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SIGNAL DESIGN AND PROCESSING TECHNIQUES FOR
WSR-88D AMBIGUITY RESOLUTION

Part 14: Staggered PRT Algorithm Updates, the CLEAN-AP Filter, and
the Hybrid Spectrum Width Estimator

1. Introduction

The Radar Operations Center (ROC) of the National Weather Service (NWS) has funded
the National Severe Storms Laboratory (NSSL) to address data quality improvements for
the WSR-88D. This is the fourteenth report in the series that deals with range and
velocity ambiguity resolution and other data quality techniques for the WSR-88D (other

relevant reports are listed at the end). It documents NSSL accomplishments in FY10.

Section 2 provides a brief review of the SPRT algorithm and the modifications that are
needed to accommodate dual polarization data. Alternative solutions for ground clutter
filtering the two polarization channels are evaluated and a recommendation is provided.
Although changes with respect to the single-polarization version are minimal, a complete
description of the recommended algorithm is included. Simulations show that the
recommended dual-pol SPRT algorithm exhibits good performance under realistic
conditions. These results are validated with examples from real data processed with the

recommended algorithm.

Section 3 describes and documents the performance of the CLEAN-AP filter. This
ground clutter filter was developed for the National Weather Radar Testbed Phased Array

Radar (NWRT PAR), but is recommended as a complete ground-clutter mitigation



technique for future upgrades of the WSR-88D. CLEAN-AP combines automatic
detection and filtering capabilities so that seamless integration with other functions in the
signal processing pipeline is possible. The performance of the CLEAN-AP filter is
extensively quantified using simulations within the framework outlined by the NEXRAD
Technical Requirements (NTR). The filter is shown to meet NTR and exceed the already
superior performance of GMAP. Real data analyses are also included to demonstrate the
performance of this novel scheme on mechanically scanned radars. Qualitative
comparisons with the currently operational clutter mitigation scheme reveal the potential

for improved data quality with less user intervention.

Section 4 is devoted to the analysis of the hybrid spectrum width estimator proposed by
NCAR. This independent evaluation confirms that the proposed estimator outperforms
the classical spectrum width estimator in most situations. However, modifications to the
proposed hybrid estimator are recommended to further improve the performance. These
include adaptive thresholds for estimator selection, an additional spectrum width

estimator, and enhanced censoring rules for quality control.

This report also includes two appendices. Appendix A contains the latest description of
the staggered PRT algorithm that is able to produce spectral moments and polarimetric
variables. Appendix B includes one relevant conference paper on the CLEAN-AP filter

that was presented at the last AMS Radar Meteorology conference.

Once again, the work performed in FY10 exceeded considerably the allocated budget;

hence, a part of it had to be done on other NOAA funds.



2. Staggered PRT in the Dual-Polarization Era

2.1. The Dual-Polarization Staggered PRT Algorithm

The July 2009 algorithm description addressed the integration and documentation of the ground
clutter filter as well as the recovery of overlaid echoes. For the ground clutter filter, the SACHI
filter (Report 2009) is used on segments I and II, see Fig. 2.1, and DC removal is used on the
overlaid segment 1. The recovery of overlaid echoes allows the use of shorter PRTs for better

performance while meeting range coverage requirements.
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Fig. 2.1. Overlaid echoes in SPRT.

Staggered PRT is currently scheduled for operational implementation after the dual polarization
upgrade. Therefore, an algorithm that provides polarimetric variable computations must be
provided. The inputs for this algorithm are the time series for the horizontal and vertical
polarization channels, ¥, and V,, respectively. The outputs are the spectral moments: reflectivity,
velocity and spectrum width; and the polarimetric variables: differential reflectivity, differential

phase and cross-correlation coefficient.



2.1.1. Algorithm Steps

The previous SPRT algorithm was modified to accommodate the computations required to
produce dual-polarization variables; a few existing steps were modified and a few new ones were

added. These changes are summarized in Fig. 2.2. and explained next.

Single Polarization Algorithm Dual Polarization Algorithm
1. Pre-computation steps 1. Pre-computation steps
2. Autocorrelation computations 2. Auto- and cross-correlation
a. Bypass computations
b. Ground clutter filter a. Bypass
3. Strong point clutter filter |:> b. Ground clutter filter
4. Spectral moment computations 3. Strong point clutter filter
5. Censoring 4. Spectral moment computations
5. Polarimetric variable
computations
6. Censoring

Fig. 2.2. Changes to the staggered PRT algorithm for the dual polarization implementation. Bold fonts denote

changes or additions.

1. Pre-computation steps

This set of steps, which defines the velocity dealiasing rules and other constants for
the SACHI clutter filter, doesn’t need any changes.

2. Auto- and cross- correlation computations

Either for the bypass or the ground clutter filter schemes, some computations must be
added to later calculate the polarimetric variables. The required computations are:

2.1. H-channel mean power

2.2. V-channel mean power



2.3. H-channel lag-1 correlation

2.4. H-channel and V-channel cross-correlation

For the bypass mode (i.e., no clutter filtering) the computations will be done for
each PRT, and then combined according to the range segment (see the Appendix
for the detailed expressions). Similarly, the DC removal is applied in the time-
domain, H- and V- channels will be filtered independently following the bypass
procedure. On the other hand, the SACHI ground clutter filter, which is used in the

frequency domain, will provide these computations directly.

3. Strong point clutter filter
The strong point clutter filter is applied based on the H-channel power and applied to

all power, autocorrelation, and cross-correlation arrays.

4. Spectral moment computations

The calculations for reflectivity, velocity and spectrum width use the H-channel
computations from step 2: H-channel mean power and H-channel lag-1 correlation.

5. Polarimetric variable computations

The calculations of differential reflectivity, differential phase and correlation
coefficient use the computations from step 2: H-channel mean power, V-channel
mean power, and H-channel V-channel cross-correlation.

6. Censoring

The non-significant return arrays for reflectivity, velocity, and spectrum width are
determined. The array for reflectivity is also used for the polarimetric variables. The

determination of overlaid returns is done by using the mean power of the H-channel.

2.1.2. The SACHI Filter

The SACHI filter that is currently recommended for use in the SPRT algorithm has the following

high-level steps:



1. Extended spectrum computation

The SPRT time series with M samples are interpolated with zeroes so that an
extended uniform PRT sequence of 5M/2 samples is built. A uniform sequence is
needed to go to the frequency domain. Because of this manipulation, the spectrum of
the extended time series will contain the original spectrum of weather and clutter as
well as their “replicas”.

2. Notchwidth determination

The GMAP clutter filter is applied to one fifth of the spectrum around zero velocity.
GMAP returns a value for the notch width.

3. Ground clutter filtering

The ground clutter contamination around zero Doppler is removed with the notch
filter obtained in 2). Clutter components projected to +2v,/5 and + 4v,/S are also
removed.

4. Magnitude deconvolution

A magnitude deconvolution is applied at this point. This means that only the
amplitude of the matrix coefficients is obtained.

5. Interpolation

Values across zero Doppler are linearly interpolated

6. Power and autocorrelations for spectral moments

Two-fifths of the spectrum around the estimated weather velocity are retained. Then,

the power and autocorrelations for spectral moments are computed.

As it can be seen, the phases of the spectral components are lost in step 4). Since the polarimetric
variable computations require this phase, the SACHI filter has to be modified. Recall that it must
produce filtered power computations for both channels, H-channel lag-1 correlation, and H-

channel V-channel cross correlation.



Two different solutions were considered. First, the spectral reconstruction method, presented by
Sachinanda and Zrni¢ (2006) was tested. This is a complex solution that also serves a broader
need. The spectral reconstruction, which can be performed in the time or frequency domains,
allows the recovery of the phases of weather signals after the ground clutter has been filtered.
Because the SACHI ground clutter filter operates in the frequency domain, the second approach
was chosen for these tests. In this approach, the spectrum is reconstructed over two-fifths of the
total number of spectral coefficients centered on the estimated mean velocity. The remaining
coefficients are set to zero. This method is only valid if the original signal spectrum agrees with
the definition of “narrow spectrum.” That is, the spread of the nonzero spectral coefficients is
less than M/2 coefficients in the 5M/2 -point DFT extended spectrum for the conventional
staggered ratio of x = 2/3. In the absence of ground clutter contamination, the spectrum can be
fully restored. Otherwise, the reconstruction is made for just (M - n.) coetficients, where n. is the
clutter filter width. An important drawback is that this method relies on the accuracy of the
weather velocity estimation. When catastrophic errors occur, the spectrum is erroneously

reconstructed.

Due to the complexity and limitations of the spectral reconstruction method, a new method was
developed. This is a direct method that uses the remaining complex spectral coefficients after
ground clutter filtering (step 3) to perform the cross-correlation computations. Simulations were
used to compare the performance of both methods. The results are shown in Fig. 2.3. The

parameters used in these simulations are as follows:

- Weather:
0 SNR,=40dB, v=20m/s, w=[0.5, 8] m/s
O Zpr=3 dB, Opp =-30 deg: puv = 0.90



- Clutter:
0 CSRy,=40dB,v=0,w=0.28 m/s,
0O Zpr=-0 dB, Opp =-30 deg, PHV = 0.80
- v,=50m/s, M = 64.
- Number of realizations = 1000.
Fig 2.3 shows the errors from the spectral reconstruction and direct methods. They are the
additional errors of estimates introduced by each processing option with respect to the typical
statistical errors obtained by time-domain computation of clutter-free signals. Two time series
are independently generated for each method; one for the ground clutter and the other for the
weather signal. The reference estimates (Zpr, ®pp, and pyy) are obtained from the windowed
weather signal using the pulse-pair processing of time series. The sum of the weather and the
ground clutter time series is processed with the clutter filter and then the direct or spectral
reconstruction method; that is, the second set of parameters are estimated from the final spectrum
(directly estimated or reconstructed). Statistical errors are computed with respect to the reference

estimates.

The results show little difference between the direct and spectral reconstruction methods. The
biases of polarimetric variables are almost zero for both methods, whereas there is a small
difference in the standard deviations. However, it is very small for both cases: less than 0.25 dB
for differential reflectivity, 1.5 degrees for differential phase, and 0.001 for cross-correlation
coefficient. For all variables, errors are slightly smaller for the spectral reconstruction approach
for spectrum widths between 1.5 and 6 m/s, whereas the behavior of the direct method is more
consistent across the range of simulated parameters. This is because the spectral reconstruction

method performs best under the assumption of narrow spectrum.

10



Due to the similar performances of both methods, the direct method was chosen due to its
simplicity. The direct method also provides an easier implementation in the previous SPRT
clutter filtering scheme, explained in the next section, and is independent of the mean velocity

estimation (hence it is immune to catastrophic errors).
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2.2. Polarimetric Variable Computations Using the Direct Method
2.2.1. A Brief Review of Staggered PRT Processing in the Spectral Domain

In the staggered PRT, scheme two different pulse repetition times, 77 and 7> (71 < T3), are
alternated. Then, alternate pairs of samples are used to compute autocorrelation estimates R; at
lag 77, and R, at lag 7. These estimates are used to compute the spectral moments. When
spectral processing is needed, we must proceed in a different way because uniform sampling is
required. In this case, the signal is “reconstructed” as if it were sampled at intervals 7;, = (7> —
T1). This puts a small restriction on the selection of 77 and 7>. Namely, they should be integer
multiples of the difference 7, so that 7| = n| T, and T, = n,T,, where n; and n; are integers. The
best choice, as discussed in previous reports, is #; = 2 and n, = 3, or the stagger ratio x = 7,/T> =
2/3. Once this condition is satisfied, we can generate an M,-sample uniform time series, v;, i = 0,
1, 2, ..., M-1, (signal sampled at intervals 7,) from the staggered PRT sequence by inserting
zeros in the place of missing samples. For x = 2/3, we have only the 1* and the 31 samples
available in each set of 5 samples. We call this the derived time series. Now, we can write the
derived time series, v, i =0, 1, 2, ..., M,-1, as a product of the sequences ¢ and e, where e is the
signal time series sampled at 7, intervals, and ¢;, i =0, 1, 2, ..., M,-1, is a code sequence of zeros

and ones given by ¢ =[1010010100... etc.] for &= 2/3. In other words,
v,:c,-e,»;i:O, 1,2, ...,Mx-l. (21)

If there are M staggered PRT samples, we have M, = M(n,+n;)/2 samples in the derived time

series. The DFT spectrum of v is a convolution of the spectra of ¢ and e:

13



DFT(v) = DFT(c)* DFT(e), (2.2)

where the symbol * represents the convolution operation and the DFT stands for discrete
Fourier transform. We use capital letters to denote DFT coefficients of the corresponding time-
domain quantities in lower-case letters, and capital bold face letters to denote matrices or vectors.
The subscript ‘i’ is used for time-domain quantities and the subscript ‘4’ is used for spectral-
domain coefficients. For example, E; is the K" spectral coefficient of DFT(e), and E is the

column matrix of coefficients E, k =0, 1, 2, ..., M,-1. In matrix notation, (2.2) can be written as
V=CE. (2.3)

V and E are (M,—by-1) column matrices and C is the (M,-by-M,) convolution matrix whose
columns are cyclically shifted versions of the DFT(c). The convolution matrix is formed from
the spectrum of the code sequence as follows: (a) Form a matrix with first row as the DFT(c), the
second row is the same coefficients cyclically shifted to the right by one coefficient, the 3™ row
is the same spectrum shifted to the right by two coefficients, and so on through the last row. This
forms an M.,-by-M, matrix. (b) Take the complex conjugate transpose of this matrix to get the
convolution matrix, C. (c) Normalize the matrix to preserve the power in the spectrum; the
columns of the convolution matrix are normalized to be unit vectors (i.e., the norm of each
column vector is unity). Note that normalizing the columns also normalizes the row vectors of C

automatically.
2.2.2. Magnitude Deconvolution and Computation of Spectral Moments.

The convolution matrix is singular (its rank is M), hence we cannot solve for E, but we can get

the magnitudes without the phases under certain conditions as explained next. If we discard the

14



phases of C, the convolution matrix becomes non-singular and hence can be inverted. Further,
we note that it is sufficient to recover the magnitude spectrum of the weather signal to recover
the spectral moments; the phases are not needed. Hence, we discard the phases of all the three
matrices in (2.3) and write abs{V} = abs{C} abs{E} which is valid under the “narrow
spectrum” condition. The spectrum is considered narrow if the spectral spread of the weather
signal is less than M, /(n;+n;) coefficients. Because the staggered PRT scheme can be designed
to have a large unambiguous velocity, v,, this condition can be nearly met for most weather
signals. In general, abs{V} # abs{C}abs{E} because of the complex addition process; however,
under the “narrow spectrum” condition, the complex addition does not take place, hence we can
replace the inequality sign with the equality sign. Note that each row of C has only five non-zero
coefficients spaced M/2 coefficients apart, and if E has only M/2 contiguous non-zero
coefficients, the product of E and each row of C results in only one non-zero term. Hence, no
complex addition takes place in the convolution operation. Therefore, we can recover abs{E}

from the inverse operation

abs{E} = abs([abs{C}] abs{V}). (2.4)

We refer to the operation indicated in (2.4) as the “magnitude deconvolution”. The recovery of
the magnitude spectrum is exact under the “narrow spectrum” condition. If the spread of the
spectral coefficients is more than M,/(n+n,), the reconstruction is not exact; however, the
velocity estimate is not biased by this non-ideal reconstruction; only its variance is increased.
The spectrum width bias is removed by eliminating the residual coefficients outside an interval
2M/(n+n,) centered on the estimated weather velocity. The amplitude coefficients of abs{E} are

then used to compute the signal power, P, and the short and long PRT autocorrelations, R; at lag

15



T\ and R, at lag T,. These computations allow the estimation of the three spectral moments:

reflectivity, velocity, and spectrum width.

2.2.3. Computation of Polarimetric Variables in the Spectral Domain.

As we discussed in the previous section, the spectral moments can be calculated from the
recovered abs{E} from eq. (2.4). Unfortunately, the same is not possible for the polarimetric
variables because the phase is lost. However, for the computation of these variables, only the
powers from both channels and the cross-correlation between the horizontal and the vertical
channels are needed. That is, the spectral reconstruction is not actually needed since we can
compute these values from the Vy; and Vy; coefficients for the horizontal and the vertical
polarization, regardless of the spectral structure. In other words, the power and the cross-
correlation do not depend on the sample-time autocorrelation of the time series. Thus, the
spectral reconstruction is not needed. The cross-correlation and horizontal and vertical powers

are calculated as

N-1 (2.5)
Ray = ) ViV (o),
k=0
Py = Y= IVu(k)|?, and (2.6)
N-1 2.7)
Py = ) WGP
k=0

Fig. 2.4 shows a representation of the magnitude and phase of the spectrum used to compute
these values for both the direct method and the spectral reconstruction for a simulated clutter-

contaminated weather time series.

16



DIRECT METHOD SPECTRAL RECONSTRUCTION
Magnitude
T

Magnitude
T

8

Phase Phase
4
T

rad

i
————5 °
——»
=
)
e
o
—
)
e
< D
—— —>5
—
——>»
—=2 o
S
=
—1
in2)
>
— o
rad

L
R
o
— o
=
o
E—
1o
%
—a %

N
o—
S
o o—r
e
[C—
e °—
P -S—
[ ——
Lqurces!
o—
e mm—
o1
o
o—e—Fp
——1
. o— 9
e C—
e C————) °©
=
o—°—
e —
P—
&
o
=
—C—
—_
R
Zj
o9
—

&
&
T

1 1 1 . 1 . . 1 L 1 1 1 1 .
20 40 60 ) 100 120 140 160 20 40 60 ) 100 120 140 160
samples samples

Fig. 2.4. Spectrum used to calculate powers and cross-correlation for the two methods under consideration. In the
left side, the magnitude (up) and the phase (bottom) for the direct method are plotted. In the right side, the
magnitude (up) and the phase (bottom) for the spectral reconstruction method are plotted. The results are very

similar for both methods.

2.2.4. Clutter Filtering Procedure

In equation (2.3), V is the spectrum of the derived time series, and E is the unknown spectrum
we are trying to recover. In other words, the vector V is the spectrum of the staggered PRT
sequence obtained after converting the time series into a uniform sequence by inserting zeros in
places of “missing samples”, or the spectrum after convolving E with the code spectrum. Here we
assume that the weather signal and the ground clutter are present in the time series. To contain
the spread of the clutter power around zero Doppler, we need to multiply the time series by the
data window weights. It is assumed that the effects of the data window are included in the

spectrum V. Now, if we examine the convolution matrix, C, we find that each row has only five
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non-zero coefficients (for x =2/3) spaced M/2 coefficients apart. For example, with M = 64 (M, =
160), of the 160 coefficients of DFT{c} = [C}, (3, Cs, ..., Ciso] only Ci, Cs3, Cgs, Co7, and Ciog
are non-zero. In terms of these DFT coefficients the convolution matrix will have its first row as
[C1, Clgo, Cis9, Ciss, ..., Ca], the second row as [C,, Cy, Cie0, Ci59, Ciss, ..., C3], which is the 1st
row cyclically shifted to the right by one element, and so on. The first row has non-zero
coefficients at column numbers 1, 33, 65, 97, and 129, and the DFT coefficients of the code
sequence in these positions are Ci, Ci, Co7, Css, and Cs3. In the second row these same
coefficients would shift to columns 2, 34, 66, 98, 130. Thus, after the convolution, the first and

second elements V1 and V2 of the matrix V would be a weighted sum of the elements given by

Vi=Ci E\+ Cia9 Ez3+ Co7 Ees + Cos Eg7 + C33 E1n9, and (2.8)

Vy=C) Ey+ Cia9 Ezs + Co7 Egs + Cos Eog + C33 Ef30.

Similarly, we can write equations for all 160 elements. Since each row of C is obtained by
cyclically shifting the elements of the previous row to the right; all the coefficients are the same
in the first 32 equations. For the next 32 equations, the coefficients would be shifted to the right
by one, i.e., Cs3, C}, Ci9, Co7, and Cgs. Similarly, for every 32 equations, the coefficients are
shifted to the right by one, and there are five such sets. Therefore, we can rearrange the
convolution matrix as a 5-by-5 matrix C;, and E and V are rearranged row-wise as 5-by-32
matrices, Er and V,, respectively (e.g., the first row of V, has V| to V3, the second row Vi; to

Vs, etc.). Equation (2.3) then becomes

V:=CE,, (2.9)

18



where the subscript ‘r’ represents a re-arranged matrix. Cr can be obtained from C by first
deleting all rows containing zero in the first column of C, and then deleting all columns
containing zero in the first row, which reduces it to a 5-by-5 matrix. (Note: The five non-zero
spectral coefficients of C can also be obtained from a code vector of length 5, [10100], taking its
DFT, and normalizing the power in the spectrum.) The matrix Cy is also singular (its rank is 2), and
its columns are normalized such that each column is a unit vector (row vectors are normalized

automatically).

Therefore, the 160 coefficients of the spectra are arranged row-wise into 5-by-32 matrices. Each
column of V, represents one of the 32 independent equations. The first column of V, is related to
the first column of E; via the transformation matrix C,, the second column of V. is related to the
second column of E, and so on. Clutter contamination is in the first few and last few coefficients
of E, and the signal is centered on its mean velocity. After rearrangement, clutter contamination
is in the first few coefficients in the first row and last coefficients in the last row of E,. If the
narrow spectrum criterion is satisfied, the signal coefficients are spread, at most, over two rows.
Therefore, in each column of E,, at most two elements are non-zero. After the transformation via
the matrix C,, powers in these two coefficients spread to all the elements of each column of V.
The clutter and the weather signal have five weighted replicas in the V spectrum because of the
convolution with the code spectrum which has only five non-zero coefficients. The clutter will
be in the first coefficients of the first few columns and in the last coefficients of the last few
columns. Figure 2.5 attempts to clarify these concepts by showing the magnitude of an extended

spectrum.
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Let us take the equation corresponding to the first column of V, to demonstrate the clutter

filtering procedure:

G Gy
G G
Cs G
Con Ces
|G Cy

Cy;, Cs C.:s“ E, i
Crp Cy Cg| Es;
G Gy G| Es (2.10)
CSS C.' C‘-...‘P EQ‘.‘
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g S
E.
o, © o & ClE (2.11)
‘E_'."
E,

If we assume that the signal coefficient is E97, we can reduce equation (2.11) to
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V1= CE; +C4E,4, (2.12)

where vector V3 on the left hand side is the first column of V.. To filter the clutter we just have to
take the component of V; along the direction C; and substract it from V;. This is accomplished
by taking the inner product between C; and Vi multiplying this by C; and then substracting it

from Vi:

Vi = Vi- (C1*T Vy) Cy. (2.13)

In other words, the main replica around zero and the projected clutter around +2v,/5 and + 4v,/5

are removed.

Since the clutter is present in the first few and the last few columns of E;, we apply this
procedure only to those columns in which the clutter is present. In the last columns the clutter

coefficient are in the last row, hence, we replace the vector C; by Cs:
Va2 = Vap- (Cs*' V) Cs. (2.14)

In terms of the DFT coefficients, the ground clutter filtering procedure is applied to the first ¢
columns and the last (¢-1) columns (where the clutter filter width, n. = 2¢ — 1 ). n. has to be an
odd number in order to maintain symmetry around zero Doppler (or the 1% coefficient).
Therefore, we select first ¢ columns and last (¢-1) columns and remove the clutter by applying

(2.13) or (2.14). This complete operation can be written in matrix notation as

Vi=V;-Cu Vi - Ca Vi g, (2.15)
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where C¢; and Cyy are the clutter filter matrices and ls; and lg, are matrices that select the columns

to be filtered:
Ci=C1 C*", and (2.16)
Cf2 = C5 C5*T. (2‘17)

The matrix g is an M/2-by-M/2 diagonal matrix with diagonal elements equal to 1 for the first g
elements and O for the rest. Similarly, the matrix I, is an M/2-by-M/2 diagonal matrix with last

(g-1) elements unity and the rest zeros.

Finally the matrix Vs is rearranged into a N-by-1 vector Vgs. This vector represents the filtered
extended spectrum. Fig. 2.6 shows vector V before and after clutter filtering. It can be seen how
the first and the last coefficients are removed, but it is only the projections that are removed in

the replicas.
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Fig. 2.6. Vector V before (up) and after (down) clutter filtering.

This procedure is applied for both channels, and once the clutter has been filtered, the powers
and cross-correlation can be computed from vector Vg according to equations (2.5), (2.6) and
(2.7). After this, the final steps of the clutter filter remain unchanged. That is, after the
computation of the powers and cross-correlation for the polarimetric variables, the magnitude
deconvolution is applied to the H-channel data, and the rearranged vector is used to retrieve the
values for the auto-correlations and power. More details about this procedure are explained in

previous reports.
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2.2.5. Notchwidth Determination

Given that we have two different time series, one for each polarization channel, the notchwidth
determination is an important issue. For single polarization, the value for #. is determined by the
GMAP algorithm. The input to GMAP is one-fifth of the spectrum around zero velocity; i.e.,
containing the first and the last coefficients. We considered three different possibilities:
1. Use the H channel as a “master” channel. The input to GMAP will be one-fifth of the H-
channel spectrum.
2. Consider H and V channels independently, each with its own ¢ value. The clutter filtering
will be performed independently for each channel.
3. Use the channel with larger clutter-to-signal ratio (CSR) as a “master” channel. Retrieve

q values from GMAP for the H and V channels and then choose the maximum value to

filter both spectra in the same manner.

Simulations were employed to find the optimum approach. Fig. 2.7 shows the bias and the
standard deviation for the three polarimetric variables for a high CSR versus Zpr. We chose Zpr
as the independent variable because we found that these results were highly influenced by this
variable. As we can see, the three methods offer similar results. Since the CSR was fixed for the
H channel, negative Zpr produce higher errors and standard deviations. A negative Zpg means
that the CSR for the V channel is higher than the CSR for the H channel. However, if we choose
a low CSR, results are completely different for each approach for negative Zpg, Fig. 2.8 shows
that. With these results in mind, the third approach was chosen. The notchwidth will be the same
for both channels, and it will be the maximum between them as computed independently. If we
choose the first approach (the H channel as the master channel) and the Zpr is negative, we are

underestimating the amount of clutter in the V channel. If we choose the second approach, the ¢
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values can be completely different and may lead to biased computations since we can have

different number of coefficients filtered for each channel.
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Since only the H-channel is used for the spectral moment computations, the g retrieved with
H channel spectrum will be used for this purpose. That is, two different ¢ values can be

considered. Fig. 2.9 shows the procedure.

H channel spectrum V channel spectrum
A 4 V}
GMAP
Clutter filtering for the qH v
spectral moments [~ v v
computations max( )
(SACHI 2009) X, qv

A 4

Clutter filtering for
the polarimetric
computations

Fig. 2.9. Notchwidth determination for dual polarization SPRT ground clutter filter
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2.2.6. Dual-Polarization Time-Series Simulation

Simulations were performed to test the dual polarization staggered PRT ground clutter filter
method. The bias and the standard deviation for the polarimetric variables are plotted for a
variety of situations. The default parameters are detailed below. Since this algorithm update only
affects polarimetric variable computations, they were chosen as the independent variables in the
simulations. One of the simulations is used to quantify the clutter filter suppression, and the rest
illustrate the effects of varying the polarimetric properties of the input signals. In these cases,
several CSR were used, as well as a no-clutter case (i.e., CSR = -o0).
»  Weather:
— SNRj; =20 dB, v = random in the extended Nyquist interval, w =2 m/s
— Zpr =3 dB, ®pp =-30 deg, puv = 0.99

Clutter:
— CSR,=40dB,v=0, w=0.28 m/s,

— ZDR =-5 dB, (DDP =50 deg, pavV = 0.8

* v,=35m/s, M =48

1000 realizations

Note that these parameters correspond to a worst case scenario. For the weather signal, we chose
typical testing parameters for SNR and spectrum width. The velocity was chosen randomly in
every realization in the range from —v, to v,. The positive value of differential reflectivity means
that the SNR is higher for the H channel than for the V channel, since the noise in both channels
is assumed to be the same. For the clutter, we considered a high CSR and the typical values for
velocity and spectrum width. We also considered a different value for the differential phase,
since this difference in ®@pp for weather and clutter can cause a higher bias. For differential

reflectivity and correlation coefficient we chose a worst case based on Fig. 2.10. It is important
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to realize that a positive Zpg for the weather together with a negative Zpg for the clutter mean
that the CSR for the vertical channel is higher than for the horizontal channel. That is, in the
simulations, the CSR, is much higher than 40 dB (CSR},); this will be evident in the examples.
The maximum unambiguous velocity and the number of samples are representative of an

operational scanning strategy.

o 3/6/2007 R [ [~=-Full spect ' g
\ ===Full spectrum : & ]
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Fig. 2.10. Polarimetric characteristics of ground clutter. From Melnikov and Zrnic (2006)

2.2.6.1.Ground clutter filter suppression

Fig. 2.11 shows the ground clutter filter suppression. Bias and standard deviation are plotted
versus CSRy, for several spectrum widths. The results show a good ground clutter filter behavior
for CSR up to 40 dB. The bias and standard deviation are higher for w = 1 m/s because, for

certain velocities, the weather signal can be almost completely removed by the filter. For wider

30



spectrum widths, the results are as expected. Given a GCF suppression of 40 dB, the error in Zpgr

will be less than 0.6 dB, 6 degrees for @pp, and 0.06 for pyy.

2.2.6.2.Ground clutter filter performance as a function of clutter Zpr

Fig. 2.12 shows the ground clutter filter performance versus the clutter differential reflectivity
for several CSRy. The results agree with the expected GCF suppression. Only CSRy= 40 dB
causes a high bias and standard deviation for negative clutter Zpg, since this really represents a
higher value for CSR,. For instance, consider the case where CSRy,= 40 dB, Zpr. = -3 dB
(subscript ‘c’ indicates clutter) and Zpr = 3 dB (no subscript indicates weather). The CSR, can

be written as a function of CSR;, as follows:

CSR;, = C/Sp, CSR, = C,/S,

Zpr =Si/Sy =3 dB = S, =4S,

Zpre =Cy/Cy =-3 dB = C, =2C,;

CSR, = C,/S, = 2Cy/2S;, = 4CSR,.

That is, CSR, would be 6 dB higher than CSR;. This explains the exponential behavior of the
purple curve in Fig. 2.12, which is exactly the same behavior we see in Fig. 2.11 for the GCF
suppression. For lower CSR values, the bias is around zero in every case, and the standard

deviation is very close to the no-clutter case.
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2.2.6.3.Ground clutter filter performance as a function of clutter ®pp

Fig. 2.13 shows the performance of the filter as a function the clutter ®pp. In these simulations
we maintained a fixed ®@pp for the weather and we varied the ®@pp for the clutter. The difference
between the two differential phases is what causes the high bias and standard deviation for high
CSR. The bias of differential reflectivity is small. The ®pp difference between weather and
clutter has little influence on its computation, but a strong effect on differential phase and cross-

correlation coefficient. For lower CSR, the results are close to the no-clutter case.

2.2.6.4.Ground clutter filter performance as a function of clutter pyy

Fig. 2.14 depicts the performance of the filter versus the clutter cross-correlation coefficient. The
results agree with the previous simulations for the standard case, since this independent value has
little influence on the computation of the polarimetric variables for a CSR lower than 40 dB.
Hence, we can conclude for each variable:
- Zpr: There is no bias in the Zpr computation except for CSR = 40 dB. The standard
deviation is well below 0.6 dB even for the worst CSR case.
- ®pp: The bias is zero for CSR < 40 dB. The standard deviation is only 3.5 degrees, not too
far from the 3 degree standard deviation for the no-clutter case.

- pnv: The bias is lower than 0.006 for CSR < 40 dB. The standard deviation is around 0.01, a

very close value to the no-clutter case.
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2.3. Real Data Results

The proposed algorithm was tested on real data. We used a single-elevation scan of time series

data recorded on March 4", 2004 with the KOUN radar in Norman, OK. The main parameters

are in the table below.

VCP 2048
Elev. (deg) 2.45
AZ rate (deg/s) 16.30
Period (s) 22.08
Dwell time (ms) 61.4
Staggered ratio x 2/3
M 20
T; (ms) 1.23
T (ms) 1.84
ror (kim) 276
7.1 (km) 184
vy (m/s) 45.1

Figures 2.15 to 2.20 show the filtered and unfiltered PPIs for the spectral moments and the
polarimetric variables. By visual inspection, it can be confirmed that the recommended dual-
polarization SPRT algorithm fulfills the requirements. The polarimetric variables are calculated,

the clutter is filtered, and the spectral moment computation is not harmed.

37



04 Mar 2004 20:42Z - VCP 48 (Cut #11, 2.4 deg) 04 Mar 2004 20:42Z - VCP 48 (Cut #11, 2.4 deg)

h g,
ah 35 0 5 10 1% W 2 W W 0 45 S 55 0 65 T T 05 ah 35 0 & 10 15 20 25 30 B 40 45 S0 &5 60 65 0 MW 05
REFLECTIVITY (dBZ) REFLECTIVITY (dBZ)

(a) (b)

Fig. 2.15. Unfiltered (a) and filtered (b) reflectivities.
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Fig. 2.16. Unfiltered (a) and filtered (b) velocities.
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Fig. 2.17. Unfiltered (a) and filtered (b) spectrum widths.
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Fig. 2.18. Unfiltered (a) and filtered (b) differential reflectivities.
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Fig. 2.19. Unfiltered (a) and filtered (b) differential phases.
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Fig. 2.20. Unfiltered (a) and filtered (b) cross-correlation coefficients.
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2.4. Data Window Effects: Some Observations

A higher noise in the real-data cross-correlation coefficient was perceived when we compared
the filtered and unfiltered PPI images. Since the no-clutter simulations were also computed in the
spectral domain, a brief study about this issue was performed. The reason for this is clear if we
recall that the meteorological variable computations for SPRT in the time and the spectral
domain differ considerably. The zero padding and the window result in higher standard deviation
of the cross-correlation coefficient computation. In region II, a rectangular window would
provide the same results than the computations in the time domain. But in regions I and III we
are considering different sets of data: even or odd pulses in time and extended series in
frequency. The cross-correlation coefficient is an extremely sensitive variable, and these slight
differences in the power computations can lead to a noticeable change, see Fig. 2.21. However,
this is only important for low SNR values, as it can be appreciated in Fig. 2.22, where the highest

differences coincide with the lowest SNRs.

Additionally, we conducted simulations to analyze the probability of obtaining a cross-
correlation coefficient higher than 1 for staggered PRT processing in the time and in the spectral
domains and also for uniform PRT (UPRT). The results are shown in Fig. 2.23. These
simulations employ the same set of default parameters of section 2.2.6. No clutter was added to
the simulations. For the SPRT case, the cross-correlation coefficient is computed first from the
powers and cross-correlation calculated from the unwindowed time samples. Second, the powers
and cross-correlation are calculated from the extended spectra, using a standard Blackman
window. The UPRT computations are the time domain with the same v, (v, = 35 m/s) and

number of samples M, (M, = 120). As expected, the probability of pyy > 1 increases for low
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SNRs. For instance, given an SNR of 10 dB, the probability of obtaining pyy > 1 is basically
zero for UPRT processing, 0.38 for SPRT time-domain processing, and 0.51 for SPRT spectral
processing. Fig. 2.24 shows the differences in standard deviation. For SNRs lower than 10 dB,
this standard deviation can exceed 0.05 for SPRT spectral processing, which is a very high value

for a variable as sensitive as the cross-correlation coefficient.

Note that these results are preliminary and further studies are warranted.
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Fig. 2.21. Unfiltered (a) and filtered (b) cross-correlation coefficient.

46



600

500

400

300

200

100

600

500

400

300

200

100

(b)

Fig. 2.22. SNR (a) and difference between filtered and unfiltered cross-correlation coefficient (b). Notice how the

higher difference areas match with the lower SNRs.
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Fig. 2.23. Probability of |py/>1 for UPRT time-domain, SPRT time-domain, and SPRT frequency-domain

processing.
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domain processing.
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3. The CLEAN-AP Filter

Ground clutter mitigation (detection and filtering) continues to be a major concern for
operational ground based Doppler weather radar systems. For the WSR-88D system, the
Radar Operations Center (ROC) has received field complaints of reflectivity loss along
the contour of zero velocity (zero-isodop); “hot spots” within clutter regions; and spatial
irregularities in the reflectivity, velocity, and spectrum width fields (Data Quality Team
personal correspondence 2010). The performance of the clutter mitigation algorithm has a
direct impact in all these areas of concern. Ideally, the detection algorithm should apply
(or bypass) the ground clutter filter when ground clutter is present (or absent) in the
received radar signal. As well, the ideal ground clutter filter should provide effective
ground clutter removal with minimum disturbance of the desired weather signal. The goal
of the two algorithms is to work collectively to mitigate ground clutter and provide
quality meteorological estimates of reflectivity, velocity, and spectrum width. To
accomplish this goal, the detection algorithm should not miss a ground-clutter
contaminated gate; otherwise, the unfiltered ground clutter results in hot spots. Just as
important, the ground clutter filter should not overly suppress ground clutter when the
detection algorithm falsely identifies a clutter—contaminated gate. Such false detections
create irregularities or partial/complete loss of the meteorological estimates. Thus, an
integrated ground clutter mitigation algorithm is warranted. That is, an algorithm for
which the detection and filtering characteristics are tuned to the clutter characteristics of
the received radar signals. In this report, we describe the CLutter Environment ANalysis
using Adaptive Processing (CLEAN-AP © 2009 Board of Regents of the University of

Oklahoma) filter (Warde and Torres, 2009). The CLEAN-AP filter provides a real-time,
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integrated clutter mitigation solution with: (a) improved ground clutter suppression, (b)
effective ground clutter detection, and (c) dynamic ground clutter suppression

characteristics optimally matched to the existing ground clutter environment.

3.1. Background

Radar backscatter from the ground (or fixed targets on the ground), known as ground
clutter, can contaminate weather signals, often resulting in severely biased meteorological
estimates. If not removed from the estimate, the ground clutter contamination tends to
bias reflectivity high as well as biasing radial Doppler velocity and spectrum width
toward zero. A ground clutter filter (GCF) can mitigate this contamination and provide
unbiased meteorological estimates but usually with reduced quality. However, the overall
quality of the meteorological estimates needlessly suffers when a GCF is applied when
no ground clutter contamination exists and the weather signal has near-zero Doppler
velocities. In this case, significant biases result from the misapplication of the GCF.
Preferably, the GCF should only be applied if the ground clutter contamination
contaminates (biases) the weather signal. Thus, judicious application of the GCF is

needed to mitigate ground clutter contamination.

Typically, weather radars use static clutter maps (i.e., pre-identified clutter contaminated
regions) to control the application of the GCF. However, anomalous propagation
conditions can cause the radar beam to increase contact or overshoot ground clutter,
giving the appearance that the clutter shifts within or disappears from the radar volume
coverage very rapidly. This constant shift of the ground clutter in the radar volume

coverage renders static clutter maps ineffective for controlling the application of the GCF
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in a dynamic atmosphere. Fortunately, spectral examination of the received echoes
provides a means to determine the presence of ground clutter in real time without having
to rely on static clutter maps. A disadvantage of using spectral analysis on a finite number
of samples comes from spectral leakage; hence, data windows are classically applied to
contain this detrimental effect. It is desirable to use low dynamic range windows to
preserve the quality and resolution of the meteorological estimates. However, high
dynamic ranges windows may be required to adequately suppress strong ground clutter

returns, consequently reducing the quality and resolution of the meteorological estimates.

The CLEAN-AP spectral GCF is capable of mitigating the adverse effects of ground
clutter contamination while preserving the quality of the meteorological estimates. This
‘smart’ filter performs real-time detection and suppression of ground clutter returns in

dynamic atmospheric environments.

3.2. CLEAN-AP Performance Analysis

The CLEAN-AP filter clutter mitigation performance was reported by Warde and Torres
(2009) using a MATLAB implementation and signal simulations. Additionally, Warde
and Torres (2010) used recorded time-series data from WSR-88D operational sites to
qualitatively assess the detection performance of the CLEAN-AP filter. The results from
the simulations and the real data show that the CLEAN-AP filter meets and in most cases
exceeds the WSR-88D requirements for both ground clutter detection and filtering. The
analysis reported here and in Warde and Torres (2009, 2010) was completed using
empirically derived notch widths based on a Gaussian model with expected spectrum

width of 0.28 m/s and velocity of 0 m/s.
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3.2.1. Analysis Methodology

The CLEAN-AP filter performance is characterized using a MATLAB implementation of
the algorithm. Simulations of weather and clutter were generated from Gaussian power
spectra (Zrni¢ 1975). To reduce windowing effects and to provide a pseudo-continuous
spectrum, the number of spectral coefficients is increased by a factor of three and the
resulting time series signal is truncated to create a uniformly spaced signal of the
appropriate sample size. The statistical performance of the filter is characterized over a

range of parameters with one hundred realizations created for each parameter set.

3.2.2. Clutter Suppression Requirements

The CLEAN-AP filter was compared against requirements detailed in the WSR-88D
System Specifications 2810000H dated 25 April 2008, chapter 3.7.2.7 “Ground Clutter
Suppression”. Although the system specification includes filter requirements for dual
polarization, only the single polarization requirements for reflectivity, velocity, and
spectrum width are statistically assessed in this report. The WSR-88D System
Specification (SS) is written for an Infinite-Impulse Response (IIR) filter with selectable
notch widths; thus, some of the specifications do not apply to frequency domain filters
using automatic adaptable notch widths (Ice et al. 2004a and 2004b). The goal of ground
clutter filtering is to remove the effects of ground clutter bias on reflectivity, velocity, and
spectrum width while providing meaningful estimates of these moments (i.e., small errors
of estimates). To that end, the WSR-88D SS provides bias and standard deviation
requirements for the application of a filter for a signal at 20 dB signal-to-noise ratio

(SNR) with a weather spectrum of 4 m/s. Clutter model A of the WSR-88D SS provides
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for a zero-mean normally distributed clutter model and is most relevant for this ground
clutter filter evaluation. Although not specified in the WSR-88D SS, a 0.28 m/s clutter
spectrum width is used for this evaluation which is in line with the expected clutter
spectrum width of 0.1 m/s when accounting for spectrum broadening due to the antenna
scanning motion. Additionally, 0.28 m/s clutter spectrum width provides ready
comparison with earlier filter evaluations conducted for the WSR-88D system at the

Radar Operation Center (e.g., Sirmans 1992, Ice et al. 2004a).

When applied, the filter is required to provide a clutter suppression capability of 30 dB in
the reflectivity channel and selectable clutter suppression levels from 20 dB to 50 dB in
the Doppler channel (velocity and spectrum width) where clutter suppression is defined
as the ratio of the input power to the output power after application of the clutter filter.
The bias on the moments caused by the application of the filter is assessed with a
signal-to-clutter ratio (SCR) of 30 dB. In the bias assessment, the low clutter level with
high signal level is used so that the prominent contributor to the moment bias is
associated with the filter performance and not due to clutter residue. An additional
allowance in moment bias is provided in the WSR-88D SS when clutter residue is present
in the output signal: reflectivity bias of 1 dB for an output SCR of 10 dB, velocity bias of
1 m/s for an output SCR of 11 dB and spectrum width bias of 1 m/s for an output SCR of

15 dB.

The filtered reflectivity bias requirement is assessed with a weather signal at 0 m/s and is
dependent on the spectrum width of the weather as shown in table 3.1 (reproduced from
the WSR-88D SS). As can be seen in table 3.1, the bias in reflectivity is expected to

increase as the weather spectrum width becomes small compared to the notch width of
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the clutter filter. The bias in reflectivity is due to portions of the weather signal coincident
with the notch width of the filter centered at 0 m/s. When the weather signal is
completely contained within the notch width of the filter, the entire weather signal

moments are likely to be unrecoverable (i.e. severely biased).

Weather Spectrum Maximum Bias of
Width (m/s) Reflectivity (dB)
1 10
2 2
>3 1

Table 3.1. WSR-88D Filtered Reflectivity Bias Requirements

The filtered Doppler moments have a bias requirement of less than 2 m/s over a range of
usable velocities as a function of the notch width selection as shown in table 3.2
(reproduced from the WSR-88D SS). As mentioned earlier, this requirement is for an IIR
filter with selectable notch widths. The WSR-88D system no longer uses an IIR filter;
however, filtered velocity and spectrum width bias and standard deviation can be
assessed to ensure 2 m/s is not exceeded for all usable velocities above those minimums
stated on the left side of table 3.2 when the filter provides the clutter suppression level

listed on the right side of the table.

Notch Width Minimum Usable
Selection Velocity (m/s) Clutter Suppression (dB)
Low 2 20
Medium 3 28
High 4 50

Table 3.2. WSR-88D Usable Filtered Velocity Requirement

3.2.3. Reflectivity Clutter Suppression and Bias Analysis

Two examples of the clutter suppression performance of the CLEAN-AP filer are shown

in figures 3.1 and 3.2. In these figures, two scatter plots of filtered power bias as a
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function of input clutter-to-signal ratio (CSR) level show the clutter suppression
performance of the CLEAN-AP filter. The simulated weather signal has an SNR of 20 dB
with a 4 m/s spectrum width and representative velocities uniformly distributed
throughout the Nyquist co-interval. The PRT for these examples are 882 pus and 1000 ps,
respectively. The dwell time is set at 40 ms giving 45 samples for figure 3.1 and 64
samples for figure 3.2. The input CSR levels used are -30 dB and 0 dB to 100 dB in 5 dB
step sizes. At each CSR level, 5000 (50 velocities x 100 realizations) power bias results
are shown. The color scale indicates the percentage of occurrences at each power bias
level with the maroon indicating 100% (100 occurrences) and white indicating 0% (0
occurrences). Optimal clutter suppression performance is indicated when the power bias
is at 0 dB. Clutter residue is present when the power bias increases above 0 dB; while
over-suppression occurs when the power bias drops below 0 dB. In each scatter plot, high
occurrences (>90%) are seen in red along the zero power bias with a quick taper to near
zero occurrences on either side of zero power bias. The clutter suppression performance
of the tested filter can be estimated at the point where the highest occurrence of power
bias level (blue line) departs from zero power bias. For the examples in figure 3.1, clutter
suppression is seen at ~70 dB; whereas, clutter suppression is seen at ~80 dB in figure
3.2. The red ovals indicate over-suppression that begin at ~60 dB in both figures. In both
cases, the CLEAN-AP clutter suppression performance is above the WSR-88D
requirement of 50 dB. Although not shown, reduced number of samples and different

PRT settings meet or exceed the 50 dB requirement.

Another measure of CLEAN-AP filter performance is seen when compared to current

(GMAP) and past (IIR) filters used in the WSR-88D system. The comparisons are made
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in Surveillance, Clear Air, and Doppler weather modes which make up the VCP scanning
strategies employed on the WSR-88D system for both precipitation and clear air
operations. The simulated weather signal has a 20 dB SNR. Although the WSR-88D SS
reflectivity bias requirement applies to all radial velocities, the reflectivity bias effects of
ground clutter filtering are more prominent at O velocity. Thus, the evaluation is
performed with the signal centered at 0 velocity. The spectrum width is varied from 0.1
to 0.5 m/s in 0.1 m/s steps and from 1 to 4 m/s in 1 m/s steps. At each spectrum width,
the average of 100 reflectivity (power) bias results is shown. The CSR is set at -30 dB to
assess the filter’s influence in the stop band when no clutter contamination is present. The
-30 dB CSR setting is chosen in accordance with the WSR-88D SS and is expected to

have no appreciable bias on the reflectivity estimate.

Cluttar Suppression (SNR: 20 dB, PRT: 882 ps, Samples: 45)

Clutter Bias (dB)

-20 0 20 40 B0 80 100
CSR (dB)

Fig. 3.1. Clutter suppression of the CLEAN-AP filter for a signal with 882us PRT, 20
dB SNR, 4 m/s spectrum width and velocities uniformly distributed across the Nyquist
co-interval. The simulated clutter signal varies from -30 dB to 100 dB CSR and has a
0.28 m/s spectrum width centered on a velocity of 0 m/s. The histogram includes 5000
realizations for each CSR level. The blue line shows the mean value of the estimate and
the red oval surrounds a region of over-suppression.
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Clutter Suppression (SNR: 20 dB, PRT: 1000 ps, Samples: 64)

Clutter Bias (dB)

20 0 20 40 B0 80 100
CSR (dB)

Fig. 3.2. Clutter suppression of the CLEAN-AP filter for a signal with 1000us PRT, 20 dB
SNR, 4 m/s spectrum width and velocities uniformly distributed across the Nyquist co-interval.
The simulated clutter signal varies from -30 dB to 100 dB CSR and has a 0.28 m/s spectrum
width centered on a velocity of 0 m/s. The histogram includes 5000 realizations for each CSR
level. The blue line shows the mean value of the estimate and the red oval surrounds a region of
over-suppression.

3.2.4. Surveillance Mode

In the Surveillance mode, long PRTs (~3000 ps) are used to sample the convective
environment at low elevation angles providing reflectivity coverage to ~450 km. The
unambiguous reflectivity range is established by the relationship ¢Ty/2 where Ts is PRT
of the waveforms under test. To meet the unambiguous reflectivity range of 450 km, a
PRT of 3100 ps is used with a sample size of 16 pulses. Figure 3.3 shows the reflectivity
bias of all three filters (legacy IIR, GMAP, CLEAN-AP) in the Surveillance weather
mode as a function of the true weather-signal spectrum width. The reflectivity bias
requirements from table 3.1 are plotted in figure 3.3 as blue circled x’s to provide easy
reference to the WSR-88D requirements. The legacy IIR filter is shown with three notch

width suppression levels (high (blue), medium (green) and low (orange)) (e.g., Sirmans
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1992). The GMAP filter (magenta) is displayed with the operational clutter spectrum
seed width of 0.4 m/s (e.g., Ice 2004a). The PRT of 3106 ps with 16 samples (dwell
~50 ms) was used for the evaluation. It is seen that the CLEAN-AP filter (light green)
meets the reflectivity bias levels at all spectrum width values and easily exceeds WSR-

88D requirements in the Surveillance mode.

The performance enhancement seen in the CLEAN-AP filter is due to two aspects of the
algorithm. At narrow spectrum widths (<1 m/s), the dominating factor that improves
CLEAN-AP performance over the other filters shown in figure 3.1 is attributed to the use
of the spectral leakage in the lag-1 ASD phases to correctly identify the spectral
components with clutter contamination. At wider spectrum widths, the adaptive window
feature of the algorithm automatically adjusts the suppression level of the filter based on
the measured power at 0 frequency (seen in figure 3.3 at wide spectrum widths >1 m/s).
This is because a wider spectrum signal will have less power concentrated around the
mode of the spectrum (in this case 0 velocity or DC level). The bias changes seen in the
CLEAN-AP filter plot above 1.5 m/s are attributed to the algorithm choosing lower
dynamic range windows as a function of wider spectrum width signals. This feature of
the CLEAN-AP filter helps to preserve the quality of the weather estimates. When a
signal is away from the zero-isodop, no DC component is measured and the rectangular

window is automatically selected giving the best quality for all the weather estimates.
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Surveillance Mode
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T T T T

T
Legacy High
14k Legacy Medium
Legacy Low
— GMAP (0.4 ms)
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Fig. 3.3. Surveillance mode — reflectivity bias error imparted by the filter as a function of
spectrum width. The simulated Gaussian signal has an SNR of 20 dB with a velocity of 0 m/s.
Plotted are the reflectivity biases for the WSR-88D legacy filter (IIR — high (blue), medium
(green) and low (orange)), the GMAP filter (0.4 m/s seed width and Blackman window
(magenta)) and the CLEAN-AP filter (light green).

3.2.5. Clear Air Mode

The Clear Air mode is used when expected precipitation is low and provides increased
sensitivity for low signal detection (FMH-11). The WSR-88D has two VCP definitions
for the Clear Air mode: VCP 31 (long pulse width) and VCP 32 (short pulse width). The
filter evaluation is equally applicable to both modes. The plots in figure 3.4 provide a
ready comparison of the reflectivity bias for both the CLEAN-AP filter (light green) and
the GMAP filter (magenta) as true spectrum widths range from 0.1 m/s to 4 m/s. The
signal PRF is 450 Hz (~2222 pus PRT) with 64 samples (~142 ms dwell). In the Clear Air
mode, the CLEAN-AP filter is seen to easily meet the reflectivity bias requirements of
the WSR-88D SS at all spectrum widths. Again, the enhanced performance of
CLEAN-AP filter over the GMAP filter is attributed to the use of the lag-1 ASD phase
and the automated window selection feature. In this mode, the CLEAN-AP filter imparts

less than 0.25 dB of bias to the reflectivity estimate for true spectrum widths above 1 m/s;
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whereas, the GMAP filter imparts ~4 dB of reflectivity bias at a spectrum width of 1 m/s

and does not reduce to the 0.25 dB bias level until the spectrum width is above 3 m/s.

Clear Air Mode
GMAP-CLEAN-AF Filter Reflectvity Bias

— GMAP (0.4 mis)
CLEAN-AP (Adaptive Window)

Reflectivity Bias, dB
@

4 a— . h y
a 0s 1 15 2 25 3 35 4
Spectrum Width, m/s

Fig. 3.4. Clear Air mode — reflectivity bias error imparted by the filter as a function of spectrum
width. The simulated Gaussian signal has an SNR of 20 dB with a velocity of 0 m/s. Plotted are
the reflectivity biases for the GMAP filter (0.4 m/s seed width and Blackman window
(magenta)) and the CLEAN-AP filter (light green).

3.2.6. Doppler Mode

In the Doppler mode, shorter PRTs are used to extend the Nyquist co-interval; however,
the unambiguous range is reduced thus making overlaid echoes more likely, especially at
the lowest elevations levels of the VCP. In the intermediate and upper elevations, storm
top heights of 70 kft are quickly reached due to the earth’s curvature (Doviak and Zrni¢
1993), eliminating the concern for overlaid echoes since storm tops above this height are

extremely rare.

Figure 3.5 shows reflectivity bias as a function of true spectrum width for legacy IIR,
GMAP and CLEAN-AP filters. As in the Surveillance mode, the legacy IIR filter has
selections for high, medium and low notch widths. The filters are supplied a signal with a

PRF of 1000 Hz (1000 ps PRT) with 64 samples (64 ms dwell). The input signal has a 20
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dB SNR with a velocity of 0 m/s. The spectrum width is increased from 0.1 to 4 m/s. The
CLEAN-AP filter is shown to provide reflectivity bias performance that exceeds the

WSR-88D requirements for the Doppler mode.

Doppler Mode
Legacy-GMAP-CLEAN-AP Filter Reflectivity Bias
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Fig. 3.5. Doppler mode — reflectivity bias error imparted by the filter as a function of spectrum
width. The simulated Gaussian signal has an SNR of 20 dB with a velocity of 0 m/s. Plotted are
the reflectivity biases for the WSR-88D legacy filter (IIR — high (blue), medium (green) and
low (orange)), the GMAP filter (0.4 m/s seed width and Blackman window (magenta)) and the
CLEAN-AP filter (light green).

3.2.7. Velocity Bias Analysis

If not removed from the composite signal, ground clutter biases the weather velocity
estimate toward zero while the power (reflectivity) is increased by the amount of clutter
power present in the composite signal. The weather velocity estimate can still be biased
toward zero even after filtering when enough clutter remains in the signal at the output to
the filter. When all or part of the weather signal is in the filter stop band, the estimates of
weather signal velocity and power may be unrecoverable or severely biased. The
WSR-88D SS provides guidance for velocity biases for an IIR filter outside the pass
bands of 0.875, 1.25, and 1.75 m/s for legacy low, medium, and high notch width

selections (Sirmans 1992). For each notch width selection (low, medium, and high), table
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3.2 shows the usable velocities that should be unaffected by the filtering process when
the clutter suppression levels are at 20, 28 and 50 dB (respectively). In the passband of
the filter, the WSR-88D SS allows a 2 m/s bias and 2 m/s standard deviation for these
usable velocities. Ice et al. (2004a and 2004b) evaluated the GMAP filter and found that

it meets WSR-88D requirements for velocity bias and standard deviation.

Like the GMAP filter, the CLEAN-AP filter does not use a fixed notch width; however,
velocity biases and standard deviations can still be established for the conditions listed in
table 3.2. The weather signal used for this test has a 20 dB SNR and 4 m/s spectrum
width with varying levels of clutter. As seen in figures 3.1 and 3.2, the CLEAN-AP filter
starts to overly suppress the clutter signal at around 60 dB. Before this level of clutter, the
CLEAN-AP filter without clutter model control meets the WSR-88D requirements for
velocity bias and standard deviation, so these images are not shown. However, it is more
interesting to see how the CLEAN-AP filter compares to the GMAP filter above the 50

dB clutter level.

In figure 3.6, a histogram of the velocity estimate bias after filtering is shown as a
function of true weather velocity for a 20 dB weather signal with a CSR of 55 dB. The
PRT is set to 1000 ps and has 64 samples. The filtered weather velocity bias is evaluated
at 50 velocities throughout the Nyquist co-interval. For each true velocity, results from
100 realizations are shown and the color indicates the percentage of occurrences. For this
example, CLEAN-AP shows < 1 m/s biases and < 1 m/s standard deviation across the
complete Nyquist co-interval (including in the stop band). This is typical performance for

the CLEAN-AP filter below 55 dB CSR.
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Compare the CLEAN-AP filter performance to that of the GMAP filter for the same
conditions. In figure 3.7, the GMAP filter produces larger biases and increased standard
deviations, especially near £10 m/s. The GMAP filter imparts velocity biases in the
region from -10 m/s to 10 m/s that appear linear. This is due to the clutter residual present
in the filter output which biases the velocity estimate toward 0 m/s. Ice et al. (2004a)
reported power biases of 0.25 dB at 50 dB CSR increasing to 3.88 dB at 60 dB CSR for
the GMAP filter using the same signal parameters. As the power bias increases, the
clutter residual becomes the prominent contributor to the velocity estimate which biases
the velocity estimate toward zero. For example, figure 3.7 shows that approximately -5
m/s bias is imparted on the velocity estimate at 10 m/s true velocity. This translates to a
velocity estimate of 5 m/s (10 true + -5 bias = 5 estimated). Thus, the clutter residual
caused a 5 m/s underestimate in velocity at a true velocity of 10 m/s. Another artifact
caused by clutter residue is shown in the region of the stop band (near 0 m/s) of the
GMAP filter where there appear to be small bias and standard deviation. Increased
performance in the areas of clutter suppression with reduced velocity biases of the
CLEAN-AP filter over the GMAP filter for this example is, once again, attributed to the
use of the lag-1 ASD phases. That is, the CLEAN-AP filter uses phases to identify the

notch width; whereas, the GMAP filter uses the magnitudes.
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Fig. 3.6. Velocity bias of the CLEAN-AP filter as a function of true velocity. The CSR is 55 dB
with a simulated weather signal of 20 dB SNR and 4 m/s spectrum width. For each true
velocity, the results of 100 realizations are shown and the color indicates the percentage of
occurrences.

Velocity Bias (CSR: 55 dB, PRT: 1000 ps, Dwelt 64 Samples)
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Fig. 3.7. Velocity bias of the GMAP filter as a function of true velocity. The CSR is 55 dB with
a simulated weather signal of 20 dB SNR and 4 m/s spectrum width. For each true velocity, the
results of 100 realizations are shown and the color indicates the percentage of occurrences.

Increasing the CSR to 60 dB, shows how both filters fail to provide unbiased estimates of
velocity. In figure 3.8, the CLEAN-AP filter imparts biases that are caused by over
suppression. Reexamine figure 3.2, the red oval region outlines the over-suppressed

region; however, not all of the estimates are biased as seen by the blue bias line. The
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over-suppressed region can be identified and censored by using the identified clutter
contaminated coefficients of the lag-1 ASD as a guide. This technique is used in the
CLEAN-AP implementation on the National Weather Research Testbed (NWRT) Phased
Array Radar (PAR) but is not discussed in this report. Removing these over-suppressed
values leaves velocity estimates that are again within the WSR-88D requirements.
Compare the CLEAN-AP filter performance to the GMAP filter performance for the
same conditions. In figure 3.7, the GMAP filter completely fails to remove the clutter
contamination as seen by the nearly linear bias values running from approximately 23
m/s (bias) at a true velocity of -23 m/s to approximately -23 m/s (bias) at a true velocity
of 23 m/s. The enhanced performance of the CLEAN-AP filter comes from the addition
of the Blackman-Nuttal data window which has first sidelobe levels of -98 dB. For CSR
above ~58 dB, the failure of the GMAP filter to remove the clutter contamination is
attributed to the insufficiently low Blackman data window sidelobes. The addition of the
Blackman-Nuttal data window to the CLEAN-AP algorithm increases its clutter

suppression capability reducing data window sidelobe artifacts.
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Velocity Bias - Medium Filter Test (CSR: 60 dB, PRT: 1000 ps, Dwell: 64 Samples)

45%

Velocity Bias (m/s) - (E[V]-V)

Velocity (m/s)

Fig. 3.8. Velocity bias of the CLEAN-AP filter as a function of true velocity. The CSR is 60 dB
with a simulated weather signal of 20 dB SNR and 4 m/s spectrum width. For each true
velocity, the results of 100 realizations are shown and the color indicates the percentage of
occurrences.

Velocity Biss - Medium Filter Test (CSR: 60 dB, PRT: 1000 ps, Dwell: 64 Samples)
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Fig. 3.9. Velocity bias performance of the GMAP filter as a function of true velocity. Clutter
level is at 60 dB CSR with a simulated weather signal of 20 dB SNR and 4 m/s spectrum width.
For each true velocity, 100 realizations are shown and the color indicates the percentage of
occurrences.
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3.2.8. Spectrum Width Bias Analysis

When clutter filtering is applied, the WSR-88D SS requirements for spectrum width bias
and standard deviation are 2 m/s for an input spectrum width of 4 m/s. An additional 1
nm/s allowance is provided for spectrum width bias when a clutter residue of -15 dB CSR
is present at the output of the filter. The estimator used for these tests is the RO/RI
estimator described by Doviak and Zrni¢ (1993). At times, the RO/R1 estimator can give
a spectrum width estimate that is nonsensical. These values are normally set to 0 m/s in
the estimation routine for the WSR-88D system. For the bias and standard deviation

estimates, these artificial zeros are removed.

Recall that the CLEAN-AP filter starts to overly suppress the clutter signal at around 60
dB. Before this level of clutter, the CLEAN-AP filter without clutter model control meets
the WSR-88D requirements for spectrum width bias and standard. Figure 3.10 through
3.13 show histograms of spectrum width biases as a function of true spectrum width. The
color scale shows the level of occurrence of each spectrum width estimate with 500
estimates made for each true spectrum width value. For each true spectrum width value,
the mean spectrum width bias is shown with red circles; red vertical bars are used to
display the spectrum width standard deviation. The red horizontal lines at +2 m/s

represent the bias requirements of the WSR-88D SS.

Seen in figure 3.10, the CLEAN-AP filter has biases < 1 m/s for all true spectrum widths.
Additionally, the standard deviations are < 1 m/s for true spectrum widths above 0.5 m/s
and below 7 m/s with values < 2 m/s above 0.1 m/s and below 9 m/s. Contrast the

CLEAN-AP filter performance (figure 3.10) with the GMAP filter performance in figure
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3.11. The GMAP filter imparts a positive bias for all true spectrum widths tested. The
bias constraint imposed by the WSR-88D SS of 2 m/s is achieved in the interval from 3
m/s to 9 m/s. If the 1 m/s bias constraint for clutter residual is added; then, the lower
bound can be reduced to 1 m/s. Still, the standard deviation constraint imposed by the
WSR-88D SS of 2 m/s is not achieved for any true spectrum width values tested. The
advantage realized by the CLEAN-AP filter is due to its increased clutter suppression
capability and readily attributed to the use of the unbiased autocorrelation estimator

derived from the ASD.

When the CSR is 60 dB, the CLEAN-AP filter performance degrades (figure 3.12).
Spectrum width biases are still below 2 m/s, but errors increase above the 2 m/s standard
deviation level for true spectrum widths below about 3 m/s. The GMAP filter
performance degrades as well with increased bias and standard deviation shown in figure

3.13.

Spectrum Width Bias (CSR: 55 dB, PRT: 1000 ps, Dwell: 64 Samples)
r T v T T T T 50%

12 1 45%
10 . 0%
8 j 5%

30%

25%

Width Bias (m/s)
F-

20%

HTIRRRE &

5 %

T S 0 %
1 2 3 4 5 6 7 8 89

Width (m/s)

Fig. 3.10. Spectrum width bias of the CLEAN-AP filter as a function of true spectrum width.
The CSR is 55 dB with a simulated weather signal of 20 dB SNR and velocities throughout the
Nyquist co-interval. For each true spectrum width, results from 500 realizations are shown and

the color indicates the percentage of occurrences.
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Spectrum Width Bias (CSR: 55dB, PRT: 1000 ps, Dwell: 64 Samples)
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Fig. 3.11. Spectrum width bias of the GMAP filter as a function of true spectrum width. Clutter

level is at 55 dB CSR with a simulated weather signal of 20 dB SNR and velocities throughout

the Nyquist co-interval. For each true spectrum width, 500 realizations are shown and the color
indicates the percentage of occurrences.
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Fig. 3.12. Spectrum width bias performance of the CLEAN-AP filter as a function of true
spectrum width. Clutter level is at 60 dB CSR with a simulated weather signal of 20 dB SNR
and velocities throughout the Nyquist co-interval. For each true spectrum width, 500
realizations are shown and the color indicates the percentage of occurrences.
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Spectrum Width Bias (CSR: 60 dB, PRT: 1000 ps, Dwell: 64 Samples)
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Fig. 3.13. Spectrum width bias of the GMAP filter as a function of true spectrum width. Clutter

level is at 60 dB CSR with a simulated weather signal of 20 dB SNR and velocities throughout

the Nyquist co-interval. For each true spectrum width, 500 realizations are shown and the color
indicates the percentage of occurrences.

3.2.9. Real Data Analysis

The CLEAN-AP filter provides a complete ground clutter mitigation capability
incorporating both detection and filtering of ground clutter into a single integrated
solution. The WSR-88D system has two separate algorithms to accomplish ground clutter
mitigation. The GMAP filter provides the filtering for each range bin independent of
other range bins; accordingly, the filter can be characterized using statistical analysis with
simulations (e.g., Ice et al. 2004a). The Clutter Mitigation Decision (CMD) algorithm
(Hubbert et al. 2009) provides the detection of ground clutter for the WSR-88D system
(Ice et al. 2009). The CMD algorithm uses spatial continuity within a fuzzy logic
framework to provide a decision to filter or not filter. As such, only a subjective analysis
with real data can be used to compare the detection features of the CLEAN-AP clutter

mitigation with that of CMD/GMAP clutter mitigation.

70



The CLEAN-AP filter was developed and has been operating on the NWRT PAR since
the fall of 2008 in support of MPAR research (Torres et al. 2009). The PAR can acquire
all measurements of the atmospheric environment using electronic beam steering; i.e.,
without antenna beam smearing from scanning. To transfer this technology to the WSR-
88D, which measures the atmosphere by scanning in azimuth, it is beneficial to show that
the CLEAN-AP filter can perform well with the effects of beam smearing. Although
there was no tasking to NSSL from the ROC for the CLEAN-AP algorithm, the ROC
agreed to provide an example of CMD/GMAP clutter mitigation for a cursory
comparison with CLEAN-AP clutter mitigation. The ROC provided the lowest elevation
level of 0.5° of a VCP 32 with super resolution enabled for this comparison. CMD is ran
on the Surveillance scan at the 0.5° elevation, but not on the Doppler scan at the same
elevation. Therefore, only the reflectivity is shown. For this comparison, CLEAN-AP and
CMD/GMAP are compared using time series data collected from the WSR-88D at
Tucson, AZ (KEMX) on April 22, 2009 during beta testing of the CMD implementation
into the WSR-88D (Ice et al. 2009). The data set was chosen because of the mountainous
terrain that surrounds the radar. During the beta test of the CMD/GMAP system, missed
detections created persistent areas of high reflectivity in the Santa Catalina mountains
(red ovals in figure 3.14) causing a redesign of the implementation of the CMD algorithm
in the WSR-88D (Ice personal correspondence 2009). Time series data were played back
both in the MATLAB environment to get the CLEAN-AP reflectivity output and in an
offline WSR-88D system (e.g., Rhoton et al. 2005) to get the CMD/GMAP reflectivity
output. Additionally, the unfiltered reflectivity was provided by the ROC through the

offline WSR-88D system. The unfiltered and CMD/GMAP reflectivity outputs were
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ingested into the MATLAB environment for display and direct comparison to the
CLEAN-AP reflectivity. Figure 3.14 shows the comparison of CMD/GMAP (panel (a)),
unfiltered (panel (b)), and CLEAN-AP (panel (c)) reflectivity output for this clear-air
case. From this view, it can be seen that both CMD/GMAP and CLEAN-AP performed
equally well in providing automated ground clutter mitigation. However, upon closer

inspection of the figures, there are some interesting observations.

KEMX (Tucson, AZ) 2121Z 22APR2009
Reflectivity - (CMDIGMAF)

KEMX (Tucson, AZ) 2121Z 22APR2009
Reflectivity - Unfiltered
o

-’

KEMX (Tucson, AZ) 2121Z 22APR2009
Reflectivity - (CLEAN-AP)

Range (em)
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Fig. 3.14. Reflectivity replayed from time series data collected by the WSR-88D at Tucson, AZ
(KEMX) on April 22, 2009. The red oval encompasses high clutter returns north-northwest of
the radar in the Santa Catalina mountains on Mt. Lemon. The yellow oval encompasses low
clutter returns south-west of the radar (a) Output of the WSR-88D offline system with
CMD/GMAP enabled. (b) Output of the WSR-88D offline system with no clutter mitigation
enabled (unfiltered). (¢) Output from MATLAB with CLEAN-AP enabled.

Figure 3.15 shows a closer view of the Santa Catalina mountains (red oval north-
northwest of the radar in figure 3.14). The high reflectivity values shown in the unfiltered
reflectivity (panel (b)) are returns from the Santa Catalina mountains on Mt. Lemon. Both
systems, CMD/GMAP (panel (a)) and CLEAN-AP (panel (c)) achieve nearly the same
performance in mitigating the ground clutter; however, there is still evidence of high
reflectivity values in the CMD/GMAP ground mitigation scheme (panel (a) red arrow).

The reduced value in this region by the CMD/GMAP ground clutter mitigation scheme
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indicates that CMD properly detected the region, but the GMAP filter did not provide
adequate clutter suppression. Compare the CMD/GMAP performance to the CLEAN-AP
performance in panel (c) (red arrow). Here, the CLEAN-AP filter properly detected and

removed the ground clutter from this region.

KEMX (Tucson, AZ) 2121Z 22APR2009 KEMX (Tucson, AZ) 2121Z 22APR2009 KEMX (Tucson, AZ) 2121Z 22APR2009
Reflectivity - (CMD/GMAF) Reflectivity - Unfittered Reflectivity - (CLEAN-AP)

1% =)
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(c)
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Fig. 3.15. Reflectivity replayed from time series data collected by the WSR-88D at Tucson, AZ
(KEMX) on April 22, 2009. The region displayed is north-northwest of the radar in the Santa
Catalina mountains on Mt. Lemon. (a) Output of the WSR-88D offline system with
CMD/GMAP enabled. The red arrow shows that clutter mitigation was complete effective in
removing the ground clutter. (b) Output of the WSR-88D offline system with no clutter
mitigation enabled (unfiltered). (c) Output from MATLAB with CLEAN-AP enabled. The red
arrow shows that clutter mitigation effectively removed the ground clutter.

In figure 3.16 (yellow oval in southwest region of the radar in figure 3.14), low level
ground clutter from -20 to 8 dB is experienced. This low-level ground clutter is
undetected by the CMD algorithm (left panel of figure 3.16), but is removed by the
CLEAN-AP filter (right panel of figure 3.16). Although, this low-level ground clutter
may seem operationally insignificant; upon closer inspection, there may be some
operational impacts. It is evident that the radar experiences some beam blockage by the
unnatural discontinuity in the reflectivity images from approximately 196° to 245° in
azimuth, but rising terrain still provides substantial clutter returns in the region. The

clutter power in this region after removing range correction and calibration adjustments is
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between 13 to 41 dB clutter-to-noise ratio (CNR). The signal power from distributed
targets drops at a rate of the 1/R” (inverse range squared). Thus, weather signals at far
ranges are weak compared to clutter signals near the radar. When weather signals exceed
the unambiguous range in the Doppler scan, the weather signal will overlay (range fold)
into this undetected/unfiltered ground clutter. The operational implications is that range
folded echoes in the Doppler scan become masked by the unfiltered ground clutter caused
by missed detection in the Surveillance scan. Additionally, the Doppler velocity and the
spectrum width fields in the Doppler scan are biased toward zero where the unfiltered
ground clutter remains causing discontinuities in these Doppler fields. These
discontinuities can impede the performance of the velocity dealiasing and Velocity
Azimuth Display (VAD) wind profile algorithms. Not only are the weather signatures
biased by the unfiltered ground clutter, but insect and bird signatures are masked/biased
as well when ground clutter is present. Although more real data cases are needed to
provide a thorough evaluation of the CLEAN-AP filter; the preliminary evaluation

provided shows great promise.
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Fig. 3.16. Reflectivity replayed from time series data collected by the WSR-88D at Tucson, AZ
(KEMX) on April 22, 2009. Low-level ground clutter is present in the region southwest of the
radar from 196° to 245° in azimuth. (a) Output of the WSR-88D offline system with
CMD/GMAP enabled. Residual ground clutter is present in the region due to non-detection. (b)
Output of the WSR-88D offline system with no clutter mitigation enabled (unfiltered). (c)
Output from MATLAB with CLEAN-AP enabled. Clutter mitigation effectively removed the
ground clutter in the region.
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4. Evaluation of the Hybrid Spectrum Width Estimator

[This section follows in its original format]
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1 Introduction

The spectrum width is a well known radar parameter related to the dispersion of radial
velocities, and its value can be potentially useful for measuring the turbulent nature of radar
scatterers and leading to better warnings of severe weather events (Lemon, 1999) and means
of detecting turbulence for air transportation (Mahapatra, 1999). The popular approach for
measuring the spectrum width uses a pulse pair logarithm approach, however its performance
is questionable at the narrow spectrum where significant biases are observed. This deficiency
can be be problematic in many weather conditions where a large dispersion range of velocities
is observed; for example, a sheared layer that is commonly observed can produce significantly
differing dispersion signatures depending on radar range, elevation angle, and other factors,
and all these measurements are needed. As a result, an accurate and reliable technique for
measuring the spectrum over a wide range is needed in order to instill confidence in this

useful radar parameter.

Recently, a hybrid technique using multiple autocorrelation-based approaches to estimate
this parameter was introduced Meymaris et al. (2009b). It was claimed that the values
produced had better root-mean-squared error at the narrower spectrum width range compare
to the popular approach. In this report, the performance of this estimator such as bias,
variance, frequency of zeros were examined using simulations. While it will be shown that

the results validates the claims, it was observed that some simple modifications can be made



to further improve the performance.

2 Methodology

2.1 Hybrid Spectrum Width Estimator

The method as described in Meymaris et al. (2009b) provides an estimate of the dispersion of
the radial velocity by selecting from one of three temporal autocorrelation-based techniques
a value of the estimated spectrum width that most appropriately describes characteristics
obtained from the inputted short time sequence. An illustration of the method is depicted
in Figure 1 for an aliasing velocity of 25 ms™', and it shows the three available choices with
their appropriate ranges that can be seen to depend on the estimated spectrum width value
and input time sequence length. According to Meymaris et al. (2009b), the three ranges are
systematically given the label small, medium, and large. While not explicitly stated, these
thresholds appears to have been obtained via simulations. Additionally, a fourth estimator
based on the parabolic form of the autocorrelation function is used to provide the initial

guess of the estimated spectrum width.

The approach for obtaining the spectrum width estimate of the short time series sequence

v(k) with M samples begins by estimating its auto correlation, which is defined as

M—i—1
1

Riv] = 47— > vt (kyu(k + ). (1)

—1
k=0

Additionally, let r[i] = |R;[v]].

The hybrid spectrum width estimators uses a combination of the w3, wis, and wq; to provide
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Figure 1: Hybrid Spectrum Width Estimator Model for an aliasing velocity of 25 ms™!. Two
sets of thresholds, which are labeled “small” and “large” widths in this figure, are used for
categorizing the estimated spectrum width values and for selecting the choice of spectrum

width estimator.



the spectrum width estimate. When the input spectrum width is small, the output of the

wsg estimator is used within this range. If 7[3] > r[1] then w3 = 0, else

where v, is the aliasing velocity. At the medium range, the wis estimator is used. The

output of this estimator is: If r[2] > r[1] then w;y = 0, else

At the largest range, the wg; estimator is used. The output of this estimator is: If r[1] >

r[0] — Py then wg; = 0, else

where Py is the noise power.

The fourth estimator that is used in the initial spectrum width estimate is

o = %va\/—Qmin(O,—0.19231n(r[0]—PN)—0.076911'1(7“[1])+0.26921n(r[2]) (5)

The normalized spectrum width thresholds are listed in Table 1 according to Meymaris et al.
(2009a). The values listed depend only on the number of samples and increase with large
samples size, and linear interpolation is used to obtain the thresholds for sample sizes that

fall between those listed.
The following pseudo-code can be used to describe this technique:

e Use Table 1 to obtain the thresholds.

o If 1/2(wp; +wp12) is larger than the large values threshold, use the value obtained from

Wo1- Else,



Table 1: Hybrid Spectrum Width Thresholds (normalized to v, from Meymaris et al. (2009a))

M Thresholds

Small Values | Large Values

23.0000 -1.0000 -1.0000
24.0000 -1.0000 -1.0000
25.0000 -1.0000 0.1610
30.0000 -1.0000 0.1630
35.0000 -1.0000 0.1650
40.0000 -1.0000 0.1680
45.0000 -1.0000 0.1700
50.0000 -1.0000 0.1710
55.0000 -1.0000 0.1730
58.0000 -1.0000 0.1740
59.0000 0.0730 0.1740
70.0000 0.0740 0.1760
80.0000 0.0720 0.1770
100.0000 0.0730 0.1790
150.0000 0.0730 0.1840
200.0000 0.0740 0.1850

300.0000 0.0740 0.1890




e if w3 is smaller than the small values threshold, use the value obtained from wq3. Else,

e use the value obtained from wys.



3 Modified Hybrid Spectrum Width Estimator

Compared to the results obtained using wq;, the results obtained using the hybrid spectrum
width estimator are significantly improved. These results will, however, be presented later.
Nevertheless, one of the most obvious improvement is observed at narrow spectrum widths,
where the standard deviation and bias are better, which lead to better mean-squared error
values at these ranges. Additionally, the percentage of complex widths obtained at the
narrow spectrum widths, which is also a measure of the performance at these range, decreases
when using the hybrid spectrum width estimators. These two improvements are desirable in

providing better spectrum width estimates.

Even though the performance of the hybrid spectrum width estimator is improved compared
to that of the wp; estimator, its performance could be improved using several simple modifi-
cations. Observe the optimal estimator range for these values shown in Figure 2. The solid
black lines are the thresholds used in the hybrid spectrum width estimator. The color images
below these lines depict the optimal choice of the estimated spectrum width estimator for
different sets of sample sizes, signal-to-noise ratio, and spectrum width values. The values
for the small, medium, and large thresholds for optimal performance actually varies accord-
ing to these parameters and do not match the static thresholds as presented for the hybrid
spectrum width estimator. By matching these thresholds, some additional improvements in

the estimated spectrum width can be obtained.

Another modification to the hybrid spectrum width estimator that can be applied to improve
the estimated spectrum width is to incorporate the wgg, estimator at the small spectrum

width when the signal-to-noise ratio is sufficiently large. This estimator, which was presented
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Figure 2: Overlay of the hybrid spectrum width thresholds versus the range obtained for the
optimal estimator (based on mean-squared error). Left to right: SNR = 10 (dB), SNR = 20

(dB), and SNR = 30 (dB).

in Melnikov and Doviak (2002), has the advantage of lower bias and standard deviation
compared to the w;s estimator when these conditions are satisfied, and the frequency of
non-zero estimates at the small spectrum width is lower using this estimator. The w,gq,

estimator has the following expression
1/2

Uq 1
Waap = - In , (6)

1/2
{1 - [ﬁ] } {1+ SNR}"/?

where

i

vk + 1> — [v(k)|. (7)

When AP >= P, set wgqy = 0.

A final modification to the hybrid spectrum width estimator involves applying data quality
control by exploiting conditions when one or multiple of the wg; w15 or wy3 estimators produce
a zero value. This modification aims at limiting the estimated spectrum width value to the
small range from the knowledge that the condition to realize such a value is statistically

insignificant at the medium and rare at the large spectrum width ranges. This conditional



probability example, which is illustrated in Figure 3 using simulated data, shows that the
true spectrum width should be small when one of the three wg; w12 or wi3 estimators produce
zero values. As a result, it is possible to replace the zero value with a non-zero but a small
value produced by one of the other estimator and track for conditions when narrow spectrum
width values are incorrectly estimated. Shown in Tables 2 and 3 are now thresholds values

for the wy; and wyy estimators that depend on signal-to-noise ratios and number of samples.
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Figure 3: Frequency of estimates with zero values for a selected simulation case.
Additionally, the threshold for wg,, are { 0.80 095 1.10 125 150 1.95 | for M =
25 50 75 100 150 200 } , respectively when the SNR is above 20 dB.

The following pseudo-code can be used to describe this technique:



Table 2: Hybrid Spectrum Width Thresholds for wg; (Non-normalized)

M /SNR 10 (dB) 20 (dB) 25 (dB) 30 (dB)
25 49500 43500  4.3500  4.2500
50 46000 3.8500 3.8500  3.8000
75 44500  3.6000  3.5500  3.5000
100 43500 3.4000 3.3500  3.4000
150 42500 3.1500 3.1500  3.1000
200 4.1000  3.0000 2.9500  2.9500

Table 3: Hybrid Spectrum Width Thresholds for wis (Non-normalized)

M /SNR 10 (dB) 20 (dB) 25 (dB) 30 (dB)
25 2.8500  2.3500  2.2500  1.9500
50 27000  2.1500  2.0500  1.5000
75 2.5900  2.0000 1.9500  1.2500
100 2.5000 1.9000 1.8500  1.1000
150 2.4500  1.7000 1.6500  0.9500
200 2.4500 1.6500 1.6000  0.8000




Use Tables 3 and 2 and linear interpolation to obtain the thresholds. Additionally,

obtain the threshold for w,y if needed.

If wp, is larger than the large values threshold, use the value obtained from wg;. Else,

If wy is larger than the medium threshold, use wqs. Else,

If wgpq is smaller than its threshold use the value obtained from w,yq. Else,

® use wWis3.

The following quality control of the estimated spectrum width values are used:

e [f the SNR is above 20 dB, check to make sure the estimated value fall within its

intended optimal range or use value of the estimator at the larger range.

e If the output spectrum width is zero, insert another spectrum width value from either

wWop wie and wys if it is also small.

e If the output spectrum width value is large and at least one of the estimate of wg; wis

and wy3 is small, either insert a replacement if it is small or insert 0.



4 Simulations and Results

The performance of the hybrid and modified hybrid estimators in terms of standard deviation,
bias, mean-squared-error, and frequency of non-zero estimates was obtained via simulations.
This was achieved by analyzing the output values of the spectrum width obtained from the
wo1, hybrid spectrum width estimator, and the modified hybrid spectrum width estimators
using input sequences that were generated using the technique described in Zrni¢ (1975).
The performance of the estimators were observed for spectrum width values that ranged
from 0.1 to 10 ms™!, samples from 25 to 200, and signal-to-noise ratios from 10 to 30 dB.
For each set of configuration, ten thousand independent sequences were generated, and the
output from these simulations were used to obtain the statistics of the performance of the

estimators.

4.1 Pulse Pair Logarithmic Estimator

For comparison, the performance of the wg; estimator was also simulated, and the values
related to the performance of this estimator are plotted in Figure 4. The results show that

1 and

the estimator performs relatively well when the spectrum width is larger than 2 ms™
the performance of this estimator improves when either the number of samples or signal-to-
noise ratio is increased. Additionally, the estimator has a bias value that is relatively near
zero (=0 ms™!) over this range, while it has a standard deviation that increases with larger
values of the spectrum width. The performance of the estimator dramatically worsens and
deviates from the desired values by several folds when the true spectrum width is below

1

2 ms™ . Additionally, the estimator produces estimates that are zeros at a frequency of



approximately 50 % of the time when the spectrum widths less than 1 ms~!. Compared to the
frequency above 4 ms~! where the frequency of zeros for the output values are insignificant,

most of the values produced by this estimator in this small region are relatively ambiguous.
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Figure 4: Performance of the wg; estimator: Top to bottom: bias, standard deviation, and

frequency of zeros. Right to left: SNR = 10 (dB), SNR = 20 (dB), and SNR = 30 (dB).



4.2 Hybrid Spectrum Width Estimator

The same sequences of time series signals used in producing the statistics generated for the
wo1 estimator were also applied to the hybrid spectrum width estimator to evaluate its per-
formance, and the results of these simulations are plotted in Figure 5. The results show that
the hybrid spectrum width estimator are mostly desirable with values that are generally
very good. When compared to the performance obtained using the wg; estimator, the re-
sults are similar when the spectrum width is greater than 7 ms™!, while the results are more
noticeably different below this soft threshold. At values below 4 ms~—!, the hybrid spectrum
width estimator is consistently better the wg; estimator with lower values of bias, standard
deviation, and frequency of zeros, which are all desirable. The difference is particularly evi-

! where the bias and standard

dent for the results when the spectrum width is below 2 ms™
deviation are closer to zero and the frequency of the zero estimates is smaller for the hybrid
spectrum width estimator. In some cases, the performance of the hybrid spectrum width
estimator is improved by at least 50% as compared to those obtained by the wg;. Unfortu-
nately, the hybrid spectrum width estimator does not always perform better than the wq,
estimator, and the results obtained for the hybrid spectrum width estimator with spectrum
width between 4 and 7 ms~! demonstrate this. Over this range of true spectrum width
values, the degradation of the standard deviation observed with the hybrid spectrum width
estimator is more detrimental than the improvement obtained with the bias . Nevertheless,
the benefits of the hybrid spectrum width estimator gained from its improved performance

over the wgy; outweighs its disadvantageous, and its disadvantage is only relatively minor

when these values are compared.
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Figure 5: Performance of the hybrid spectrum width estimator: Top to bottom: bias, stan-
dard deviation, and frequency of zeros. Left to right: SNR = 10 (dB), SNR = 20 (dB), and

SNR = 30 (dB).



4.3 Modified Hybrid Spectrum Width Estimator

A similar setup as used in evaluating the hybrid spectrum width estimator was used to obtain
the performance of the modified hybrid spectrum width estimator. Using the same sequences
of the time series signals, the results of these simulations are plotted in Figure 6 and show
that the results obtained with the modified hybrid spectrum estimator are mostly desirable
with values that are generally very good. When compared to the performance obtained
using the wg; estimator, the results are better when the spectrum width is less than 5 ms™!.
The bias and standard deviation are closer to zero and the frequency of the zero estimates
is significantly small for the modified hybrid spectrum width estimator. In some cases, the
frequency of zeros generated by the modified hybrid spectrum width estimator is less than
25%, which is significantly better than that obtained using the wg; estimator. Unfortunately,
the performance of the modified hybrid spectrum width estimator is slightly worse than the

1

wp; estimator when the true spectrum width is larger than 5 ms™ where a more negative

bias is observed, and it is slightly worse when the spectrum width is between 3 and 6 ms™!
and the number of samples is less than 50, where the degradation of the standard deviation
outweighs the benefit of the improved bias. In contrast, the performance of modified hybrid
spectrum width estimator in term of the mean-squared error metric is generally as good
or better than the hybrid spectrum width estimator. The comparison, which is plotted in
Figure 7, shows that the modified hybrid spectrum width estimator outperform the hybrid
spectrum width estimator in most cases and produces lower bias, standard deviation, and
frequency of zeros. The modified hybrid spectrum width estimator produces worse bias
when the spectrum width is larger than 5 ms™!, and larger standard deviation when the

number of samples is less than 50 and the true spectrum width is between 3 and 5 ms™!.



Nevertheless, the performance of the modified spectrum width estimator is generally better

than the hybrid spectrum width estimator.
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Figure 6: Performance of the modified hybrid spectrum width estimator: Top to bottom:
bias, standard deviation, and frequency of zeros. Left to right: SNR = 10 (dB), SNR = 20

(dB), and SNR = 30 (dB).
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5 Conclusion

Results of the simulations to evaluate the hybrid spectrum width estimator show that this
technique generally performs better than the wg; estimator. The results of the two tech-

! while a

niques are approximately identical when the spectrum width is greater than 7 ms™
significant difference is observed below this soft threshold. At values below 4 ms™!, the hy-
brid spectrum width estimator is consistently better than the wg; estimator with lower values
of bias, standard deviation, and frequency of zero estimates, which are all desirable. The
difference is particularly evident for the results when the spectrum width is below 2 ms™!,
where the bias and standard deviation are closer to zero and the frequency of the zero es-
timates is smaller for the hybrid spectrum width estimator. However, the hybrid spectrum
width estimator performs worse than the wg; estimator when the true spectrum width ranges
between 4 and 7 ms~!, the signal-to-noise ratio is greater than 20 dB, and the number of
samples is larger than 50. In these conditions, the degradation of the standard deviation
that is observed with the hybrid spectrum width estimator is more detrimental than the
improvement obtained from the bias. Nevertheless, the overall gains of the hybrid spectrum

width estimator over the wy; estimator outweighs its disadvantageous, and the disadvantages

are only relatively minor when these values are examined.

After the above simulations, some modifications that included using an adaptive threshold,
incorporating the wgg, spectrum width estimator, and adding some quality control censoring
were implemented into the hybrid spectrum width estimator. Using the same sequences of
the time series signals, the results obtained with the modified hybrid spectrum estimator

are also generally very good. When compared to the performance obtained using the wp,



estimator, the results are better when the spectrum width is less than 5 ms™!. The bias and
standard deviation are closer to zero and the frequency of the zero estimates is significantly
better for the modified hybrid spectrum width estimator. Unfortunately, the performance of
the modified hybrid spectrum width estimator is slightly worse than the wg; estimator when

! where a more negative bias is observed, and it

the true spectrum width is larger than 5 ms™
is slightly worse when the spectrum width is between 3 and 6 ms™! and the number of samples
is less than 50, where the degradation of the standard deviation outweighs the benefit of the
improved bias. Nevertheless, the general consensus is that it is a significant improvement
over the wy; estimator. In contrast, the performance of modified hybrid spectrum width
estimator in term of the mean-squared error metric is generally as good or better than the
hybrid spectrum width estimator with lower bias, standard deviation, frequency of zeros. An
exception occurred when the number of samples is less than 50 and the true spectrum width

1

is between 3 and 5 ms™", where the modified hybrid spectrum width estimator produces

1

worse bias when the spectrum width is larger than 5 ms™, and larger standard deviation.
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Appendix A. Staggered PRT Algorithm Description (July 2010)

A.1l. Preface

This document extends the previous Staggered PRT algorithm description from July 2009
by including dual polarization sequences and the calculation of polarimetric variables.
This algorithm description includes a high-level description with the overall processing

logic followed by a detailed explanation of each pre-computation and processing step.

Most of the July 2009 algorithm steps are now repeated for both H- and V-channels
calculation. On the other hand, the SACHI filter has been modified to preserve the
spectral phases in order to allow the calculation of polarimetric variables. Now, the
output of the SACHI filter produces autocorrelations for both H- and V-channels and also
the cross-correlation between them. As with previous versions, most of the steps in the
SACHI algorithm are described in algorithmic form to ease implementation and reduce
ambiguity. The DC removal ground clutter filter has been retained to operate on those
range gates where only long-PRT data is available and ground clutter filtering is needed

and now it includes both channels.

As in the July 2009 description, the algorithm is able to handle overlaid echoes,
extending the recovery of Doppler moments to the unambiguous range of the long PRT.
Moment-specific overlaid power thresholds are used to identify recoverable data and flag
unrecoverable Doppler moments. Finally, ground clutter is also assumed to be within the

unambiguous range of the short PRT.
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A.2. Assumptions

1) The transmission sequence alternates two pulse repetition times (PRT) as: Ti, 75, T1,
T, ... for a total of M pulses.

2) The PRT ratio 71/T,=2/3, where x;,, =2, ks, =3 and I, — T = T,.

3) All range gates are available and there is a perfect alignment of range gates between
the two PRTs (i.e., a given range gate represents the same resolution volume in space
for every transmitted pulse). Also, the number of range gates for each PRT is:
Ny =T/t and N, = T,/ t,, where 7 is the sampling period.

4) There are no significant echoes beyond the maximum unambiguous range
corresponding to 75 (r,2).

5) There is no significant ground clutter beyond the maximum unambiguous range
corresponding to 7 (741).

6) The number of staggered PRT samples per range gate (M) is even.

7) The algorithm operates on a radial worth of data at a time.

A.3. Inputs

1) Dual polarization complex time-series data:
Vi (n, m) =1y (n, m) + jOu (n, m),
Vy(n, m) =1y (n,m)+ Oy (n, m),

where subscripts H and V" denote horizontal and vertical polarization, 0 < » < N; for even
m, 0 <n <N, for odd m and 0 <m <M. Note that n indexes the range gates and m the
sweeps (or pulses).

2) Associated metadata:

/A 1s the radar wavelength in meters

Ny is the noise power in linear units for the horizontal channel

Ny is the noise power in linear units for the vertical channel

dBZ0 is the system calibration constant in dB

ATMOS is the elevation-dependent atmospheric attenuation in dB/km

AR is the spacing between range gates in km (4R = ¢ 7,/2)

T, is the signal-to-noise ratio threshold for reflectivity in dB

Ty is the signal-to-noise ratio threshold for velocity in dB

Ty is the signal-to-noise ratio threshold for spectrum width in dB

Tov is the velocity overlaid threshold in dB (Note: recommended value is 0 dB)
Tow 1s the spectrum width overlaid threshold in dB (Note: recommended value is 10 dB)
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3) Data window:

d’(m), where 0 <m < 5M/2. Note that d’ does not need to be normalized or scaled in any
way. A tapered data window such as the Blackman window is recommended for best
performance of the SACHI ground clutter filter. Otherwise, rectangular window (i.e., no
window) should be applied.

4) Ground clutter filter bypass map:

B(n), where n indexes the range bins with the same resolution as the time-series data
along a radial, and the map corresponds to the elevation and azimuth of the radial being
processed. B is 0 if clutter filtering is required and 1 otherwise. In this algorithm, the
clutter map is ignored beyond the unambiguous range corresponding to the short PRT
where clutter is assumed not to be present.

A.4. Outputs

1) Reflectivity, Doppler velocity, and spectrum width calculated from H channel data:

Z (n) for 0 <n <N,
v (n) and w (n) forO0<n<MN,.

2) Differential reflectivity, differential phase and correlation coefficient calculated from
H and V channel data:

Zpgr(n) for 0 <n < Na,
Dpp(n) for0<n<N,,
pu(n) forO0 <n<N,.

3) Signal-to-noise ratio and overlaid censoring flags*:

NSz (n), NSy (n) and NSy (n) for 0 <n <N,
OVy (n) and OVy (n) forO0 <n<N,.

* NSz (n) is used for censoring Zpg(n), @pp(n) and p(n).
A.5. Functions and Conventions
1) || — Returns the absolute value of a complex number or the absolute value of each

element of a matrix of complex numbers.

2) arg— Returns the principal phase angle of the input complex number in radians. The
algorithm is written to accommodate this phase in the interval [0, 27) or [-7, 7).
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3)

4)

5)
6)
7)
8)
9)

argmin — Returns the index & to the element in the input vector that has the minimum
k
value.

diag — Returns a square matrix with the input vector along the principal diagonal (row
index = column index) of the matrix and all other elements not on the principal
diagonal equal to zero. The number of rows (columns) of the matrix is equal to the
number of elements in the vector.

ceiling — Returns the smallest integer value not less than the input number.
floor — Returns the largest integer value not greater than the input number.
round — Returns the nearest integer to the input number.

max — Returns the maximum value among the input numbers.

Italicized names are used to denote scalars (e.g., Noise).

10) Bolded names are used to denote vectors or matrices (e.g., A). Italicized names with

indexing in parentheses are used to denote elements of a vector or matrix [e.g., A(i,j)].

11) * — Denotes complex conjugate.

12) T— Denotes matrix transpose.

13) j— Denotes the imaginary unit J-1.
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A.6. High-level Algorithm description

If first run of SPRT algorithm
1) Pre-computation of velocity dealiasing rules
2) Pre-computation of M-independent SACHI filter parameters
End
If the number of samples (M) changed
3) Pre-computation of window parameters
4) Pre-computation of M-dependent SACHI filter parameters
End
For each range bin n, where 0 <n <N,
If n> N,
5) Short-PRT Segment-III Data Reconstruction
End
If B(n)=0 AND n <N,
6) SACHI Clutter Filtering (Segment-I/II gate with segment-I/II clutter)
Else
Ifn>N, AND B(n—N;)=0
7) DC Removal Clutter Filtering (Segment-III gate with segment-I
clutter)
Else
8) No Clutter Filtering
End
9) Power and correlation computations for each PRT
10)  Combined power and cross-correlation computation
End
End
11) Strong point clutter canceling
For each range bin n, where 0 <n <N,
12) Signal power computation
13) Reflectivity computation
14) Velocity computation
15) Spectrum width computation
16) Differential reflectivity computation
17) Differential phase computation
18) Cross-correlation coefficient computation
19) Determination of significant returns for reflectivity and polarimetric variables
20) Determination of significant returns for velocity
21) Determination of significant returns for spectrum width
End
For each range bin n, where 0 <n <N,
22) Determination of overlaid returns for velocity and spectrum width
End
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A.7. Step-by-step algorithm description

1) Pre-computation of velocity dealiasing rules

This method is described in the paper “Design, Implementation, and Demonstration of a
Staggered PRT Algorithm for the WSR-88D” by Torres et al. (2004). Herein, VDA, are
the normalized velocity difference transfer function (VDTF) constant values and VDA,
are the normalized number of Nyquist co-intervals for dealiasing.

A set of velocity dealiasing rules is pre-computed at the initiation of the SPRT algorithm
as follows:
(Compute type-I and 1l positive VDTF discontinuity points. &, and &, are the integers in
the PRT ratio)
p=0
While 2p + 1 <
Dy (p) =(2p + 1)/ K
TYPE, (p)=1
p=p+1
End
q=0
While 2g + 1 < k;
D (q) = (2q + 1)/ x,

TYPE, (q) =2
q=q+1
End

(Create TYPE by combining and sorting both sets of discontinuity points)
Concatenate D; and D, to create D with p + ¢ elements.

Concatenate TYPE, and TYPE, to create TYPE with p + g elements.

Sort 7YPE in a “slave” mode using D as the “master”.

(Compute VDTF constants and dealiasing factors for non-negative discontinuity points)
VDA.(p +q)=0
VDA, (p +q)=0
For0<k<p-+gq
If TYPE (k) = 1
VDA.(p+q +k+1)=VDA. (p +q + k) — 2/x
VDA, (p+q+k+1)=VDA,(p+q+k)+ 1/k,
Else
VDA.(p+q+k+1)=VDA. (p+q+k)+ 2k,
VDA,(p+q+k+1)=VDA,(p+q+k)
End
End
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(Compute VDTF constants and dealiasing factors for negative discontinuity points)
For—(p+¢q)<k<0
VDA, (p+q+k)=-VDA.(p +q—k)
VDA, (p+q+k)=—-VDA, (p+q—k)

End

(Note that since the PRT ratio does not change, these vectors can be hard-coded in a
real-time implementation of the SPRT algorithm.)

-2) Pre-computation of M-independent SACHI filter parameters

This method is described in NSSL Signal Design and Processing Techniques for WSR-
88D Ambiguity Resolution (Report 3, Report 9 and Report 11). The SACHI filter
parameters could be pre-computed at the initiation of the SPRT algorithm as follows:

(Create 5-by-5 convolution matrix, Cy)

1C(0)
()
C,=CQ2)
C@3)
LCH

C4)
C(0)
Q)
CQ2)
C@3)

C3)
C4)
C(0)
Q)
CQ2)

CQ2)
C@3)
oC))
C(0)
()

)|
C(2)
o€)
C4)

C(0)_

:[Cr,l Cr,z Cr,3 Cr,4 Cr,5:|’

where C(k)= \/7 Zc(n)exp( J2rnk/5);for0<k<5andc=[1,0,1,0,0], and

Cr s the k-th column of C,.

(Calculate magnitude deconvolution matrix, Cmg)
(Note: The following formulas are written in matrix algebra notation with the
conventions described above)

- |(;r|’1 -

where Cpg x1s the k-th row of Cpg.

Cmd,l
md,2
md,3

md,4

O 000

md,5 |

[—4.6281

—-2.0697
4.6281
4.6281

| —2.0697

—2.0697 4.6281  4.6281 —2.0697 |
-4.6281 -2.0697 4.6281 4.6281

-2.0697 -4.6281 -2.0697 4.6281 |,
4.6281 -2.0697 -4.6281 -2.0697
4.6281  4.6281 -2.0697 -4.6281 |
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(Calculate matrices Cy and Cr using 1* and 5™ columns of Cy)

— T _[
Cfl - Cr,ICr,l -

— T _
Cf2 - Cr,SCr,S -

0.4
0.0382 - j0.1176
0.2618 + j0.1902
0.2618 — j0.1902

| 0.0382 + 0.1176

0.0382

—-0.0309 + j0.0951
0.0809 + j0.0588
—-0.0309 + j0.0225
| 0.0382 + 0.1176

0.0382 + j0.1176
0.0382
—0.0309 + j0.0951
0.0809 + j0.0588
—0.0309 + j0.0225

-0.0309 - j0.0951
0.2618
0.0809 — j0.249
0.0809 + j0.0588
0.2618 — j0.1902

0.2618 — j0.1902
—0.0309 — j0.0951
0.2681
0.0809 — j0.2490
0.0809 + j0.0588

0.0809 — ;0.0588
0.0809 + j0.249
0.2618
—0.0309 + j0.0951
0.2618 + j0.1902

0.2618 + j0.1902
0.0809 — j0.0588
0.0809 + j0.2490
0.2618
—0.0309 + j0.0951

—-0.0309 - j0.0225
0.0809 — j0.0588
—-0.0309 - j0.0951
0.0382
0.0382 - ;0.1176

where *T stands for the matrix conjugate transpose (a.k.a. Hermitian) operation.
(Calculate the correction coefficients & and & for correction vector X)

1

‘fk:C

md,1

C:r,k -

(clc..)C.,

&, =1.1056 and &, =1.7889.

k=2, 3.

0.0382 - j0.1176
—0.0309 — j0.0225
0.0809 — j0.0588
—0.0309 — j0.0951
0.0382

0.0382 - j0.1176

0.2618 + j0.1902

0.2618 — j0.1902

0.0382 + j0.1176
0.4

(Note: since the PRT ratio does not change, these matrices and coefficients can be hard-
coded in a real-time implementation of the SPRT algorithm. The numbers provided here
are for reference purposes only, the highest precision available is recommended for
hard-coding these numbers.)

3) Pre-computation of window parameters

(Calculate the extended number of coefficients)

M,=5M/2

(Calculate the number of pulse pairs)

M,=M/2
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(Calculate normalized window d for un-normalized window function d' with M,
points)

x m=0

d(m)= d'(m)[ \/MLMf[d'(m)]z ] 0 <m<M,

(Calculate window correction factor for lag-1)

M, -2
1 x

D d(m)d(m+1)

x m=0

d, =
M

-4) Pre-computation of M-dependent SACHI filter parameters

(Compute correction vector, X)

For 0 <k < ceiling(M,/2)
Xk)=1

End

For ceiling(M,/2) < k < ceiling(M,/2) + M,
X(k)=¢&

End

For ceiling(M,/2) + M, < k < ceiling(M,/2) + 3M,
X(k)=¢

End

For ceiling(M,/2) + 3M, < k < ceiling(M,/2) + 4M,
X (k) =&

End

For ceiling(M,/2) + 4M, < k <M,
X(k)=1

End
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A.8. Processing steps

-5) Short-PRT Segment-III Data Reconstruction

Long-PRT Segment-I data is used as a proxy for short-PRT segment-III data

For0<m <M,
Vi (n,2m)=Vy (n —Ni, 2m + 1)
Vy(n,2m)=Vy(n —Ny,2m + 1)
End

-6) SACHI Clutter Filtering

The SACHI filter algorithm is used when clutter filtering is required inside the maximum
unambiguous range corresponding to 7' (7,41).

(Form derived time series, Vg and Vy,, from input time series Vyand Vy)
For0<m <M,

Via (Sm) = Vi (n, 2m)

Via (5m+1)=0

Vig (Sm+2)=Vy(n,2m+1)

Viia(Sm+3)=0

Vig(Sm+4)=0

Vya (Sm)=Vy (n, 2m)
Viva (5m + 1) =0
Via(Sm+2)=Vy(n,2m+1)
Viva (5m + 3) =0
Via(Sm+4)=0

End

(Compute DFT of windowed extended time series power compensated for added
zeroes)

F, (k) =(\E](MLM1 v, (m)d(m)exp(- j27zkm/Mx)J;k= 0,1..., M, 1.

x m=0

F, (k) =(\EJ[MLMZIVVd(m)d(m)exp(—jz;rkm/MX)J;kz 0,1 ..., My— 1.

x m=0

(Determine clutter filter width parameter, q)

(Use GMAP to return the number of coefficients identified as clutter, GMAPpcoer
and GMAPycoep. Pass to GMAP the 5™ of the Doppler spectrum containing the main
clutter replica; ie., |Fuy(O),.... |FunlceilingM,/2) — 11 [ |FunM, -
floor(M,/2)] 2. |F vy My — 1) %}, initialize GMAP for spectra with v,/5, and

114



get the number of coefficients identified as clutter to estimate q for both H and V
channels)

qu = floor [(GMAPrcoer+ 1)/2]

qv = floor [(GMAPy oer+ 1)/2]

(Use the largest q to create the clutter filter vectors for polarimetric variable
calculation)

q’ = max(qu, qv)
(Create clutter filter vectors Iy’ 1)

For0<k<M,
Iftk<gq’
I’ (k) =1
In* (k)=0
Elself k<M, —q’
In’ (k)=0
In* (k)=0
Else
In* (k)=0
I’ (k)=1
End

End

(Row-wise re-arrange Fy and Fy into 5-by-M,, matrices, Fyrand Fyy)
For0<k<M,

Fu (0, k) = Fy (k)

Fu (1, k) = Fu (k+ M)

Fu- 2, k)=Fy(k+2M,)

Fur (3, k) =Fu (k+ 3M,)

Fu- (4, k)=Fy(k+4M,)

Fy (0, k) = Fy (k)

Fy. (1, k) =Fy (k+ M,)

Fy (2, k)= Fy (k+ 2M,)

Fy. (3, k) =Fy (k+ 3M,)

Fy. (4 k)=Fy(k+4M,)
End

(Compute the clutter filtered spectrum matrices, Fusand Fyg)

(Note: The following formulas are written in matrix algebra notation. Complex-
matrix multiplications can be implemented using four real-matrix multiplications
as: AB = (Ar+ jA)(Br+ jBi) = (ArBr— AiB)) + j(A/Bi + AiBy) )

Fo =Fy —CyFy, diag( I ') —CpFy diag( Iy ')
Fo =EF, —CqFy, diag( Iy ') ~CrFy diag( Iz ')
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(Row-wise unfold Fus and Fyvs into Frgr and Fyqy)
For0<k<M,

Frar (k) = Frp(0, k)

Frar(k+ My) = Fyr(1, k)

Frar (k+ 2M),) = Fry(2, k)

Fde (k + 3Mp) = FHf(3, k)

Frar (k+4M,) = Frr(4, k)

Fyar (k) = Fyy(0, k)

Fyar(k+M,) = Fye(1, k)

FVdf (k + ZMp) = FVf(2, k)

Frap (k+ 3M,) = Fyy(3, &)

FVa_’f (k + 4Mp) = FVf(4, k)
End

(Compute power for both channels, Py’ and Py, and cross-corr at lag 0, Ruy(0))
M, -1 5
Py (n)= Z ‘Fde(k)‘

F, (n)= Z‘ Vdf ‘
HV(n) z de Vdf k)

(Proceed with the conventional SACHI Clutter Filtering, only H-channel data)
q =d4qu
Ifg<gq’
(Create clutter filter vectors Iy, 1)
For0<k<M,
Ifk<g
In (k)=1
Ip (k)=0

Elself k<M, —q
In (k)=0
Ip (k)=0
Else
In (k)=0
In(k)=1
End
End
F =F, —CyF,, diag(l,,)—C,F,, diag(l,,)
Else
F=Fy
End
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(Create clutter filter vectors, |1, and 1)
For0<k<M,
Ifk<gq

I (k) =0
11 (k+Mp):O
L (k+2M) =0
I (k+3M,)=0
I (k+4M) =0
Lk=1

L(k+M)=1
I (k+2Mp):1
L (k+3M)=1
b (k+4Mp):1

Elself k<M, —q

L) =1

L (k+ M) =1
1 (k+2Mp):1
L (k+3My) =1
1 (k+4Mp):1
L (k) =0

12 (k+Mp):O
L(k+2M)=0
b(k+3M)=0
L (k+4M)=0

Else

L(k)=0
I (k+M,)=0
L (k+2M,) =0
I (k+3M,)=0
I (k+4M,) =0
Lk=1

L(k+M,)=1
L(k+2M,)=1
L (k+3M)=1
L (k+4M,) =1

End

End

(Magnitude deconvolved matrix, Fgy)

F :Cmd|Ff|
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(Row-wise unfold Fq into Fy)
For0<k<M,
Fur (k) = Fa(0, )
Fy(k+My)=Fa(l, k)
Fdf(k + ZMp) =Fqs(2, k)
Fdf(k-l- 3Mp) =F.(3, k)
Fdf(k + 4Mp) =Fq.(4, k)
End

(Compute the lag-1 autocorrelation, Rq)

1 M -1 2

R, == D |F, (k)| exp(j2zk/M,)
C k=0

(Compute vector |y with M/2 ones centered on arg(R)4))
(Round to the nearest spectral coefficient. Choose symmetric window of coefficients
around it)

ko, =round {MX#ERW)}
If k()df <0
koqr= koar + M
End
If koar> M,
koar= koar— M,
End
k, o= k, o floor(M / 4)
If &y dr < 0
kldf: kldf+ M,
End
k, o= k, gt ceiling(M /4)-1
If kzde M,
kogr= koar— M,
End

(koar is the coefficient corresponding to arg(Ri4), kiar and kyar specify the extent of
M, spectral coefficients centered on the mean velocity. If kig < kaq; the ones span
from ki to kaa; otherwise, the ones will span from kigrto My — 1, and 0 to kyy)
If kvar < kogr
For 0 < k< M,
Ifk< kldfOR k> kzdf
I,(k)=0
Else
L,(k)=1
End
End
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Else
For 0 <k <M,
Ifk< k1deND k> kzcgf
I,(k)=0
Else
I,(k)=1
End
End
End

(Interpolate the elements for the region around zero velocity in Fgr with linearly
interpolated values from S; and S>)
Ifg>0

S, =|F, (@)
S, =|F, M, -g)f
For0<k <M,
Ifk<gq
F (k) = [S,+ (5-8,) (g+k) / 2q]
Elself k> M, —q
F (k) = I:Sz + (8,=5,) (g+k-M,) / 2‘]]
Else
F:(k) = Fdf (k)
End
End
Else
(Don'’t interpolate if not needed)
For 0 <k <M,
F:(k) = Fdf (k)
End
End

1/2

1/2

(Compute the corrected spectrum, F)
For0<k<M,

Fe(k)=F; (k) I, (k) + F; (k) L (k) 1, (k) X (k)
End

(Compute vector |c with ones where there’s a non-zero spectral component in
vector F)
For0< k<M,
Lo (k) =11 (k) + I, (k) 1, (k)
End
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( Compute the mean power, P,, and autocorrelation at lag T, R\, using F;)

-1

1 M
R, ;Ewﬂﬁamﬂwmm
k=0

c

(Retain only M coefficients centered on velocity based on R,. and delete the rest
from F¢and 1.)

kmf:round[ﬂfliﬁiQﬁzl}
27

If ko <O
kOc = kOc + Mx
End
If kOc = Mx
k()c = kOc - Mx
End
klc = kOc -M,
Ifk. <0
klc = klc + Mx
End
ch: kOc + Mp_ 1
If k2c > Mx
kZC = ch - Mx
End
If ki < koo
For0<k <M,
Ifk<ki. OR k> ko
Fp(k)=0
L (k) =0
Else
Fy (k)= F(k)
L (k) = 1. (k)
End
End
Else
For0 <k <M,
Ifk< klc AND k> kzc
Fp(k)=0
L (k) =0
Else
Fy (k)= F(k)
L (k) = 1. (k)
End
End
End
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(Compute the modified mean power, P,, and autocorrelation at lag T,, Ry, using

M -1 ,
B, = 2 |F, &)
k=0
1 2
le_d_ F, (k)| exp(j27k/M,)
=

lfol
N =— > I (k
TR NAL

x k=0

(Compute overlaid power correction if in segment 1)
Ifn<N,— N
1|1 'E >
= va Z ‘VH (n+N1,2m+l)‘ — Noise
IfS,, <0
Sov="0
End
Else
Sov="0
End

p m=0

(Correct powers to remove overlaid contamination adjusted for each spectrum)
P,=Py— Ny Sov
IfP,<0
P,=0
End
P.=P.— NS,
IfP.<0
P.=0
End

(Compute spectrum width power ratio adjustment)
Sy = Pn— N, Noise
IfS,<0
Sn=0
End
ItfS,>0

Padj:S
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Else
P adj = 0
End

(Compute signal power)
S.= P.— N_.Noise
IfS.<0

S.=0
End

(Compute short PRT autocorrelation at lag T)
RHl (n) = Sc ’ 1);;] eXp I:.]zarg (Rlc ):'

(Compute long PRT autocorrelation at lag T,)
Ry, (n)=S, - P, exp [j3arg(Rlc )]

(Adjust signal power to include noise)
Py(n) =S, + Noise

(Note that the outputs of SACHI are P’u(n), Py(n), Ruv(n), Pu(n), Rm(n) and
Rin(n))

-7) DC Removal Clutter Filtering (Segment-III gate with segment-I clutter)

This DC Removal clutter filtering algorithm removes the mean (DC) component of the
short-PRT segment-III gates in those locations where the site-dependent clutter filter
bypass map B indicates the need for clutter within segment I.

(Calculate the mean of the even pulses.)
1 Mpfl
Vi =— Z V, (n,2m)
p m=0
1 Mp -1
A >V, (n,2m)

p m=0

VVm =

(Subtract mean from even pulses.)
For 0 <m <M,
VHF (27’}’1) = VH (l’l, 2m) — VHm
VHF (2]’1’1 + 1) = VH (I’l, 2m + 1)
VVF (2m) = VV (I’l, 2}71) — VVm
VVF (2]’}1 + 1) = VV (n, 2m + 1)
End
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-8) No Clutter Filtering

ForO<m<M
VHF (m) = VH (n, m)
VVF (I’I’l) = VV (I’l, m)
End

9) Power and correlation computations for each PRT

Ifn<nN
(Compute power from even pulses, if available)
1

(Compute cross-correlation from even pulses, if available)

1
Ry (n) = M_ z Ve Cm)V,,. (2m)

p m=0

End

(Compute power from odd pulses)

1 2
P, = D Vi @m+1)|

p m=0

1 e 2
B, YA Z |VVF(2’"+1)|

p m=0
(Compute cross-correlation from odd pulses)

1 'E .
Ry, (n) = V z Ve Cm+ 1V, 2m +1)

p m=0
(Compute lag-1 correlations from all pulses from H channel)

1
Ry (n) = v z Vie C2m)Vy (2m +1)

P m=0
1 Mp—2

R,,(n)= Y Z Ve Qm+1)V,, (2m+2)
P L m=0

- 10) Combined power and cross-correlation computation

To use as much information as possible, data are extracted from the two power arrays
with different rules for each of the three segments depicted in Figure A.1. For segment I,
data are extracted only from P, since P, may be contaminated on those range bins with
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overlaid powers. An average of P; and P, is extracted for segment II, given that both
power vectors are “clean” there. Finally, segment III data are obtained from P,. In
algorithmic form:

Ifn<N,— N
(Segment 1)
B,(n)=F,
F,(n)=F,

Elself n < N,
(Segment I1)
PH(”):%(PHI +PH2)
PV(n)z%(PV1+PV2)

Else

(Segment I11)

P,(n)=P,

F,(n)=F,
End
P 'H (n)=PF, H

T 1 T 2
I II I II III
Fig. A.1. Signal powers in the staggered PRT algorithm. Roman numerals indicate segment
numbers.

The same rules apply for the cross-correlation computation.

Ifn< Nz — N1
(Segment 1)
R, (n)=R,,,
Elself n < N;
(Segment 1)
Ry (n)= %(RHVI + Ry )
Else
(Segment I11)
RHV (n)= RHVz
End
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- 11) Strong point clutter canceling

Processing is as in the current system. Strong-point clutter canceling is applied to Py,
P’y, Ry and Ryp based on radial power continuity in Py. For the remainder of the
algorithm it is assumed that the outputs of this step are Py, Py, Ry and Rpp.

- 12) Signal power computation

IfPH(l’l)<N1-1
SH:()

Else
SH:PH(I’Z)—NH

End

IfP'y(n) <Ny
S’H:O

Else
S’H:PH’(I’Z)—NH

End

IfPy(n)<Ny
SV:O

Else
SV:PV(n)—NV

End

- 13) Reflectivity computation

(Range in km)
R =nAR + AR/2
(Reflectivity in dBZ. log) is the base-10 logarithm)
IfSy>0
Z (n) = 10logio (Sy) + dBZ0 + R ATMOS + 20log;o (R) — 10logio (N ),
Else
Z(n) should be set to the smallest possible reflectivity value
End

(Compute Doppler velocities for each PRT using the corresponding correlation
estimates)

A
Y = ArT arg [RHl(n)]

1

A
V, :_47ZT arg[Rﬂz(n)]

2
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(Compute extended Nyquist velocity)

A
v, =—
27,

(Dealias velocity using pre-computed rules)
[ = argmin |v1 —v, =VDA.(k)v,
k

v(n)=v,+2v, VDA, ()

(Prevent dealiased velocities outside of the extended Nyquist co-interval)
Ifv(n) > v,
v(n)=v(n)—-2v,
End
Ifv(n) <-v,
v(n)=v(n)+2v,
End

- 15) Spectrum width computation

The spectrum width estimator corresponds to the algorithm implemented in the legacy
WSR-88D signal processor.

IfS4z=0OR |R,,(n)|=0
(Insert spectrum width of white noise)

A
43T,
Elself S, <|R,;,(n)|

(Insert spectrum width of a constant)
w(n)=0
Else
(Spectrum width computation. In is the natural logarithm)

w(n) = 4 In S
2\/57TT1 |RH1(n)|

w(n) > A
If 43T

1

w(n) =

A
w(n) = 4\/571

End
End
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- 16) Differential reflectivity computation

If S’y > 0AND Sy > 0
ZDR(n):IOIOgmi—H

14
Elself S’y =0
Zpr(n) should be set to the smallest possible value
Elself Sy =0
Zpr(n) should be set to the highest possible value
End

- 17) Differential phase computation

D, (n) = arg[RHV (n)]

- 18) Cross-correlation coefficient computation

IfS’y> 0 AND Sy > 0
_ R (n)
SuSy

- 19) Determination of significant returns for reflectivity and polarimetric variables

The non-significant return indicator array (NSz) is a binary array where 0 indicates
“significant” and 1 indicates “non-significant”. This array is also used for Zpr(n), @pp(n)

and pp,(n).

If S, <N, -10""

NSAn)=1
Else

NSAn)=0
End
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- 20) Determination of significant returns for velocity

The non-significant return indicator array (NSy) is a binary array where 0 indicates
“significant” and 1 indicates “non-significant”

IfS, <N, -10""

NS (n)=1
Else

NS (n)=0
End

- 21) Determination of significant returns for spectrum width

The non-significant return indicator array (NSwy) is a binary array where 0 indicates
“significant” and 1 indicates “non-significant”

If S, <N, -10*"

NSy(n)=1
Else

NSy (n)=0
End

- 22) Determination of overlaid returns for velocity and spectrum width

Censoring of velocity and spectrum width data is only necessary in segments I and III.
This is done by analyzing P in segment I (P;) and P in segment III (P,) (see Fig. 1). The
idea is to determine whether second trip signals mask first trip signals and vice versa.
While such overlaid echoes appear in every other pulse and do not bias velocity estimates
at those range locations, overlaid powers act as noise. Therefore, when overlaid powers
are above a preset fraction of their non-overlaid counterparts, the corresponding velocity
and spectrum width estimates exhibit very large errors and must be censored. The
overlaid indicator arrays (OVy and OVy) are binary arrays where O indicates “not
overlaid” and 1 indicates “overlaid”.

Ifn<N,— N

(Segment I: Range gates that may or may not have overlaid echoes)

(Check power ratio using velocity threshold)

If Py(n) > Py(n + Ny) 107
OViy(n)=0

Else
(Power ratio not met, but consider non-significant returns as non-existent)
If NSy(n+ Ny)=1

OVi(n)=0
Else

OViy(n)=1
End
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End
(Check power ratio using width threshold)
If Py(n) > Py(n + Ny) 10”7
OVy(n)=0
Else
(Power ratio not met, but consider non-significant returns as non-existent)
If NSy(n + Ny) =1
OVy(n)=0
Else
OVp(n)=1
End
End
Elself n <N,
(Segment II: Range gates that, based on the assumptions, never have overlaid
echoes)
OViy(n)=0
OVy(n)=0
Else
(Segment I11: Range gates that may or may not have overlaid echoes)
(Check power ratio using velocity threshold)
If Py(n) > Py(n — Ny) 10%"7
OViy(n)=0
Else
(Power ratio not met, but consider non-significant returns as non-existent)
IfNSy(n—Ny) =1

OVi(n)=0
Else

OVi(n)=1
End

End

(Check power ratio using width threshold)

If Pr(n) > Pr(n — Ny) 10%7or
OVy(n)=0

Else
(Power ratio not met, but consider non-significant returns as non-existent)
If NSp(n—Np) =1

oVy(n)=0
Else
OVy(n)=1
End
End
End

(Note that when processing the overlaid and significant return flags, the overlaid
flags take a lower priority. That is, if a range bin is tagged as non-significant and
also as overlaid, the overlaid indication is ignored and the gate is treated as a non-
significant return only, e.g., painted black as opposed to purple)
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Appendix B. Related Publications

The following conference paper relates to the reported material on CLEAN-AP and

follows in its original form.

Warde, D., and S. Torres, 2009: Automatic detection and removal of ground clutter
contamination on weather radars. Preprints, 34th Int. Conf. on Radar Meteor.,
Williamsburg, VA. Amer. Meteor. Soc., Paper P10.11.
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AUTOMATIC DETECTION AND REMOVAL OF GROUND CLUTTER CONTAMINATION

ON WEATHER RADARS

David A. Warde* and Sebastian M. Torres
Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma, and
NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

1. INTRODUCTION

Radar backscatter from the ground can contaminate
weather signals, often resulting in severely biased
meteorological estimates. If not removed, these clutter
returns tend to bias reflectivity high as well as Doppler
velocity and spectrum width toward zero. A ground
clutter filter (GCF) can mitigate this contamination and
provide unbiased meteorological estimates but typically
with reduced quality. Moreover, significant biases could
occur if the GCF is applied when clutter is not present
and the weather signal has near-zero Doppler velocities.
Thus, the overall quality of the meteorological estimates
needlessly suffers when a GCF is misapplied. The
problem of applying the GCF becomes very complex,
especially when considering the dynamic nature of the
atmosphere. Anomalous propagation can cause the
radar beam to increase contact or overshoot the clutter,
giving the appearance that the clutter shifts within or
disappears from the radar volume coverage very
rapidly. In this dynamic environment, spectral
examination of the received echoes provides a means
to determine the presence of clutter in real time without
having to rely on static clutter maps. However, spectral
analysis on a finite number of samples suffers from
spectral leakage. To combat spectral leakage, tapered
windows are typically applied. Strong clutter returns may
require the use of windows with high dynamic ranges,
but the use of these windows reduces the quality and
resolution of the meteorological estimates. On the other
hand, weaker clutter returns may only require low
dynamic range windows, which help preserve the quality
and resolution of the meteorological estimates.
Consequently, a ‘smart' filter is needed that can
examine the received radar echoes, apply a tapered
window that best suits the conditions, determine the
exact number of spectral coefficients affected by clutter
contamination, and, only then, apply the GCF.

In this paper, we introduce a spectral GCF capable
of satisfying the aforementioned considerations. The
filter is referred to as Clutter Environment ANalysis
using Adaptive Processing (CLEAN-AP) and performs
real-time detection and suppression of ground clutter
returns in dynamic atmospheric environments. We
characterize the statistical performance of the
CLEAN-AP filter with simulated clutter/weather mix and
show real weather examples.

* Corresponding Author Address: David A. Warde,
CIMMS/University of Oklahoma, National Severe
Storms Laboratory, National Weather Center, 120 David
L. Boren Blvd. Norman, OK, 73072;
David.A.Warde@noaa.gov

2. GROUND CLUTTER FILTERING

The effects of ground clutter contamination on
meteorological estimates are well understood. Ground
clutter is characterized as having strong received power
with a very narrow spectrum width and near zero
velocity (Doviak and Zrni¢ 1993, Sirmans 1987, Sirmans
1992). The large concentration of power in a small band
of frequencies centered at zero tends to bias both
velocity and spectrum width estimates toward zero while
increasing the reflectivity estimate.

Equally known is the mitigation of ground clutter
contamination. A high pass filter tuned to capture the
Doppler characteristics of the ground clutter can
mitigate the contamination and provide meaningful
estimates. Sirmans (1992) detailed the use of a five-
pole elliptic infinite impulse response (lIR) filter for the
NEXRAD WSR-88D radar system to mitigate ground
clutter. A notch width parameter selection of low,
medium and high allowed the operator to tune the filter
to suppress varying levels of clutter contamination. In
2004, Ice et. al. (2004a, 2004b) evaluated the Gaussian
Model Adaptive Processing (GMAP) (Siggia and
Passarrelli 2004) filter as a replacement GCF for the
NEXRAD WSR-88D radar system. The main
advantages of this spectral GCF are its ability to
automatically tune the filter with a single parameter and
to recover spectral coefficients in the stop band of the
filter.

Although mitigation of ground clutter is rather
straight forward, filtering also has its drawbacks in that
meteorological estimates along the zero-isodop (i.e., the
contour of near-zero radial velocity weather) are biased
or completely removed. When a bias is observed, the
GCF induces a slight shift in the velocity estimate away
from zero while increasing the spectrum width and
reducing the reflectivity estimates. Thus, judicious
application of the GCF by the operator is warranted
(Chrisman et. al. 1994). Recently, an automated ground
clutter detection algorithm, Clutter Mitigation Decision
(CMD) (Hubbert et. al. 2009), designed by scientists and
engineers at the National Center for Atmospheric
Research (NCAR) has been implemented into the
NEXRAD WSR-88D radar system (Ice et. al. 2009). The
fuzzy logic based algorithm provides real time ground
clutter mitigation decision eliminating the need for
operator interaction.

Here we show an efficient GCF algorithm,
CLEAN-AP, which combines both the detection and
mitigation of ground clutter contamination from the
weather radar returns. The filter dynamically changes its
clutter suppression characteristics to optimally match
the ground clutter environment. When a large ground



clutter contamination is detected the filter provides
clutter suppression of up to 60 dB; and, when no ground
clutter contamination is present, the filter provides no
suppression of weather signals.

2. GROUND CLUTTER DETECTION

The digitized complex, in-phase and quadrature-
phase (I and Q), voltage samples of received distributed
weather echoes of a coherent Doppler weather radar
are independent random variables in phase and
amplitude (Doviak and Zri¢ 1993). If the observation
time of this stochastic process is limited to a several
milliseconds, the process can be considered wide-sense
stationary (WSS). Typical WSR-88D dwell times range
from about 35 ms to about 80 ms in Surveillance and
Doppler modes to about 250 ms in Clear Air mode
(FMH-11). As such, spectral moment estimation is a
useful tool to analyze these digitized voltages and
extract meteorological estimates from other undesired
signals such as ground clutter.

Typically, the periodogram is used to create the
power spectral density; however, the periodogram may
not be suited to identify ground clutter contamination.
Additionally, exact replication of the power spectral
density is not possible with a finite dwell time using the
digital Fourier transform (DFT) unless the received
signals are exactly periodic over the basis of the
transform. Since the digitized | and Q voltages represent
a continuum of received frequencies, the aperiodic
received signals will spread (leak) across the frequency
domain of the DFT. Tapered windows such as
Hamming, von Hann (Hanning), or Blackman can be
used to control the amount of spectral leakage at the
cost of decreased resolution and increased variance of
the estimates (Harris 1978, Nuttall 1981).

Spectral leakage is an unfortunate side effect of the
limited record length of the digitized signal, but
increased record lengths would most likely violate the
WSS notion for the weather estimate and result in
impractical dwell times. Fortunately, spectral leakage
can be measured using the phases of the coefficients in
the linear cross-correlation spectrum (here out referred
to as cross-spectrum) of the signal with itself as:

F(k)= X, (m)X,(m+1) (1

where X = DFT(d - x), k is the coefficient of the DFT, m
is the sample index, | is the delay or lag, d is the tapered
window and x is the digitized received complex voltage.

It is easy to show that when the tapered window (d)
is rectangular, the cross-spectrum in equation (1) is the
periodogram for | = 0 and leads to a complex spectrum
for which the sum is the lag-l autocorrelation when | > 0.
The cross-spectrum in equation (1) preserves the phase
relation of both periodic and aperiodic signals. Thus,
each coefficient in the cross-spectrum of equation (1)
becomes the superposition of a single periodic signal
with all the aperiodic signals that make up the digitized |
and Q samples. The aperiodic signals bias the
coefficients of the cross-spectrum and the argument of
the resultant phasor indicates the amount of bias.

An analysis of the cross-spectrum of equation (1)
created by using a delay of 1 sample (I = 1), reveals that
narrow spectrum width signals provide increased phase
bias than a like signal with a larger spectrum width. This
is significant since the spectrum width of weather is
expected to be much greater (2 m/s to 4 m/s in
convective storms) than the spectrum width of ground
clutter (< 0.3 m/s) (Sirmans 1992).

Fig. 1 shows the magnitude (left) and phase (right)
relationship of the cross-spectrum at lag-1 of two 20 dB
signals with a velocity of 0 m/s. The signal in blue has a
wide spectrum width of 4 m/s and the signal in red has a
narrow spectrum width of 0.3 m/s. The green line in the
phase plot indicates that periodic signals are not
affected by the presence of aperiodic signals in the
signal (e.g., white noise); whereas, deviations from the
green line indicate biases caused by aperiodic signals
present in the spectrum. Note that where the signal is
present, the narrow spectrum width signal has more
coefficients that are phase biased than does the wider
spectrum width signal. This behavior of narrow
spectrum width signals is due to the large
power/frequency gradient (i.e., large concentration of
power in a small band of frequencies) and provides the
method to identify ground clutter contamination near
zero velocity used in the CLEAN-AP filter. In regions
where the signal drops near the noise level, the phase
becomes random.

3. CONTROLLING SPECTRAL LEAKAGE

As mentioned, a true representation of the power
spectral density cannot be achieved from the digitized
complex voltages due to the finite observation period;
thus, it becomes necessary to monitor the intrinsic
spectral leakage of our time-limited signals. It should be
noted that spectral leakage in and of itself is not a
problem, but the presence of two signal sources (e.g.,
ground clutter and weather) impinging on each other is
a problem. Take for example a pure tone at a frequency
that is midway between two basis vectors of the DFT.
The pure tone will be spread to the maximum extent.
The spectral leakage can be visualized as the
convolution of the tapered window spectrum with this
aperiodic tone. Using the cross-spectrum at lag-1, the
phase is constant at a single phase (representative of
the frequency of the signal).

An example of a pure tone that is sampled midway
between the basis vectors of the DFT is shown in Fig. 2.
Since the cross-spectral phase is equal throughout the
Nyquist co-interval, the magnitude of the sum of the
cross-spectrum coefficients at lag-1 (or at any lag) is
equal to the magnitude of the sum of the cross-
spectrum at lag-0 (i.e., periodogram). That is, the pure
tone signal is completely correlated at all lags of the
cross-spectrum as expected.

To preserve the superposition of the pure tones of
the weather signal, a method is needed that ensures
clutter contamination does not bias the coefficients of
the weather signal. Tapered windows provide a method
to smooth (whiten or flatten) the cross-spectrum
(Schwartz and Shaw 1975); thus, controlling the clutter



power gradient across frequencies. The consequence of
this smoothing process is the loss of fidelity of the
weather signal in the form of increased variance and
loss of resolution (Torres 2007).

There are many sources in the literature that
describe the effects of tapered windowing, so this paper
will not review these effects. However, there are two
characteristics of the tapered window spectrum that are
of interest when controlling spectral leakage: highest
sidelobe level and sidelobe falloff rate. Harris (1975)
and Nuttall (1981) detail these characteristics for many
of the common tapered windows and Table 1 provides a
quick reference to five windows used in the CLEAN-AP
filter. Although the Hamming window has a lower
sidelobe level than does the Hanning window, it is listed
first in Table 1 because of the sidelobe falloff rate is
much lower.

Table 1. Tapered window sidelobe characteristics

Highest Sidelobe Sidelobe

Window Level Falloff Rate

(dB) (dB/octave)
Rectangular -13 -6
Hamming -43 -6
Hanning (a = 2.0) -32 -18
Blackman -58 -18
Blackman-Nuttall -98 -18

The highest sidelobe level and the sidelobe falloff
rate of the tapered window provide the method to
control spectral leakage. If the clutter-to-noise ratio
(CNR) is limited to the highest sidelobe level, then the
leakage of the clutter signal away from zero will occur at
or below the noise level. Additionally, by choosing a
tapered window which exhibits a good sidelobe falloff
rate, the clutter contamination will be suppressed well
below the noise level concentrating the clutter bias at
frequencies near zero. An estimation of CNR used by
the CLEAN-AP filter is provided by comparing the
average DC (or zero-frequency) power to the noise
power:

M1 2

2 X(m)

m=0

noise

1

CNR = M

)

4. CLEAN-AP ALGORITHM DESCRIPTION
For each range bin:
a. Compute the estimated CNR using equation (2)
b. Select a tapered window from Table 1 such that
the estimated CNR does not exceed the highest

sidelobe level.

time-series as:
0<m,<M-1 and

c. Create two complex
X, =x(m,)and x, = x(m,), where

1<m, <M.

d. Compute the DFT of windowed spectrum X, and

X, from x,and x, respectively.

e. Compute the periodogram from X,and the lag-1
cross-spectrum using equation (1) (with X, as the first
term and X, as the second term).

f. Compare the absolute value of the argument of
each coefficient of the cross-spectrum at lag-1 to a
clutter bias threshold parameter (angular error).

g. Notch the coefficients of the periodogram and
cross-spectrum where the cross-spectrum coefficients
are less than the angular error and exceed the spectral
noise level.

h. Identify the range bin as filtered if a notch has
been applied.

i. Linearly interpolate across the spectral notch
width for both the periodogram and the cross-spectrum.

j- Estimate the meteorological
Doviak and Zrni¢ (1993).

parameters per

5. SIMULATION ANALYSIS

Reasonable weather and clutter simulations are
provided by modeling the signals as having a Gaussian
power spectrum (Sirmans and Bumgarner 1975, Zrni¢
1975) with a larger number of coefficients than are
needed in the time series. Using simulations, the clutter
filter characteristics and clutter detection capability of
the CLEAN-AP filter can be shown. The following
paragraphs depicts some selected performance
characteristics of the filter.

5.1 Ground Clutter Suppression

A good indication of the performance of the
CLEAN-AP filter can be obtained from the amount of
ground clutter suppression that the filter can provide.
Simulations of clutter/weather mix were created and
processed through the CLEAN-AP filter. Fig. 5 shows a
scatter plot of power bias of the filtered weather as a
function of increasing clutter-to-signal ratio (CSR) levels.
As seen in the figure, the filter provides about 60 dB of
clutter suppression without biasing the weather signal
power estimate. After a CSR of about 60 dB, over
suppression of the simulated weather signal is seen by
the negative biases exhibited in the scatter plot. At an
approximate CSR of 80 dB and above, the clutter levels
saturate the weather signal as observed by positive
biases. To place the clutter suppression performance
into context, the CLEAN-AP filter easily provides the
clutter suppression requirements of 50 dB required for
operations in the U.S. network of weather surveillance
radars (i.e., the NEXRAD network of WSR-88D radars).



5.2 Reflectivity Bias

The reflectivity bias from the filtering process when
ground clutter is not present is shown in Fig. 6 through
Fig. 8. In these figures, power bias is shown as a
function of the spectrum width using simulations of a 20
dB weather signal with 0 m/s velocity and varying
spectrum widths. Different pulse-repetition-frequencies
are used for the three weather modes described in the
FMH-11. The CLEAN-AP filter provides small biases
over the range of spectrum widths. Performance is
shown against the filters used (past and present) in the
WSR-88D for the operational scanning modes: Clear
Air, Surveillance, and Doppler. The blue dots on each
plot indicate the WSR-88D reflectivity bias requirements
(WSR-88D SS).

5.3 Ground Clutter Detection

The CLEAN-AP filter has the ability to identify
ground clutter in the presence of weather echoes as
shown in Fig. 9 where clutter likelihood is plotted as a
function of CSR. The detection rate is calculated as the
mean of 5100 detections (identified filtering of a range
bin as in 4h above) at each CSR level for a simulated 20
dB signal with varying velocities and a 4 m/s spectrum
width. The CLEAN-AP filter has approximately 50%
detection rate down to -12 dB CSR and about 83%
detection rate at 0 dB CSR with over 90% detection rate
above about 3.7 dB CSR.

5.4 Velocity Bias

The CLEAN-AP filter has no appreciable velocity
bias (< 0.8 m/s) over the entire Nyquist co-interval for a
composite signal with 55 dB CSR as seen in Fig. 10.
The scatter plot shows the filtered velocity bias as a
function of 100 simulations for each velocity tested. The
CLEAN-AP filter easily meets WSR-88D velocity bias
requirments (< 2 m/s) at the highest clutter suppression
(50 dB) levels.

5.5 Spectrum Width Bias

The CLEAN-AP filter provides unbiased spectrum
width estimates with low error of estimates as seen in
Fig. 11 when providing 55 dB of clutter suppression. In
this figure, the green line shows zero bias; while the red
lines indicate the WSR-88D allowed bias of 2 m/s for
filtered spectrum width estimates. The red circles
indicate the estimate mean and the red bars indicate the
standard deviation at the mean. The CLEAN-AP filter
easily meets WSR-88D spectrum width bias and error of
estimate requirments (< 2 m/s) at the highest clutter
suppression levels (50 dB).

5.6 Window Selection

Closely related to low errors of estimates is the
selection of low dynamic-range tapered windows. On
the other hand, high dynamic-range tapered windows
are needed for adequate clutter suppression. The

CLEAN-AP filter provides automated tapered window
selection among five windows as listed in Table 1. Fig.
11 shows how the CLEAN-AP filter selects the lowest
dynamic-range window when ground clutter is low and
increasingly selects a higher dynamic-range window as
the amount of ground clutter increases. This
performance ensures the best possible quality of
estimate for a given ground clutter environment.

6. REAL WEATHER EXAMPLES

The CLEAN-AP filter was implemented in the Fall of
2008 into the weather digital signal processing suite of
the National Weather Radar Testbed (NWRT) Phased
Array Radar (PAR) located in Norman, Oklahoma
(Torres et. al. 2009). During the Phased Array Radar
Innovative Sensing Experiment (PARISE) (Heinselman
et. al. 2009), the CLEAN-AP filter provided automatic
ground clutter detection and suppression. In Fig. 11, the
CLEAN-AP filter is shown to remove ground clutter
caused by anomalous propagation. The filter
performance is contrasted against the operational
WSR-88D radar system KTLX in Oklahoma City. In the
operational system, operators applied filtering at all
ranges to combat the dynamic atmospheric conditions
as the inversion moved over the region to the North of
the radar.

In Fig. 12, normal propagation (NP) clutter
contamination biases are shown to be removed from
reflectivity, velocity and spectrum width near the NWRT
PAR (red circles) without affecting areas outside the
clutter regions. The images captured a mesocyclone
(yellow circles) just 2 hours before it developed into an
EFO0 tornado that touched down at lake Stanley Draper
in southern Oklahoma City, OK. Note that there are no
observable differences inside the yellow circles
indicating that the CLEAN-AP filter did not bias the
weather estimates in this region.

7. SUMMARY

We have introduced a new spectral GCF, referred to
as CLEAN-AP, capable of automatic real-time detection
and mitigation of ground clutter contamination in
weather radars. We have characterized the statistical
performance of the CLEAN-AP filter and compared the
performance with NEXRAD WSR-88D standards.
Through simulations, we have shown that the filter is
capable of providing clutter filtering on par with current
techniques, but does so without operator interaction.
Examples of the filters real-time performance was
shown to remove clutter contamination in both severe
AP and NP events without detriment to meteorological
estimates as part of the NWRT PAR digital signal
processing suite.
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Fig. 5. Reflectivity bias in Surveillance Mode for the WSR-88D and the CLEAN-AP filters.
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Fig. 6. Reflectivity bias in Doppler Mode for the WSR-88D and the CLEAN-AP filters.



CLEAN-AP Clutter Detection (SMR: 20 dB, Width: 4 m/s)
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Fig. 7. Example of likelihood of ground clutter detection using the CLEAN-AP filter.
Yelocity Bias (CER: 55 dB, PRT: 1000 ps, Dwell: 64 Samples)
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Fig. 8. Example of velocity bias in a high-suppression regime for the CLEAN-AP filter.
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Fig. 9. Example of spectrum width bias and error of estimate in a high-suppression regime for the CLEAN-AP
filter.



CLEAMN-AP Window Selection

—a
Blackman-Muttall - Avarage
— Range o )
o
Blackman - |
=
2
g
= “Yon Hann | |
Jiz]
=
=
=
z Hamrming |
Rectangular |
1
=20 ] a0 a0 a0 - 4

CER (dB)
Fig. 10. Window selection in the CLEAN-AP filter.
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Fig. 11. Displays of Reflectivity from NWRT (with and without CLEAN-AP applied) compared with KTLX
(Oklahoma City WSR-88D system) during normal operations.
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Fig. 12. Displays of reflectivity, velocity, and spectrum width with CLEAN-AP on and off,
the red circles indicate where normal clutter contamination is present when not filtering (reflectivity is biased
high, velocity is biased toward zero, and spectrum width is biased toward zero in this region)



