DP(n) and HV(n). 

A.5. Functions and Conventions 

1) || – Returns the absolute value of a complex number or the absolute value of each 
element of a matrix of complex numbers. 

2) arg – Returns the principal phase angle of the input complex number in radians.  The 
algorithm is written to accommodate this phase in the interval [0, 2) or [, ). 
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3) arg min
k

 – Returns the index k to the element in the input vector that has the minimum 

value. 

4) diag – Returns a square matrix with the input vector along the principal diagonal (row 
index = column index) of the matrix and all other elements not on the principal 
diagonal equal to zero.  The number of rows (columns) of the matrix is equal to the 
number of elements in the vector. 

5) ceiling – Returns the smallest integer value not less than the input number. 

6) floor – Returns the largest integer value not greater than the input number. 

7) round – Returns the nearest integer to the input number. 

8) max – Returns the maximum value among the input numbers. 

9) Italicized names are used to denote scalars (e.g., Noise).  

10) Bolded names are used to denote vectors or matrices (e.g., A). Italicized names with 
indexing in parentheses are used to denote elements of a vector or matrix [e.g., A(i,j)]. 

11)  * – Denotes complex conjugate. 

12)  T – Denotes matrix transpose. 

13) j – Denotes the imaginary unit 1 . 
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A.6. High-level Algorithm description 

 If first run of SPRT algorithm 
1) Pre-computation of velocity dealiasing rules 
2) Pre-computation of M-independent SACHI filter parameters 

 End 
 If the number of samples (M) changed 
  3) Pre-computation of window parameters  
  4) Pre-computation of M-dependent SACHI filter parameters 
 End  
 For each range bin n, where 0 < n < N2 

  If n > N1 
   5) Short-PRT Segment-III Data Reconstruction 
  End 
  If B(n) = 0 AND n < N1 
   6) SACHI Clutter Filtering (Segment-I/II gate with segment-I/II clutter) 
  Else 
   If n > N1 AND B(n – N1) = 0 

   7)  DC Removal Clutter Filtering (Segment-III gate with segment-I 
clutter) 

   Else 
    8) No Clutter Filtering 
   End 
   9) Power and correlation computations for each PRT 
   10)  Combined power and cross-correlation computation 
  End 
 End 
 11) Strong point clutter canceling 
 For each range bin n, where 0 < n < N2 
  12) Signal power computation 
  13) Reflectivity computation 
  14) Velocity computation 
  15) Spectrum width computation 
  16) Differential reflectivity computation 
  17) Differential phase computation 
  18) Cross-correlation coefficient computation 
	 	 19) Determination of significant returns for reflectivity and polarimetric variables 
  20) Determination of significant returns for velocity 
  21) Determination of significant returns for spectrum width 
 End 
 For each range bin n, where 0 < n < N2 
  22) Determination of overlaid returns for velocity and spectrum width 
 End 
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A.7. Step-by-step algorithm description 

1) Pre-computation of velocity dealiasing rules 

This method is described in the paper “Design, Implementation, and Demonstration of a 
Staggered PRT Algorithm for the WSR-88D” by Torres et al. (2004). Herein, VDAc are 
the normalized velocity difference transfer function (VDTF) constant values and VDAp 
are the normalized number of Nyquist co-intervals for dealiasing. 

A set of velocity dealiasing rules is pre-computed at the initiation of the SPRT algorithm 
as follows: 

(Compute type-I and II positive VDTF discontinuity points. m and n are the integers in 
the PRT ratio) 
p = 0 
While 2p + 1 < m 
 D1 (p) = (2p + 1)/m 
 TYPE1 (p) = 1  
 p = p + 1 
End 
q = 0 
While 2q + 1 < n 
 D2 (q) = (2q + 1)/n 
 TYPE2 (q) = 2  
 q = q + 1 
End 

 
(Create TYPE by combining and sorting both sets of discontinuity points) 
Concatenate D1 and D2 to create D with p + q elements. 
Concatenate TYPE1 and TYPE2 to create TYPE with p + q elements. 
Sort TYPE in a “slave” mode using D as the “master”. 

 
(Compute VDTF constants and dealiasing factors for non-negative discontinuity points) 
VDAc (p + q) = 0 
VDAp (p + q) = 0 
For 0 < k < p + q 
 If TYPE (k) = 1 
  VDAc (p + q + k + 1) = VDAc (p + q + k) – 2/m 
  VDAp (p + q + k + 1) = VDAp (p + q + k) + 1/m 
 Else 
  VDAc (p + q + k + 1) = VDAc (p + q + k) + 2/n 
  VDAp (p + q + k + 1) = VDAp (p + q + k)  
 End 
End 
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(Compute VDTF constants and dealiasing factors for negative discontinuity points) 
For – (p + q) < k < 0 
 VDAc (p + q + k) = VDAc (p + q  k)  
 VDAp (p + q + k) = VDAp (p + q  k)  
End 
 

(Note that since the PRT ratio does not change, these vectors can be hard-coded in a 
real-time implementation of the SPRT algorithm.) 
 

2) Pre-computation of M-independent SACHI filter parameters 

This method is described in NSSL Signal Design and Processing Techniques for WSR-
88D Ambiguity Resolution (Report 3, Report 9 and Report 11). The SACHI filter 
parameters could be pre-computed at the initiation of the SPRT algorithm as follows: 

 
(Create 5-by-5 convolution matrix, Cr) 

,1 ,2 ,3 ,4 ,5

(0) (4) (3) (2) (1)

(1) (0) (4) (3) (2)

(2) (1) (0) (4) (3)

(3) (2) (1) (0) (4)

(4) (3) (2) (1) (0)

 
 
 
       
 
  

C C C C C

C C C C C

C C C C C

C C C C C

C C C C C

r r r r r rC C C C C C ,  

where  
4

0

1
( ) ( )exp 2 / 5

10




 
n

C k c n j nk ; for 0 < k < 5 and c = [1, 0, 1, 0, 0], and 

Cr,k is the k-th column of Cr. 
 
(Calculate magnitude deconvolution matrix, Cmd) 
(Note: The following formulas are written in matrix algebra notation with the 
conventions described above) 

,1

,2
1

,3

,4

,5

4.6281 2.0697 4.6281 4.6281 2.0697

2.0697 4.6281 2.0697 4.6281 4.6281

4.6281 2.0697 4.6281 2.0697 4.6281

4.6281 4.6281 2.0697 4.6281 2.0697

2.0697 4.6281 4.62



   
     
      
 

   
   

md

md

mdmd r

md

md

C

C

CC C

C

C 81 2.0697 4.6281

 
 
 
 
 
 
   

 , 

where Cmd,k is the k-th row of Cmd. 
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(Calculate matrices Cf1 and Cf2 using 1st and 5th columns of Cr) 
 

*
,1 ,1

0.4 0.0382 0.1176 0.2618 0.1902 0.2618 0.1902 0.0382 0.1176

0.0382 0.1176 0.0382 0.0309 0.0951 0.0809 0.0588 0.0309 0.0225

0.2618 0.1902 0.0309 0.0951 0.2681 0.0809 0.2490 0.0809 0.058

   

     

    

 T

j j j j

j j j j

j j j j

f1 r rC C C

8

0.2618 0.1902 0.0809 0.0588 0.0809 0.2490 0.2618 0.0309 0.0951

0.0382 0.1176 0.0309 0.0225 0.0809 0.0588 0.0309 0.0951 0.0382

    

     

 
 
 
 
 
 
 
  

j j j j

j j j j

 
 

*
,5 ,5

0.0382 0.0309 0.0951 0.0809 0.0588 0.0309 0.0225 0.0382 0.1176

0.0309 0.0951 0.2618 0.0809 0.249 0.0809 0.0588 0.2618 0.1902

0.0809 0.0588 0.0809 0.249 0.2618 0.0309 0.0951 0.2618 0.1

     

    

    

 T

j j j j

j j j j

j j j j

f2 r rC C C

902

0.0309 0.0225 0.0809 0.0588 0.0309 0.0951 0.0382 0.0382 0.1176

0.0382 0.1176 0.2618 0.1902 0.2618 0.1902 0.0382 0.1176 0.4

     

   

 
 
 
 
 
 
 
  

j j j j

j j j j

 

where *T stands for the matrix conjugate transpose (a.k.a. Hermitian) operation.  

(Calculate the correction coefficients ξ2 and ξ3 for correction vector X) 

 *
,1 , ,1 , ,1

1
; 


k T

k kmd r r r rC C C C C
k = 2, 3. 

2 31.1056 and 1.7889.    
 

(Note: since the PRT ratio does not change, these matrices and coefficients can be hard-
coded in a real-time implementation of the SPRT algorithm. The numbers provided here 
are for reference purposes only; the highest precision available is recommended for 
hard-coding these numbers.) 

3) Pre-computation of window parameters 

(Calculate the extended number of coefficients) 
Mx = 5M / 2 
 
(Calculate the number of pulse pairs) 
Mp = M / 2 
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(Calculate normalized window d for un-normalized window function d' with Mx 
points)  

 
1

1
2

0

1
( ) ( ) ( ) ;






 
   

 
 


xM

mx

d m d m d m
M

 0 < m < Mx. 

 
(Calculate window correction factor for lag-1) 

2

0

1
( ) ( 1)





 
xM

c
mx

d d m d m
M

 

4) Pre-computation of M-dependent SACHI filter parameters 
 
 (Compute correction vector, X) 
 For 0 ≤ k < ceiling(Mp/2) 
  X (k) = 1 
 End 
 For ceiling(Mp/2) ≤ k < ceiling(Mp/2) + Mp 

  X (k) = ξ2 
 End 
 For ceiling(Mp/2) + Mp ≤ k < ceiling(Mp/2) + 3Mp 

  X (k) = ξ3 
 End 
 For ceiling(Mp/2) + 3Mp ≤ k < ceiling(Mp/2) + 4Mp 

  X (k) = ξ2 
 End 
 For ceiling(Mp/2) + 4Mp ≤ k < Mx 

  X (k) = 1 
 End 
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A.8. Processing steps 

5) Short-PRT Segment-III Data Reconstruction 

Long-PRT Segment-I data is used as a proxy for short-PRT segment-III data 
 
 For 0 ≤ m < Mp 
  VH (n, 2m) = VH (n N1, 2m + 1) 
  VV (n, 2m) = VV (n N1, 2m + 1) 
 End 

6) SACHI Clutter Filtering 

The SACHI filter algorithm is used when clutter filtering is required inside the maximum 
unambiguous range corresponding to T1 (ra1). 

  
 (Form derived time series, VHd and VVd, from input time series VH and VV) 
 For 0 ≤ m < Mp 
  VHd (5m) = VH (n, 2m) 
  VHd (5m + 1) = 0 
  VHd (5m + 2) = VH (n, 2m + 1) 
  VHd (5m + 3) = 0 
  VHd (5m + 4) = 0 
   
  VVd (5m) = VV (n, 2m) 
  VVd (5m + 1) = 0 
  VVd (5m + 2) = VV (n, 2m + 1) 
  VVd (5m + 3) = 0 
  VVd (5m + 4) = 0 
 End 
   
  (Compute DFT of windowed extended time series power compensated for added 

zeroes) 

 
1

0

5 1
( ) ( ) ( ) exp( 2 / ) ;

2






  
      


xM

H Hd x
mx

F k V m d m j km M
M

k = 0, 1 …, Mx – 1. 

 

1

0

5 1
( ) ( ) ( ) exp( 2 / ) ;

2






  
      


xM

V Vd x
mx

F k V m d m j km M
M

k = 0, 1 …, Mx – 1. 

   
 (Determine clutter filter width parameter, q) 
 (Use GMAP to return the number of coefficients identified as clutter, GMAPHcoef 

and GMAPVcoeff. Pass to GMAP the 5th of the Doppler spectrum containing the main 
clutter replica; i.e., |F{H,V}(0)|2,…, |F{H,V}[ceiling(Mp/2) – 1] |2, |F{H,V}[Mx – 
floor(Mp/2)] |2,…, |F {H,V} (Mx – 1) |2}; initialize GMAP for spectra with va/5, and 
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get the number of coefficients identified as clutter to estimate q for both H and V 
channels) 
qH = floor [(GMAPHcoef + 1)/2] 
qV = floor [(GMAPVcoef + 1)/2] 
 
(Use the largest q to create the clutter filter vectors for polarimetric variable 
calculation) 
q’ = max(qH, qV) 
(Create clutter filter vectors If1’,If2’) 

 For 0 ≤ k < Mp 
  If k < q’ 
   If1’ (k) = 1 
   If2’ (k) = 0 
 
  ElseIf k ≤ Mp – q’ 
   If1’ (k) = 0 
   If2’ (k) = 0 
  Else 
   If1’ (k) = 0 
   If2’ (k) = 1 
  End 
 End 
 
 (Row-wise re-arrange FH and FV into 5-by-Mp matrices, FHr and FVr) 
 For 0 ≤ k < Mp 
  FHr (0, k) = FH (k)  
  FHr (1, k) = FH (k + Mp)  
  FHr (2, k) = FH (k + 2Mp) 
  FHr (3, k) = FH (k + 3Mp) 
  FHr (4, k) = FH (k + 4Mp) 
 
  FVr (0, k) = FV (k)  
  FVr (1, k) = FV (k + Mp)  
  FVr (2, k) = FV (k + 2Mp) 
  FVr (3, k) = FV (k + 3Mp) 
  FVr (4, k) = FV (k + 4Mp) 
 End   
 
 (Compute the clutter filtered spectrum matrices, FHf and FVf) 
 (Note: The following formulas are written in matrix algebra notation. Complex-

matrix multiplications can be implemented using four real-matrix multiplications 
as: AB = (Ar + jAi)(Br + jBi) = (ArBr AiBi) + j(ArBi + AiBr) ) 

 
    H H Hr HrF diag ' diag '  f r fl f1 f2 f2F F C I C F I  

    Vf Vr Vr VrF diag ' diag '  fl f1 f2 f2F C F I C F I  
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 (Row-wise unfold FHf and FVf into FHdf  and FVdf) 
 For 0 ≤ k < Mp 
  FHdf (k) = FHf (0, k) 
  FHdf (k + Mp) = FHf (1, k) 
  FHdf (k + 2Mp) = FHf (2, k) 
  FHdf (k + 3Mp) = FHf (3, k) 
  FHdf (k + 4Mp) = FHf (4, k) 
 
  FVdf (k) = FVf (0, k) 
  FVdf (k + Mp) = FVf (1, k) 
  FVdf (k + 2Mp) = FVf (2, k) 
  FVdf (k + 3Mp) = FVf (3, k) 
  FVdf (k + 4Mp) = FVf (4, k) 
 End 
 
 (Compute power for both channels, PH’ and PV, and cross-corr at lag 0, RHV(0)) 

  
1

2

0

' ( )




 
xM

H Hdf
k

P n F k   

  
1

2

0

( )




 
xM

V Vdf
k

P n F k  

    
1

*

0

( ) ·




 
xM

HV Hdf Vdf
k

R n F k F k  

  
 (Proceed with the conventional SACHI Clutter Filtering, only H-channel data) 
 q = qH 

 If q < q’ 
  (Create clutter filter vectors If1, If2) 

  For 0 ≤ k < Mp 
   If k < q 
    If1 (k) = 1 
    If2 (k) = 0 
 
   ElseIf k ≤ Mp – q 
    If1 (k) = 0 
    If2 (k) = 0 
   Else 
    If1 (k) = 0 
    If2 (k) = 1 
   End 
  End 

     Hr Hr Hrdiag diag  f fl f1 f2 f2F F C F I C F I  
 Else 
  HffF F  

 End 



117 

(Create clutter filter vectors, I1, and I2) 
 For 0 ≤ k < Mp 
  If k < q 
   I1 (k) = 0 
   I1 (k + Mp) = 0 
   I1 (k + 2Mp) = 0 
   I1 (k + 3Mp) = 0 
   I1 (k + 4Mp) = 0 
   I2 (k) = 1 
   I2 (k + Mp) = 1 
   I2 (k + 2Mp) = 1 
   I2 (k + 3Mp) = 1 
   I2 (k + 4Mp) = 1 
  ElseIf k ≤ Mp – q 
   I1 (k) = 1 
   I1 (k + Mp) = 1 
   I1 (k + 2Mp) = 1 
   I1 (k + 3Mp) = 1 
   I1 (k + 4Mp) = 1 
   I2 (k) = 0 
   I2 (k + Mp) = 0 
   I2 (k + 2Mp) = 0 
   I2 (k + 3Mp) = 0 
   I2 (k + 4Mp) = 0 
  Else 
   I1 (k) = 0 
   I1 (k + Mp) = 0 
   I1 (k + 2Mp) = 0 
   I1 (k + 3Mp) = 0 
   I1 (k + 4Mp) = 0 
   I2 (k) = 1 
   I2 (k + Mp) = 1 
   I2 (k + 2Mp) = 1 
   I2 (k + 3Mp) = 1 
   I2 (k + 4Mp) = 1 
  End 
 End 
  
 (Magnitude deconvolved matrix, Fd) 
 d md fF = C F  
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 (Row-wise unfold Fd into Fdf) 
 For 0 ≤ k < Mp 
  Fdf (k) = Fd (0, k) 
  Fdf (k + Mp) = Fd (1, k) 
  Fdf (k + 2Mp) = Fd (2, k) 
  Fdf (k + 3Mp) = Fd (3, k) 
  Fdf (k + 4Mp) = Fd (4, k) 
 End 
 
 (Compute the lag-1 autocorrelation, R1df) 

  

 
1

2

1
0

1
( ) exp 2 /





 
xM

df df x
kc

R F k j k M
d

 

 
 (Compute vector Iv with M/2 ones centered on arg(R1df)) 
 (Round to the nearest spectral coefficient. Choose symmetric window of coefficients 

around it) 

  
 1

0

arg
round

2

 
  

  

x df

df

M R
k   

 If k0df < 0  
  k0df = k0df + Mx 
 End 
 If k0df ≥ Mx 

  k0df = k0df – Mx 
 End 
 1 0 floor( / 4) df dfk k M   

  If k1df < 0 
   k1df = k1df + Mx 
  End 
 2 0 ceiling( / 4) 1  df dfk k M   

 If k2df ≥ Mx 
   k2df = k2df – Mx 

 End 
  
 (k0df is the coefficient corresponding to arg(R1df), k1df and k2df specify the extent of 

Mp spectral coefficients centered on the mean velocity.  If k1df < k2df, the ones span 
from k1df to k2df; otherwise, the ones will span from k1df to Mx – 1, and 0 to k2df) 

 If k1df < k2df 
 For 0 ≤ k < Mx 
  If k < k1df OR k > k2df 
   Iv (k) = 0 
  Else 
   Iv (k) = 1 
  End 
 End     
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 Else 
 For 0 ≤ k < Mx 
  If k < k1df AND k > k2df 
   Iv (k) = 0 
  Else 
   Iv (k) = 1 
  End 
 End     

 End 
 
 (Interpolate the elements for the region around zero velocity in Fdf with linearly 

interpolated values from S1 and S2) 
 If q > 0 

  
2

1 ( ) dfS F q  

  
2

2 ( ) df xS F M q  

  For 0 ≤ k < Mx 

  If k < q 

         1/2

2 1 2     /  2     iF k S S S q k q  

  ElseIf k > Mx – q 

         1/2

2 1 2     /  2      i xF k S S S q k M q  

  Else 
   ( ) ( )i dfF k F k  

  End 
  End 
 Else 
           (Don’t interpolate if not needed) 
  For 0 ≤ k < Mx 

  ( ) ( )i dfF k F k  

 End 
 End 

 
 (Compute the corrected spectrum, Fc) 
 For 0 ≤ k < Mx 

 Fc (k) = Fi (k) I1 (k) + Fi (k) I2 (k) Iv (k) X (k) 
 End 
 
 (Compute vector Ic with ones where there’s a non-zero spectral component in 

vector Fc) 
 For 0 ≤ k < Mx 

 Ic (k) = I1 (k) + I2 (k) Iv (k) 
 End 
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 (Compute the mean power, Pc, and autocorrelation at lag Tu, R1c, using Fc) 

 

1
2

0

( )




 
xM

c c
k

P F k  

 
 

1
2

1
0

1
( ) exp 2





 
xM

c c x
kc

R F k j k M
d  

 
 (Retain only M coefficients centered on velocity based on R1c and delete the rest 

from Fc and Ic) 

 

 1
0

arg
round

2
 

  
 

x c
c

M R
k   

 If k0c < 0  
  k0c = k0c + Mx 
 End 
 If k0c ≥ Mx 

  k0c = k0c – Mx 
 End 
 k1c = k0c – Mp  
 If k1c < 0 
   k1c = k1c + Mx 
 End 
 k2c = k0c + Mp – 1  
 If k2c ≥ Mx 
   k2c = k2c – Mx 
 End 
 If k1c < k2c 

 For 0 ≤ k < Mx 
  If k < k1c OR k > k2c 
   Fm (k) = 0 
   Im (k) = 0 
  Else 
   Fm (k) = Fc (k) 
   Im (k) = Ic (k) 
  End 
 End     

 Else 
 For 0 ≤ k < Mx 
  If k < k1c AND k > k2c 
   Fm (k) = 0 
   Im (k) = 0 
  Else 
   Fm (k) = Fc (k) 
   Im (k) = Ic (k) 
  End 
 End     

 End 
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 (Compute the modified mean power, Pm, and autocorrelation at lag Tu, R1m, using 
Fm) 

 

1
2

0

( )




 
xM

m m
k

P F k  

 
 

1
2

1
0

1
( ) exp 2





 
xM

m m x
kc

R F k j k M
d  

 
 (Compute noise correction factors) 

 
1

0

1
( )





 
xM

c c
kx

N I k
M  

 

1

0

1
( )





 
xM

m m
kx

N I k
M  

  
 (Compute overlaid power correction if in segment I) 
 If n < N2 – N1 

   
1

2

1
0

1 1
,2 1

2





 
    

  


pM

ov H
mp

S V n N m Noise
M

 

  If Sov < 0 
   Sov = 0 
  End 
 Else 
  Sov = 0 
 End 
 
 (Correct powers to remove overlaid contamination adjusted for each spectrum) 
 Pm = Pm – Nm Sov 
 If Pm < 0 
  Pm = 0 
 End

 

 Pc = Pc – Nc Sov 
 If Pc < 0 
  Pc = 0 
 End

 

 
 (Compute spectrum width power ratio adjustment) 
 Sm = Pm – Nm Noise 
 If Sm < 0 
  Sm = 0 
 End 
 If Sm > 0 

  

1 m
adj

m

R
P

S  
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 Else 
  Padj = 0 
 End

 

  
 (Compute signal power) 
 Sc = Pc – Nc Noise 
 If Sc < 0 
  Sc = 0 
 End 
 
 (Compute short PRT autocorrelation at lag T1) 

  4
1 1( ) exp 2arg    H c adj cR n S P j R  

  
 (Compute long PRT autocorrelation at lag T2) 

  9
2 1( ) exp 3arg    H H adj cR n S P j R   

 
 (Adjust signal power to include noise) 
 PH(n) = Sc + Noise 

 
 (Note that the outputs of SACHI are P’H(n), PV(n), RHV(n), PH(n), RH1(n) and 

RH2(n)) 
 

7) DC Removal Clutter Filtering (Segment-III gate with segment-I clutter) 

This DC Removal clutter filtering algorithm removes the mean (DC) component of the 
short-PRT segment-III gates in those locations where the site-dependent clutter filter 
bypass map B indicates the need for clutter within segment I.   

  
 (Calculate the mean of the even pulses.) 

1

0

1
( , 2 )





 
pM

Hm H
mp

V V n m
M  

1

0

1
( , 2 )





 
pM

Vm V
mp

V V n m
M  

 
(Subtract mean from even pulses.) 
For 0 ≤ m < Mp 
 VHF (2m) = VH (n, 2m) – VHm 
 VHF (2m + 1) = VH (n, 2m + 1)  
 VVF (2m) = VV (n, 2m) – VVm 
 VVF (2m + 1) = VV (n, 2m + 1)  
End 
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8) No Clutter Filtering 
 
For 0 < m < M 
 VHF (m) = VH (n, m) 
 VVF (m) = VV (n, m) 
End 

9) Power and correlation computations for each PRT 
 

If n < N1 
 (Compute power from even pulses, if available) 

 
1

2

1
0

1
(2 )





 
pM

H HF
mp

P V m
M  

 

1
2

1
0

1
(2 )





 
pM

V VF
mp

P V m
M  

 (Compute cross-correlation from even pulses, if available)
 

 

1
*

1
0

1
( ) (2 ) (2 )





 
pM

HV HF VF
mp

R n V m V m
M

 

End 
 
(Compute power from odd pulses) 

1
2

2
0

1
(2 1)





 
pM

H HF
mp

P V m
M  

1
2

2
0

1
(2 1)





 
pM

V VF
mp

P V m
M  

(Compute cross-correlation from odd pulses)
 1

*
2

0

1
( ) (2 1) (2 1)





  
pM

HV HF VF
mp

R n V m V m
M

 

 
(Compute lag-1 correlations from all pulses from H channel) 

1
*

1
0

1
( ) (2 ) (2 1)





 
pM

H HF HF
mp

R n V m V m
M

 

2
*

2
0

1
( ) (2 1) (2 2)

1





  
 

pM

H HF HF
mp

R n V m V m
M

 

10) Combined power and cross-correlation computation 

To use as much information as possible, data are extracted from the two power arrays 
with different rules for each of the three segments depicted in Figure A.1.  For segment , 
data are extracted only from P1, since P2 may be contaminated on those range bins with 
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overlaid powers.  An average of P1 and P2 is extracted for segment , given that both 
power vectors are “clean” there.  Finally, segment   data are obtained from  P2.  In 
algorithmic form: 

 
If n < N2N1 
 (Segment I) 
 1( ) H HP n P  

 1( ) V VP n P  

ElseIf n < N1 
 (Segment II) 
  1

1 22( )  H H HP n P P  

  1
1 22( )  V V VP n P P  

Else 
 (Segment III) 
 2( ) H HP n P  

 2( ) V VP n P  

End 
' ( ) H HP n P  

 
Fig. A.1. Signal powers in the staggered PRT algorithm. Roman numerals indicate segment 

numbers. 

 
The same rules apply for the cross-correlation computation. 
 

 If n < N2N1 
 (Segment I) 
 1( ) HV HVR n R  

ElseIf n < N1 
 (Segment II) 
  1

1 22( )  HV HV HVR n R R  

Else 
 (Segment III) 
 2( ) HV HVR n R  

End 
 

    

 T1  T2
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11) Strong point clutter canceling  

Processing is as in the current system.  Strong-point clutter canceling is applied to PH, 
P’H, RH1 and RH2 based on radial power continuity in PH. For the remainder of the 
algorithm it is assumed that the outputs of this step are PH, P’H, RH1 and RH2. 

12) Signal power computation 
 

If P H (n) < N H 
 S H = 0 
Else 
 S H = P H (n) – N H 
End 
 
If P’H(n) < N H 
 S’H = 0 
Else 
 S’H = P H’ (n) – N H 
End 
 
If P V (n) < N V 
 S V = 0 
Else 
 S V = P V (n) – N V 
End 

13) Reflectivity computation 
 

(Range in km) 
R = nR + R/2 
(Reflectivity in dBZ. log10 is the base-10 logarithm) 
If SH > 0 
 Z (n) = 10log10 (S H) + dBZ0 + R ATMOS + 20log10 (R) – 10log10 (N H),  
Else 
 Z(n) should be set to the smallest possible reflectivity value 
End 

14) Velocity computation  
 

(Compute Doppler velocities for each PRT using the corresponding correlation 
estimates) 

 1 1
1

arg ( )
4




  Hv R n
T

 

 2 2
2

arg ( )
4




  Hv R n
T  



126 

(Compute extended Nyquist velocity) 

12


av

T  
 
(Dealias velocity using pre-computed rules) 

1 2arg min ( )   c a
k

l v v VDA k v  

1( ) 2  ( )  a pv n v v VDA l  

  
(Prevent dealiased velocities outside of the extended Nyquist co-interval) 
If v(n) > va 
 ( ) ( ) 2  av n v n v  

End 
If v(n) < va 
 ( ) ( ) 2  av n v n v  

End 

15) Spectrum width computation 

The spectrum width estimator corresponds to the algorithm implemented in the legacy 
WSR-88D signal processor. 

 

If S H = 0 OR 1( ) 0HR n  

 (Insert spectrum width of white noise) 

 
1

( )
4 3


w n

T
 ElseIf 1( )H HS R n  

 (Insert spectrum width of a constant) 

 ( ) 0w n  
Else  
 (Spectrum width computation. ln is the natural logarithm) 

 
11

( ) ln
( )2 2




 
   

 H

S
w n

R nT  

If 
1

( )
4 3


w n

T  

  1

( )
4 3


w n

T  
 End

 End  
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16) Differential reflectivity computation 
 

If S’H > 0 AND SV > 0 

  
'

10( ) 10log H
DR

V

S
Z n

S
 

 ElseIf S’H = 0 
 ZDR(n) should be set to the smallest possible value 

 ElseIf SV = 0 
ZDR(n) should be set to the highest possible value 

End 

17) Differential phase computation 

   arg    DP HVn R n  

18) Cross-correlation coefficient computation 
 
If S’H > 0 AND SV > 0 

 
'

( )  HV
HV

H V

R n
n

S S
 

Else 
HV(n) = 0 

End 

19) Determination of significant returns for reflectivity and polarimetric variables 

The non-significant return indicator array (NSZ) is a binary array where 0 indicates 
“significant” and 1 indicates “non-significant”. This array is also used for ZDR(n), DP(n) 
and hv(n). 

 
If 0.110  ZT

H HS N  

 NSZ(n) = 1 
Else 
 NSZ(n) = 0 
End 
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20) Determination of significant returns for velocity 

The non-significant return indicator array (NSV) is a binary array where 0 indicates 
“significant” and 1 indicates “non-significant” 

If 0.110  VT
H HS N  

 NSV(n) = 1 
Else 
 NSV(n) = 0 
End 

21) Determination of significant returns for spectrum width 

The non-significant return indicator array (NSW) is a binary array where 0 indicates 
“significant” and 1 indicates “non-significant” 

 
If 0.110  WT

H HS N  

 NSW(n) = 1 
Else 
 NSW(n) = 0 
End 

22) Determination of overlaid returns for velocity and spectrum width  

Censoring of velocity and spectrum width data is only necessary in segments and. 
This is done by analyzing P in segment  (P1) and P in segment P2) see Fig. 1). The 
idea is to determine whether second trip signals mask first trip signals and vice versa. 
While such overlaid echoes appear in every other pulse and do not bias velocity estimates 
at those range locations, overlaid powers act as noise. Therefore, when overlaid powers 
are above a preset fraction of their non-overlaid counterparts, the corresponding velocity 
and spectrum width estimates exhibit very large errors and must be censored. The 
overlaid indicator arrays (OVV and OVW) are binary arrays where 0 indicates “not 
overlaid” and 1 indicates “overlaid”. 

 
If n < N2N1 
 (Segment I: Range gates that may or may not have overlaid echoes) 
 (Check power ratio using velocity threshold) 
 If PH(n) > PH(n + N1) 

0.110 OVT  
  OVV(n) = 0   
 Else  
  (Power ratio not met, but consider non-significant returns as non-existent) 
  If NSV(n + N1) = 1 
   OVV(n) = 0 
  Else 
   OVV(n) = 1 
  End 
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 End 
 (Check power ratio using width threshold) 
 If PH(n) > PH(n + N1) 

0.110 OWT  
  OVW(n) = 0 
 Else  
  (Power ratio not met, but consider non-significant returns as non-existent) 
  If NSW(n + N1) = 1 
   OVW(n) = 0 
  Else 
   OVW(n) = 1 
  End 
 End 
ElseIf n < N1  
 (Segment II: Range gates that, based on the assumptions, never have overlaid 

echoes) 
 OVV(n) = 0 
 OVW(n) = 0 
Else 
 (Segment III: Range gates that may or may not have overlaid echoes) 
 (Check power ratio using velocity threshold) 
 If PH(n) > PH(n – N1) 

0.110 OVT  
  OVV(n) = 0 
 Else  
  (Power ratio not met, but consider non-significant returns as non-existent) 
  If NSV(n – N1) = 1 
   OVV(n) = 0 
  Else 
   OVV(n) = 1 
  End 
 End 
 (Check power ratio using width threshold) 
 If PH(n) > PH(n – N1) 

0.110 OWT  
  OVW(n) = 0 
 Else  
  (Power ratio not met, but consider non-significant returns as non-existent) 
  If NSW(n – N1) = 1 
   OVW(n) = 0 
  Else 
   OVW(n) = 1 
  End 
 End 
End  
(Note that when processing the overlaid and significant return flags, the overlaid 
flags take a lower priority. That is, if a range bin is tagged as non-significant and 
also as overlaid, the overlaid indication is ignored and the gate is treated as a non-
significant return only; e.g., painted black as opposed to purple) 
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Appendix B. Related Publications 

The following conference paper relates to the reported material on CLEAN-AP and 

follows in its original form.  

Warde, D., and S. Torres, 2009: Automatic detection and removal of ground clutter 
contamination on weather radars. Preprints, 34th Int. Conf. on Radar Meteor., 
Williamsburg, VA. Amer. Meteor. Soc., Paper P10.11. 
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1. INTRODUCTION 
 

Radar backscatter from the ground can contaminate 
weather signals, often resulting in severely biased 
meteorological estimates. If not removed, these clutter 
returns tend to bias reflectivity high as well as Doppler 
velocity and spectrum width toward zero. A ground 
clutter filter (GCF) can mitigate this contamination and 
provide unbiased meteorological estimates but typically 
with reduced quality. Moreover, significant biases could 
occur if the GCF is applied when clutter is not present 
and the weather signal has near-zero Doppler velocities. 
Thus, the overall quality of the meteorological estimates 
needlessly suffers when a GCF is misapplied. The 
problem of applying the GCF becomes very complex, 
especially when considering the dynamic nature of the 
atmosphere. Anomalous propagation can cause the 
radar beam to increase contact or overshoot the clutter, 
giving the appearance that the clutter shifts within or 
disappears from the radar volume coverage very 
rapidly. In this dynamic environment, spectral 
examination of the received echoes provides a means 
to determine the presence of clutter in real time without 
having to rely on static clutter maps. However, spectral 
analysis on a finite number of samples suffers from 
spectral leakage. To combat spectral leakage, tapered 
windows are typically applied. Strong clutter returns may 
require the use of windows with high dynamic ranges, 
but the use of these windows reduces the quality and 
resolution of the meteorological estimates. On the other 
hand, weaker clutter returns may only require low 
dynamic range windows, which help preserve the quality 
and resolution of the meteorological estimates. 
Consequently, a ‘smart' filter is needed that can 
examine the received radar echoes, apply a tapered 
window that best suits the conditions, determine the 
exact number of spectral coefficients affected by clutter 
contamination, and, only then, apply the GCF.  

In this paper, we introduce a spectral GCF capable 
of satisfying the aforementioned considerations. The 
filter is referred to as Clutter Environment ANalysis 
using Adaptive Processing (CLEAN-AP) and performs 
real-time detection and suppression of ground clutter 
returns in dynamic atmospheric environments. We 
characterize the statistical performance of the 
CLEAN-AP filter with simulated clutter/weather mix and 
show real weather examples. 
 

* Corresponding Author Address:  David A. Warde,  
CIMMS/University of Oklahoma, National Severe 
Storms Laboratory, National Weather Center, 120 David 
L. Boren Blvd. Norman, OK, 73072; 
David.A.Warde@noaa.gov 

2.  GROUND CLUTTER FILTERING 
 
The effects of ground clutter contamination on 

meteorological estimates are well understood. Ground 
clutter is characterized as having strong received power 
with a very narrow spectrum width and near zero 
velocity (Doviak and Zrnić 1993, Sirmans 1987, Sirmans 
1992). The large concentration of power in a small band 
of frequencies centered at zero tends to bias both 
velocity and spectrum width estimates toward zero while 
increasing the reflectivity estimate.  

Equally known is the mitigation of ground clutter 
contamination. A high pass filter tuned to capture the 
Doppler characteristics of the ground clutter can 
mitigate the contamination and provide meaningful 
estimates. Sirmans (1992) detailed the use of a five-
pole elliptic infinite impulse response (IIR) filter for the 
NEXRAD WSR-88D radar system to mitigate ground 
clutter. A notch width parameter selection of low, 
medium and high allowed the operator to tune the filter 
to suppress varying levels of clutter contamination.  In 
2004, Ice et. al. (2004a, 2004b) evaluated the Gaussian 
Model Adaptive Processing (GMAP) (Siggia and 
Passarrelli 2004) filter as a replacement GCF for the 
NEXRAD WSR-88D radar system. The main 
advantages of this spectral GCF are its ability to 
automatically tune the filter with a single parameter and 
to recover spectral coefficients in the stop band of the 
filter.   

Although mitigation of ground clutter is rather 
straight forward, filtering also has its drawbacks in that 
meteorological estimates along the zero-isodop (i.e., the 
contour of near-zero radial velocity weather) are biased 
or completely removed. When a bias is observed, the 
GCF induces a slight shift in the velocity estimate away 
from zero while increasing the spectrum width and 
reducing the reflectivity estimates. Thus, judicious 
application of the GCF by the operator is warranted 
(Chrisman et. al. 1994). Recently, an automated ground 
clutter detection algorithm, Clutter Mitigation Decision 
(CMD) (Hubbert et. al. 2009), designed by scientists and 
engineers at the National Center for Atmospheric 
Research (NCAR) has been implemented into the 
NEXRAD WSR-88D radar system (Ice et. al. 2009). The 
fuzzy logic based algorithm provides real time ground 
clutter mitigation decision eliminating the need for 
operator interaction.  

Here we show an efficient GCF algorithm, 
CLEAN-AP, which combines both the detection and 
mitigation of ground clutter contamination from the 
weather radar returns. The filter dynamically changes its 
clutter suppression characteristics to optimally match 
the ground clutter environment. When a large ground 
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clutter contamination is detected the filter provides 
clutter suppression of up to 60 dB; and, when no ground 
clutter contamination is present, the filter provides no 
suppression of weather signals. 

 
2. GROUND CLUTTER DETECTION 

 
The digitized complex, in-phase and quadrature-

phase (I and Q), voltage samples of received distributed 
weather echoes of a coherent Doppler weather radar 
are independent random variables in phase and 
amplitude (Doviak and Zrnić 1993). If the observation 
time of this stochastic process is limited to a several 
milliseconds, the process can be considered wide-sense 
stationary (WSS). Typical WSR-88D dwell times range 
from about 35 ms to about 80 ms in Surveillance and 
Doppler modes to about 250 ms in Clear Air mode 
(FMH-11). As such, spectral moment estimation is a 
useful tool to analyze these digitized voltages and 
extract meteorological estimates from other undesired 
signals such as ground clutter.  

Typically, the periodogram is used to create the 
power spectral density; however, the periodogram may 
not be suited to identify ground clutter contamination. 
Additionally, exact replication of the power spectral 
density is not possible with a finite dwell time using the 
digital Fourier transform (DFT) unless the received 
signals are exactly periodic over the basis of the 
transform. Since the digitized I and Q voltages represent 
a continuum of received frequencies, the aperiodic 
received signals will spread (leak) across the frequency 
domain of the DFT. Tapered windows such as 
Hamming, von Hann (Hanning), or Blackman can be 
used to control the amount of spectral leakage at the 
cost of decreased resolution and increased variance of 
the estimates (Harris 1978, Nuttall 1981).  

Spectral leakage is an unfortunate side effect of the 
limited record length of the digitized signal, but 
increased record lengths would most likely violate the 
WSS notion for the weather estimate and result in 
impractical dwell times. Fortunately, spectral leakage 
can be measured using the phases of the coefficients in 
the linear cross-correlation spectrum (here out referred 
to as cross-spectrum) of the signal with itself as: 

 

= +*( ) ( ) ( )k kF k X m X m l   (1) 

 
where X = DFT(d · x), k is the coefficient of the DFT, m 
is the sample index, l is the delay or lag, d is the tapered 
window and x is the digitized received complex voltage. 

It is easy to show that when the tapered window (d) 
is rectangular, the cross-spectrum in equation (1) is the 
periodogram for l = 0 and leads to a complex spectrum 
for which the sum is the lag-l autocorrelation when l > 0. 
The cross-spectrum in equation (1) preserves the phase 
relation of both periodic and aperiodic signals. Thus, 
each coefficient in the cross-spectrum of equation (1) 
becomes the superposition of a single periodic signal 
with all the aperiodic signals that make up the digitized I 
and Q samples. The aperiodic signals bias the 
coefficients of the cross-spectrum and the argument of 
the resultant phasor indicates the amount of bias.  

An analysis of the cross-spectrum of equation (1) 
created by using a delay of 1 sample (l = 1), reveals that 
narrow spectrum width signals provide increased phase 
bias than a like signal with a larger spectrum width. This 
is significant since the spectrum width of weather is 
expected to be much greater (2 m/s to 4 m/s in 
convective storms) than the spectrum width of ground 
clutter (< 0.3 m/s) (Sirmans 1992).  

Fig. 1 shows the magnitude (left) and phase (right) 
relationship of the cross-spectrum at lag-1 of two 20 dB 
signals with a velocity of 0 m/s. The signal in blue has a 
wide spectrum width of 4 m/s and the signal in red has a 
narrow spectrum width of 0.3 m/s. The green line in the 
phase plot indicates that periodic signals are not 
affected by the presence of aperiodic signals in the 
signal (e.g., white noise); whereas, deviations from the 
green line indicate biases caused by aperiodic signals 
present in the spectrum. Note that where the signal is 
present, the narrow spectrum width signal has more 
coefficients that are phase biased than does the wider 
spectrum width signal. This behavior of narrow 
spectrum width signals is due to the large 
power/frequency gradient (i.e., large concentration of 
power in a small band of frequencies) and provides the 
method to identify ground clutter contamination near 
zero velocity used in the CLEAN-AP filter. In regions 
where the signal drops near the noise level, the phase 
becomes random. 

 
3. CONTROLLING SPECTRAL LEAKAGE 

 
As mentioned, a true representation of the power 

spectral density cannot be achieved from the digitized 
complex voltages due to the finite observation period; 
thus, it becomes necessary to monitor the intrinsic 
spectral leakage of our time-limited signals. It should be 
noted that spectral leakage in and of itself is not a 
problem, but the presence of two signal sources (e.g., 
ground clutter and weather) impinging on each other is 
a problem. Take for example a pure tone at a frequency 
that is midway between two basis vectors of the DFT. 
The pure tone will be spread to the maximum extent. 
The spectral leakage can be visualized as the 
convolution of the tapered window spectrum with this 
aperiodic tone. Using the cross-spectrum at lag-1, the 
phase is constant at a single phase (representative of 
the frequency of the signal).  

An example of a pure tone that is sampled midway 
between the basis vectors of the DFT is shown in Fig. 2. 
Since the cross-spectral phase is equal throughout the 
Nyquist co-interval, the magnitude of the sum of the 
cross-spectrum coefficients at lag-1 (or at any lag) is 
equal to the magnitude of the sum of the cross-
spectrum at lag-0 (i.e., periodogram). That is, the pure 
tone signal is completely correlated at all lags of the 
cross-spectrum as expected.  

To preserve the superposition of the pure tones of 
the weather signal, a method is needed that ensures 
clutter contamination does not bias the coefficients of 
the weather signal. Tapered windows provide a method 
to smooth (whiten or flatten) the cross-spectrum 
(Schwartz and Shaw 1975); thus, controlling the clutter 
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power gradient across frequencies. The consequence of 
this smoothing process is the loss of fidelity of the 
weather signal in the form of increased variance and 
loss of resolution (Torres 2007).  

There are many sources in the literature that 
describe the effects of tapered windowing, so this paper 
will not review these effects. However, there are two 
characteristics of the tapered window spectrum that are 
of interest when controlling spectral leakage: highest 
sidelobe level and sidelobe falloff rate. Harris (1975) 
and Nuttall (1981) detail these characteristics for many 
of the common tapered windows and Table 1 provides a 
quick reference to five windows used in the CLEAN-AP 
filter. Although the Hamming window has a lower 
sidelobe level than does the Hanning window, it is listed 
first in Table 1 because of the sidelobe falloff rate is 
much lower. 

 
Table 1. Tapered window sidelobe characteristics 

Window 
Highest Sidelobe 

Level 
(dB) 

Sidelobe 
Falloff Rate 
(dB/octave) 

Rectangular -13 -6 
Hamming -43 -6 
Hanning (a = 2.0) -32 -18 
Blackman -58 -18 
Blackman-Nuttall -98 -18 

 
The highest sidelobe level and the sidelobe falloff 

rate of the tapered window provide the method to 
control spectral leakage. If the clutter-to-noise ratio 
(CNR) is limited to the highest sidelobe level, then the 
leakage of the clutter signal away from zero will occur at 
or below the noise level. Additionally, by choosing a 
tapered window which exhibits a good sidelobe falloff 
rate, the clutter contamination will be suppressed well 
below the noise level concentrating the clutter bias at 
frequencies near zero. An estimation of CNR used by 
the CLEAN-AP filter is provided by comparing the 
average DC (or zero-frequency) power to the noise 
power: 
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4. CLEAN-AP ALGORITHM DESCRIPTION 

 
For each range bin: 

 
a. Compute the estimated CNR using equation (2) 
 
b. Select a tapered window from Table 1 such that 

the estimated CNR does not exceed the highest 
sidelobe level. 

 
c. Create two complex time-series as: 
=1 1( )x x m and =2 2( ),x x m where ≤ < −1 0 1m M  and 

≤ <21 .m M  

 

d. Compute the DFT of windowed spectrum 1X and 

2X from 1x and 2x respectively. 

 
e. Compute the periodogram from 1X and the lag-1 

cross-spectrum using equation (1) (with 1X as the first 

term and 2X as the second term). 

 
f. Compare the absolute value of the argument of 

each coefficient of the cross-spectrum at lag-1 to a 
clutter bias threshold parameter (angular error). 

 
g. Notch the coefficients of the periodogram and 

cross-spectrum where the cross-spectrum coefficients 
are less than the angular error and exceed the spectral 
noise level. 

 
h. Identify the range bin as filtered if a notch has 

been applied. 
 
i. Linearly interpolate across the spectral notch 

width for both the periodogram and the cross-spectrum.  
 
j. Estimate the meteorological parameters per 

Doviak and Zrnić (1993). 
 

5. SIMULATION ANALYSIS 
 
Reasonable weather and clutter simulations are 

provided by modeling the signals as having a Gaussian 
power spectrum (Sirmans and Bumgarner 1975, Zrnić 
1975) with a larger number of coefficients than are 
needed in the time series. Using simulations, the clutter 
filter characteristics and clutter detection capability of 
the CLEAN-AP filter can be shown. The following 
paragraphs depicts some selected performance 
characteristics of the filter. 

 
5.1 Ground Clutter Suppression 

 
A good indication of the performance of the 

CLEAN-AP filter can be obtained from the amount of 
ground clutter suppression that the filter can provide.  
Simulations of clutter/weather mix were created and 
processed through the CLEAN-AP filter. Fig. 5 shows a 
scatter plot of power bias of the filtered weather as a 
function of increasing clutter-to-signal ratio (CSR) levels. 
As seen in the figure, the filter provides about 60 dB of 
clutter suppression without biasing the weather signal 
power estimate. After a CSR of about 60 dB, over 
suppression of the simulated weather signal is seen by 
the negative biases exhibited in the scatter plot. At an 
approximate CSR of 80 dB and above, the clutter levels 
saturate the weather signal as observed by positive 
biases.  To place the clutter suppression performance 
into context, the CLEAN-AP filter easily provides the 
clutter suppression requirements of 50 dB required for 
operations in the U.S. network of weather surveillance 
radars (i.e., the NEXRAD network of WSR-88D radars). 

 



 

AMS 34th Radar Conference, Williamsburg, VA P10.11 4 

5.2 Reflectivity Bias 
 
The reflectivity bias from the filtering process when 

ground clutter is not present is shown in Fig. 6 through 
Fig. 8.  In these figures, power bias is shown as a 
function of the spectrum width using simulations of a 20 
dB weather signal with 0 m/s velocity and varying 
spectrum widths. Different pulse-repetition-frequencies 
are used for the three weather modes described in the 
FMH-11. The CLEAN-AP filter provides small biases 
over the range of spectrum widths. Performance is 
shown against the filters used (past and present) in the 
WSR-88D for the operational scanning modes: Clear 
Air, Surveillance, and Doppler.  The blue dots on each 
plot indicate the WSR-88D reflectivity bias requirements 
(WSR-88D SS). 

 
5.3 Ground Clutter Detection 

 
The CLEAN-AP filter has the ability to identify 

ground clutter in the presence of weather echoes as 
shown in Fig. 9 where clutter likelihood is plotted as a 
function of CSR. The detection rate is calculated as the 
mean of 5100 detections (identified filtering of a range 
bin as in 4h above) at each CSR level for a simulated 20 
dB signal with varying velocities and a 4 m/s spectrum 
width. The CLEAN-AP filter has approximately 50% 
detection rate down to -12 dB CSR and about 83% 
detection rate at 0 dB CSR with over 90% detection rate 
above about 3.7 dB CSR. 

 
5.4 Velocity Bias 

 
The CLEAN-AP filter has no appreciable velocity 

bias (< 0.8 m/s) over the entire Nyquist co-interval for a 
composite signal with 55 dB CSR as seen in Fig. 10. 
The scatter plot shows the filtered velocity bias as a 
function of 100 simulations for each velocity tested.  The 
CLEAN-AP filter easily meets WSR-88D velocity bias 
requirments (< 2 m/s) at the highest clutter suppression 
(50 dB) levels. 

 
5.5 Spectrum Width Bias 

 
The CLEAN-AP filter provides unbiased spectrum 

width estimates with low error of estimates as seen in 
Fig. 11 when providing 55 dB of clutter suppression. In 
this figure, the green line shows zero bias; while the red 
lines indicate the WSR-88D allowed bias of 2 m/s for 
filtered spectrum width estimates. The red circles 
indicate the estimate mean and the red bars indicate the 
standard deviation at the mean. The CLEAN-AP filter 
easily meets WSR-88D spectrum width bias and error of 
estimate requirments (< 2 m/s) at the highest clutter 
suppression levels (50 dB). 

 
5.6 Window Selection 

 
Closely related to low errors of estimates is the 

selection of low dynamic-range tapered windows.  On 
the other hand, high dynamic-range tapered windows 
are needed for adequate clutter suppression.  The 

CLEAN-AP filter provides automated tapered window 
selection among five windows as listed in Table 1.  Fig. 
11 shows how the CLEAN-AP filter selects the lowest 
dynamic-range window when ground clutter is low and 
increasingly selects a higher dynamic-range window as 
the amount of ground clutter increases. This 
performance ensures the best possible quality of 
estimate for a given ground clutter environment. 
 
6. REAL WEATHER EXAMPLES 
 

The CLEAN-AP filter was implemented in the Fall of 
2008 into the weather digital signal processing suite of 
the National Weather Radar Testbed (NWRT) Phased 
Array Radar (PAR) located in Norman, Oklahoma 
(Torres et. al. 2009). During the Phased Array Radar 
Innovative Sensing Experiment (PARISE) (Heinselman 
et. al. 2009), the CLEAN-AP filter provided automatic 
ground clutter detection and suppression. In Fig. 11, the 
CLEAN-AP filter is shown to remove ground clutter 
caused by anomalous propagation. The filter 
performance is contrasted against the operational 
WSR-88D radar system KTLX in Oklahoma City. In the 
operational system, operators applied filtering at all 
ranges to combat the dynamic atmospheric conditions 
as the inversion moved over the region to the North of 
the radar. 

In Fig. 12, normal propagation (NP) clutter 
contamination biases are shown to be removed from 
reflectivity, velocity and spectrum width near the NWRT 
PAR (red circles) without affecting areas outside the 
clutter regions. The images captured a mesocyclone 
(yellow circles) just 2 hours before it developed into an 
EF0 tornado that touched down at lake Stanley Draper 
in southern Oklahoma City, OK. Note that there are no 
observable differences inside the yellow circles 
indicating that the CLEAN-AP filter did not bias the 
weather estimates in this region. 

 
7. SUMMARY 
 

We have introduced a new spectral GCF, referred to 
as CLEAN-AP, capable of automatic real-time detection 
and mitigation of ground clutter contamination in 
weather radars. We have characterized the statistical 
performance of the CLEAN-AP filter and compared the 
performance with NEXRAD WSR-88D standards. 
Through simulations, we have shown that the filter is 
capable of providing clutter filtering on par with current 
techniques, but does so without operator interaction. 
Examples of the filters real-time performance was 
shown to remove clutter contamination in both severe 
AP and NP events without detriment to meteorological 
estimates as part of the NWRT PAR digital signal 
processing suite.  
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Fig. 1. Lag-1 Cross-Spectrum of two signals:  

sig1 (SNR = 20 dB, v = 0 m/s, σv = 4 m/s) and sig2 (SNR = 20 dB, v = 0 m/s, σv = 0.3 m/s) 
 

 
Fig. 2. Lag-1 Cross-Spectrum of pure tone leakage across Nyquist co-interval (v/Va = 0.05 ≡ ω/π) 

 

 
Fig. 3. Example of Clutter Suppression exhibited by the CLEAN-AP filter 
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Fig. 4. Reflectivity bias in Clear Air Mode for the WSR-88D and the CLEAN-AP filters. 

 
Fig. 5. Reflectivity bias in Surveillance Mode for the WSR-88D and the CLEAN-AP filters. 

 
Fig. 6. Reflectivity bias in Doppler Mode for the WSR-88D and the CLEAN-AP filters. 
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Fig. 7. Example of likelihood of ground clutter detection using the CLEAN-AP filter. 

 
Fig. 8. Example of velocity bias in a high-suppression regime for the CLEAN-AP filter. 

 

 
Fig. 9. Example of spectrum width bias and error of estimate in a high-suppression regime for the CLEAN-AP 

filter. 
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Fig. 10. Window selection in the CLEAN-AP filter. 

 

 
Fig. 11. Displays of Reflectivity from NWRT (with and without CLEAN-AP applied) compared with KTLX 

(Oklahoma City WSR-88D system) during normal operations. 
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Fig. 12. Displays of reflectivity, velocity, and spectrum width with CLEAN-AP on and off,  

the red circles indicate where normal clutter contamination is present when not filtering (reflectivity is biased 
high, velocity is biased toward zero, and spectrum width is biased toward zero in this region) 


